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Introduction

Welcome toMaths for Science There are many reasons for studying maths and
a compelling motivation for many people is that it provides a way of representing
and investigating the nature of the real world. Real world contexts could include
population statistics, or economics, or engineering. Here, the context is ‘science’ in
its broadest sense.

Much of science is couched in the language of mathematics. Nearly all courses
in science will assume some mathematical skills and techniques. It is clearly not
possible foMMaths for Science discuss all the mathematical techniques you might
need to pursue your study of science to degree level, but by the end of it you will
have acquired a good array of basic mathematical tools and confidence in using
them. Equally importantly, you will have a foundation that should make it much
easier to learn further mathematics if and when required.

Maths is in some sense a language with its own alphabet, vocabulary and ‘rules
of grammar’. With any language the only route to fluency is use and practice, but
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eventually the process of constructing or understanding sentences becomes auto-
matic and one can then concentrate wholly on the message behind the words. You
should aim to develop a similar confidence and fluency in carrying out certain im-
portant mathematical operations. There are few shortcuts: the route requires prac-
tice, practice and more practice! Keep paper, a pencil and your calculator to hand
as you study, and use them constantly. You may find it helpful to write out notes
and even to rework some of the examples given in the text as you go along. You
will see that there are lots of questions seeded through the text and at the ends of
sections;you should work through each question as you reactLibks are pro-

vided to the solutions, but don’t be tempted to look at these until you have made a
serious attempt at working out the answer for yourself. If you have solved all parts
of a question successfully on your own, then you are ready to move on.

The focus ofMaths for Sciencés maths and not science, so you are not expected
to bring specific prior knowledge of any particular branch of science. However,
most of the examples and questions involve the application of mathematical tools
to a real scientific purpose, so you will probably discover some interesting science
along the way. Enjoy the journey!

Back <« >
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Starting Points

The point to start from is always what you already know. It is assumed that you
are familiar with the everyday usage of the basic arithmetic operations of addition,
subtraction, multiplication, division and the use of a calculator to carry them out,
decimal notation (e.g. for money), the representation of an idea by a formula (such
as Einstein’s famou§ = mc), and the interpretation of information on a chart

or graph (of the kind that might, for instance, accompany a TV news item about
economic trends). Beyond that, you will find that many of the early chapters begin
with a little revision of ideas and skills that you will probably already have met.
This chapter, which concentrates on ideas about numbers — including fractions and
powers — and the use of your calculator, is slightlffetent from later ones in that

it covers concepts that are the basis for what is to follow in the rest of the course,
so more of it may constitute revision.

Back <« >
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If the points covered in the rest of this chapter are completely familiar, you need not
spend very long on them, but they are worth checking out thoroughly as they are the
foundation of much that is to come laterMuaths for ScienceEven if it is only for

the sake of revision, make sure you understand all the emboldened terms and test
your own skills against the learning outcomes by doing the numbered questions.
If any of the material is new to you, time spent mastering it now will pay rich
dividends later.

1.1 Numbers

‘Numbers rule the universe’ (Pythagoras)

Numbers are the bedrock of mathematics, underlying measurement, calculation and
statistics, among other branches of maths. Everybody is familiar with the counting
numbers (1, 2, 3, etc.), but scientists also make use of other kinds of numbers, so it
is appropriate to begin this course with some revision of numbers of various sorts
and the ways in which they may be combined.

Back <« >
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1.1.1 Dfiferent types of number

One convenient way to represent numbers is on a ‘number line’, as shown in Fig-
ure 1.1. A ‘step’ to the right is taken by adding 1 to the previous number and a step
to the left by subtracting 1. Positive and negative whole numbers, including zero,
are calledntegers

zZero

negative numbers positive numbers

=3 -4 -3 -2 =1 0 1 2 3 4 5

Figure 1.1: A number line showing the integers frefto 5.

Fractiong(formed by dividing one integer by another) and their equivalent decimal
numbers fit on the number line between the integers. For example, (b§.isO
halfway between 0 and 1, ane?.5 is halfway betweer-2 and-3. A number in
which there is a decimal point (e.g.50 25, 10035, etc.) is said to be written in
decimal notation

Back <« >
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Figure 1.2 shows part of a thermometer. The inset portion

~—5
¢

covers a range from abow#t.4 °C to—5.6 °C, which might ),

represent the variation in temperature over a 24-hour period

during the winter in the UK. H 3

This illustrates how subdivision of the number line forms i 2

the basis of a scale for measuring physical quantities that E

can vary continuously. In this case, the scale between the i 1

integralvalues is divided into tenths. (Note that, in order to i 0

describe a physical quantity the numerical value has to be E

accompanied by a unit of measurement, in this case the de- i )/

gree Celsius. This aspect of measuring is covered in Chap- i Eo

ters 2 and 3.) - A

In the case of a fraction such %%’ the decimal equivalent i

is exact to twaplaces of decimal§i.e. two digits after the I i

decimal point): 43
213 _ o0, (a) (0) ™
2_5 bl .

Figure 1.2: Part of a thermometer.

This decimal equivalent (%1—53 cannot be given to more than
two places of decimals except by putting zeros on the end
(e.g. 8520000), so it is said to terminate at the digit 2.

Back | > 11
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However, if you work out a fraction Iiké on your calculator you will get a decimal

like 0.333 333 333 (the number of digits displayed will depend on the make of your
calculator). 555 will come out as (123123123, andy as 7777777 778. These
decimals in fact recur (i.e. repeat themselves) for ever, so they are called infinite
recurring decimalsThe calculator truncates them when it runs out of digits on the
display, and in the case of the final example also ‘rounds up’ the last digit from a
7 to an 8. In scientific calculations, it is usually totally inappropriate to quote so
many digits after the decimal point and in Chapter 2 we will consider the rules for
deciding how to round b such numbers in real situations.

Fractions and decimals are grouped together as the so-cafiedal numbersAll

the rational numbers result in a decimal that either terminates or recurs. How-
ever, there are also numbers whose decimal equivalent neither terminates nor re-
curs. These numbers cannot be obtained by dividing one integer by another, so they
are calledrrational numbersWell-known examples are/2 (the number that mul-
tiplied by itself gives 2, said as ‘the square root of 2’) andwvhich is defined as

the number obtained by dividing the circumference of a circle by its diameter. This
would be an appropriate moment to check that you know how to use bgton

on your calculator. You should be able to get:

2x 1 =6.283185307

Back <« >
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Note that as there are so many makes of scientific and graphics calculators on the

market, each operatingftirently, it is impossible to state the exact sequence of
keystrokes you will need to carry out particular calculations. Whenever you meet

a new type of mathematical operation, you should therefore check that you know

how to perform it on your own calculator and refer to the manufacturer’s instruction @
book if necessary. A calculator symbol in the margin will alert you to the points at

which you particularly need to carry out this kind of check.

All the integers, rational and irrational numbers can be placed somewhere on the
number line, so they are grouped together asréa numbers All the numbers

you will use in this course will be real. However, it may interest you to know
that there are alsmnaginary numberdased on the square root of minus 1, which

is usually represented by the symlholNumbers made up of real and imaginary
parts, such as (8 2i) are known agomplex numbersComplex numbers are used
quite extensively in science and have practical applications in telecommunications,
electrical engineering and the beautiful patterns of fractals.

In case hearing about all thesdfdrent types of numbers leads you to think that
straightforward ‘counting numbers’ hold little interest for scientiBisx 1.1shows

how a series of numbers, which mathematicians find interesting in their own right,
have also been found to describe intricate patterns of plant growth.

Back <« >
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Box 1.1 Fibonacci numbers
The sequence of numbers

0,1,1,2,3,5,8,13 21,34,55,89...

was first defined in 1202 by the Italian mathematic an
Leonardo of Pisa, nicknamed Fibonacci. Each term in
the sequence after the first two is obtained by adding
together the previoustwo ¢l = 1; 1+1 =2; 1+2 = 3;
2+3=5,etc.)

(a)

Itis intriguing to discover that the spiral patterns of pleint
growth correspond to pairs of numbers in this series, as
illustrated in Figure 1.3.

Part (a) shows a pinecone with 8 parallel rows of brects
spiralling gradually and 13 parallel rows of bracts spi- (b)
ralling steeply.

Part (b) shows a sunflower head in which the seeds spi- F19ure 1.3: Fibonacci numbers in nature.

ral out from the centre: 55 rows clockwise and 89 raws
anticlockwise.

Back | > 14
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1.1.2 Calculating with negative numbers

Many scientific quantities can take negative values. For example, chemical reac-
tions may either give out heat to the surroundings or absorb heat from the surround-
ings. Scientists adopt a convention that in the case of a heat-absorbing reaction, the
change in energy has a positive value. In the case of a heat-releasing reaction (such
as combustion), on the other hand, the energy change is negative. To be able to
handle quantities like this in scientific calculations it is essential to understand the
rules for performing tharithmetic operationgaddition, subtraction, multiplication

and division) when negative numbers are involved. If | amalgamate a credit card
debt of £100 with an overdraft of £150, | owe £250 in total:

£100 debt+ £150 debt= £250 debt

Just in terms of numbers, this is equivalent to writing:

(-100)+ (~150) = —250

Note from this example how brackets can be used to make it clear how numbers and
signs are associated. The rules for performing arithmetic operations with negative
numbers are summarized by the examples in the ‘Baithmetic with negative
numbers.! You should check that you are familiar with all the rules exemplified in
the box.

Back <« >
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Arithmetic with negative numbers

The numbers used as examples here are small integers between 1 and 10, but
could of course be any number. As is normally the case, positive numbe s are
not preceded by & sign.

(-3)+5=2 3+(-4)=-1 (=3) + (-3) = -6
(-5)-2=-7 4-(-3)=7 (=5) — (—4) = -1
(-2)x 2 = —4 3x(-2)= -6 (=2) % (-2) = 4
(-3)=3=-1 3:(-3)=-1 (-3)+ (-3) =1

Thinking about some of the examples in concrete terms may help to make sense of
them. For instance, taking money from a bank account that is already overdrawn
increases the amount of the debt (i.e. makes it ‘more negative’). Doubling an
overdraft produces an even larger debt (i.e. a bigger negative number).

Brackets are included to associate negative signs with particular numbers. For ex-
ample, 3+ (—4) means that{4) is being added to 3; this is equivalent to subtracting
4 from 3, with the result€1).

Before reading on, test your understanding of the rules by dQungstion 1.1

Back <« > 16
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Question 1.1

Without using your calculatomork out:

(@) (-3)x4 Answer
(b) (-10)-(-5) Answer
(c) 6+(-2) Answer
(d) (-12)= (-6) Answer

The examples given so far illustrate one important feature of both addition and
multiplication: both these operations asxemmutative This is just the mathemat-
ical way of saying that if one adds two numbers then the result (callesutimgis
identical whichever number is written first. For example:

5+43=8and3+5=8
(-2)+3=1and 3+ (-2)=1

Similarly, in multiplying two numbers the result (called theoduc) is unchanged
if the order of the numbers is reversed. For instance:

5x4=20and 4x5=20
(-3)x4=-12and 4x (-3) = -12

Back | > 17



Contents

Subtraction and division, on the other hand, are not commutative:

5-3=2but3-5=-2
8+4=2but4:-8=3

The commutativity of addition and multiplication may seem rather obvious when
applied to the counting numbers, but is worthy of attention because of its impor-
tance in the algebraic manipulations that will be discussed in Chapter 4.

Worked example 1.AndQuestion 1.2are two rather more realistic examples re-
quiring the use of arithmetic with negative numbers.

Back <« >
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Worked example 1.1

One of the hottest places on Earth is Death Valley, California, where an air
temperature of 58C has been recorded. Probably the coldest inhabited place is
the Siberian village of Oymyakon, where the temperature has falle@26C.
What is the diference in temperature between these two extremes?

Answer

The diference in temperature may be worked out in two ways. The first
method involves subtracting the lower temperature from the higher, i.€C56
(=72°C), which gives apositive difference of 128 Celsius degrees. This

is the amount by which Death Valley is hotter than Oymyakon. Alteina-
tively, it is equally valid to subtract the higher temperature from the lower, i.e.
—72°C-56 °C, which gives aegativedifference of-128 Celsius degrees. Th's

is equivalent to saying that Oymyakon is 128 Celsius degrees colder than Death
Valley.

This example shows that in scientific calculations involving negative numbers it
is important to keep the physical situation in mind.

Back <« >
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Question 1.2 Answer

The maximum temperature range within the oceans is 31.9 Celsius degrees. This
is a much smaller variation in temperature than that achievable for the air above
a landmass, in part because the lowest ocean temperature is fixed at the tem-
perature at which seawater freezes. The highest recorded ocean temperature is
30.0 °C. What is the freezing point of seawater?

1.1.3 Working with negative numbers on a calculator

The calculations iQuestions 1..-and 1.2 were easy enough to work out by hand,
but many of the calculations you will encounter in science will require the use of a
calculator. It is therefore important to check that you know how to input negative
numbers into your own calculator.

Take the following examples:

6+ (-8)= -2
4-(-3)=7
5x (-3) = —15
(-8) = (-2) = 4

and make sure that you can carry out each sum on your calculator, obtaining the
correct sign on the display of the answer. With some makes of calculator you will

Back <« >
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be able to enter the expression on the left-hand side more or less as it is written,
with or without brackets. With other makes you may have to use a combination of
the arithmetic operation keys and th¢— (or on some makes) button.

When you are confident that you can input negative numbers in association with the
first arithmetic operations, test your skill with Question 1.3.
Question 1.3

Making sure you input all the signs, use your calculator to work out the follow-
ing:

(@) 117- (-38)+ (-286) Answer
(b) (-1624)+ (-29) Answer
(c) (-123)x (-24) Answer

There is, however, one case in which the calculator does not fully deal with signs,
and that case concerns square roots. haare rooof 9’ is defined as the number
that multiplied by itself gives 9. One such number is 3:

3x3=9

and if you use your calculator to work o9 you will indeed obtain the answer 3.
However, it is also true that

-3x-3=9

Back < > 21
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So the square root of 9 is eitheB or —3. It is a mathematical convention that the
notation V9 means ‘the positive value of the square root of 9’, and this is what your
calculator displays. In cases in which the negative value of the square root might
be relevant this is indicated by use of the sigplus or minus) before the square
root sign, i.e+ V9.
In Section 1.1.1the numbery2 was given as an example of an irrational number.
Check that you can use the square root button on your own calculator to get
V2 = 1414213562

(You may obtain more or fewer digits depending on the make and model of your
calculator. The fact that the number is irrational means that in any case it never
ends.)

Question

What is£5?

3

Answer

? ~ 0745355922
Be sure to check that you can obtain this value on your own calculator, by ensuring
that the calculator takes the square root diedoredividing by 3. Otherwise, you
Back < > 22
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will get the positive value of the square rootgqfwhich is not the same at all!

\/g =1.290994 449

1.1.4 The number zero

Zero is a number to be careful about, especially when it is used in multiplication or
division.

If you try multiplying O by 6 on your calculator, you will get the answer 0. This
is hardly surprising. If we startfbwith nothing, it doesn’t matter how often we

multiply it, we still have nothing. The commutativity of multiplication shows that
6 x 0 is therefore also equal to 0, and your calculator will confirm this.

The result of multiplying any number by 0 is 0.

In a similar way, dividing O by any non-zero number gives zero.

Trying to divide by zero is more problematic. If you ente+® into your calcu-

lator, you will get an error message. To understand why, imagine dividing 6 by
successively smaller and smaller numbers: the answers will get successively larger
and larger. The number by which we’re dividing approaches zero, the result of the
division becomes too large for the calculator to cope with. Dividing by zero does
not produce a meaningful number and is to be avoided!

Back <« >
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1.2 Fractions

With the increasing decimalization of everyday units of measurement, we use frac-
tions less than people used to. Nowadays adding eighths and sixteenths of inches
is about as much as you might need to do, and that only if you still have a ruler, or
some items in a toolbox, marked in inches. However the ability to add, subtract,
multiply and divide using numerical fractions is extremely importariVieths for
Science because it is the basis for the skill of manipulatagebraic fractions

which will be discussed in Chapter 4.

1.2.1 Using fractions

Fractions are characterized bynamerator(the number on top) and denomina-
tor (the number on the bottom). So in the fractiénthe numerator is 3 and the
denominator is 8.

Back <« >
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A pictorial representation, such as that in Figure 1.4, makes it obvious
that it is possible to have fractions which havéelient numerators and
denominators, but are nevertheless equal. The cake can be divided intc
two and the shaded half further sub-divided into two quarters or four
eighths, but half the cake still remains shaded. So the fracgpﬁlsmd

g all represent the same amount of the original cake, and can therefore
be described asquivalent fractions

Figure 1.4 exemplifies the most fundamental rule associated with frac-
tions: }

N =

AN

The value of a fraction is unchanged if its numerator and denon ina-
tor are both multiplied by the same number, or both divided by the
same number.

In the case of the half cake, numerator and denominator have been mul-
tiplied by 2 to get the equivalent two quarters and again to get the equiv-
alent four eighths. In the following example of equivalent fractions,
other multiplying and dividing numbers have been used:

6 2 8 10 Figure 1.4: Sharing out half a
== _ = cake.
9 3 12 15

% Is the simplest form in which this fraction may be expressed, i.e. the one in which

the numerator and denominator have the smallest possible value.

Back <« > 25
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A percentageneans a ‘number of parts per hundred’, so is equivalent to a fraction
in which the denominator is 100. For example, 50% is the samgas 3

Question
Express 35% as a fraction of the simplest possible form.

Answer

35% is the same ag;. The value of the faction will be unchanged if the ru-
merator and denominator are both divided by the same number, and 35 and 100
can both be divided by 5. Doing this gives

3 _7
100~ 20

This is the simplest form in which the fraction can be expressed.

One way to convert a fraction to a percentage is to multiply top and bottom of the
fraction by whatever number is required to make the denominator equal to 100. For
instance:

1 _1x25 25
4 4x25 100

Hence; is equivalent to 25%.

Back <« > 26
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In the first few sections of this course, all fractions have been written in the%orm
However, in most maths and science texts, you will find that the alternative form,
3/4, is also very common, so you have to become equally comfortable with both
systems and also have to be able to swap between them at will. From now on,
therefore, both notations will be used.
1.2.2 Adding and subtracting fractions
Suppose we want to add the two fractions shown below:
3 N 7
4 16
We cannot just add the 3 and the 7. The 3 represents 3 ‘quarters’ and the 7 represents
7 ‘sixteenths’, so adding the 3 to the 7 would be like trying to add 3 apples and 7
penguins!
In order to add or subtract two fractions, it is necessary for them both to have
the samalenominator(bottom line).
Back < > 27
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Fractions with the same denominator are said to havenamon denominatorin
numerical work, it is usually convenient to pick the smallest possible number for
this denominator (the so-calléolvest common denominaforn this example, the
lowest common denominator is 16; we can multiply both top and bottom of the
fraction% by 4 to obtain the equivalent fractidli%, so the calculation becomes

3+ 7 _12+ 7 19
4 16 16 16 16

A top heavy fraction suct%—g (i.e. one in which the numerator is larger than the
denominator) is sometimes referred to asmproper fraction We could also write

the final answer asl%. This notation is called enixed numbefi.e. a combination

of a whole number and a simple fraction). However for most purposes in this course
it is better to leave things as improper fractions.

Back <« > 28
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If the lowest common denominator is not easy to spot, it is perfectly acceptable to
useany common denominator when adding and subtracting fractions. It may be
most convenient to multiply the top and bottom of the first fraction by the denom-

inator of the second fraction, and the top and bottom of the second fraction by the
denominator of the first. A return to our example may make this clearer:

3+7_3><16+ 7><4_48+28_76
4 16 4x16 16x4 64 64 64

However,Z}—?1 is not the simplest form in which this fraction can be expressed. We

can divide both the numerator and the denominator by four to o%%aiﬁ&eassur-
ingly, this is the same answer as we obtained before!

This process of dividing the top and bottom of a fraction by the same quantity is
often referred to asancellationbecause it is commonly shown by striking through
the numbers being divided. For examp%, can be simplified by dividing the
numerator and denominator by 3, and this may be shown as

51
153

Back <« >
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Worked example 1.2

vaaIgate% + 3i2 giving the answer in the form of the simplest possible improper
raction.

Note that the instruction t@valuate’simply means ‘calculate the value of’.

Answer
Choosing 2x 32 as the common denominator,

3 1 3x32 1x2

2v3272x32 " 32x2
96 2

~ 64 64
_ 98
"~ 64
%49
_/6432

This cannot be simplified any further, so

3. 1_4
2 32 32
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Question 1.4

Without using a calculatgrevaluate the following, leaving your answers in the
form of the simplest possible fractions.

(@) 376 Answer
1 1 2

(b) 3 + 5% Answer
5 1

(c) 28 3 Answer

1.2.3 Manipulating fractions

It is very important to remember that multiplying both numerator and denominator
by the same non-zero number, or dividing both numerator and denominator by the
same non-zero number, are thely things you can do to a fraction that leave its
value unchanged. Adding the same number to the numerator and denominator will
alter the value of the fraction, as will any other operations. The following question
will help you to convince yourself of this, so it is particularly important that you
should work through it at this point.
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Question 1.5

Take any fraction, sa;f%, and evaluate it as a decimal, using your calculatcr if
necessary. Now try each of the following operations in turn, using your calcula-
tor to work out the result:

(a) choose any integer and add it to the numerator and Answer
denominator

(b) subtract the same integer from the numerator and denominatohnswer

(c) square the numerator and the denominator (i.e. multiply the Answer
numerator by itself, and the denominator by itself)

(d) take the square root of the numerator and the square root of Answer
the denominator.

The results you obtained for Question 1.5 confirm that, for example, adding the

same non-zero number to the top and bottom of a fraction changes its value, as
do operations such as taking the square root of the numerator and denominator.
The experience of all calculations of this type can be generalized by saying that

excluding operations involving the integer zero,

A fraction is unchanged by either the multiplication, or the division, of its nu-
merator and denominator by the same amount. All other operations carried out
on the fraction will alter its value.
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In terms of numerical fractions, this rule may seem fairly obvious. But forgetting
it once the numbers are replaced by symbols is the root cause of many errors in
algebra!
1.2.4 Multiplying fractions
The expression ‘three times two’ just means there are three lots of two{i2x2).
So multiplying by a whole number is just a form of repeated addition. For example,

3x2=2+2+2
This is equally true if you are multiplying a fraction by a whole number:

3% 4_1 4 4 4 12

5 5 5 5 5

We could write the 3 in the form of its equivalent fractiérand it is then clear that
the same answer is obtained by multiplying the two numerators together and the
two denominators together.

3 4 3x4 12

1 5 1x5 5
In fact, this procedure holds good for any two fractions.
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To multiply two or more fractions, multiply the numerators (top lines) together
and also multiply the denominators (bottom lines) together.
So
3 7 3x7 21
4 8 4x8 32
Multiplying three fractions together is done by simple extension of the method used
in the previous examples:
7 7 3 7x7x3 147
167874 16x8x4 512
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1.2.5 Dividing fractions

How are we to interpret 4 %’? The analogy with dividing by an integer may help.
The expression 4 2 asks us to work out how may twos there are in 4 (answer 2).
In exactly the same way, the expression gasks how many halves there are in 4.
Figure 1.5 illustrates this in terms of circles. Each circle contains two half-circles,
and 4 circles therefore contain 8 half-circles. So

D (
D C

4+—-=4x2=8
2
Figure 1.5: Each circle contains two half-circles.
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N B
NN

Figure 1.6: Each half-circle contains two quarter-circles.

Similarly, % + %1 asks how many quarters there are in a half. Figure 1.6 illustrates
that:

e each whole circle contains 4 quarter-circles

e each half-circle contain% x 4 quarter-circles

So
1 1 1 1 4 1x4 4
27272747317 2x1° 2772

This may be extended into a general rule

To divide by a fraction, turn it upside down and multiply.
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So

wl A
.|.
ol o
I
Siool-b
XX
N ol

" 155
12
5
Here the cancellation has been done by dividing the numerator and the denominator
of the final answer by 3. However, cancellation could equally well have been carried
out at an earlier stage,
4 @3 12

—X—:—
31 5

Note that divisions involving fractions are commonly written in severfiedent
4/3

ways; the example above might equally well have been express§%1§a©r 5/9°
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It is always important to remember that an integer is equivalent to a fraction in

which the numerator is equal to that integer and the denominator is equal to 1: for

example, the integer 3 is equivalent to the fract%orSo dividing by the integer 3

is equivalent to dividing by the fractio%, and that, according to the general rule

about how to divide by a fraction, is the same as multiplying by the frac%ion
1 1 3 1 1 1x1 1

TS5 +3=57132%32x37 6

In this context, it may be helpful to restate the general rule in terms of a

specific example:

I want the
cake divided

Multiplying by % is equivalent to dividing by 2.
Dividing by% is equivalent to multiplying by 2.
The blue box and the cartoon use the integer 2 as the example, but

could of course be replaced by any other integer: it is equally true to
say that dividing byliO is equivalent to multiplying by 10.
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Question 1.6

Work out each of the following, leaving your answer as the simplest possible
fraction:

2

(@) 7% 3 Answer
5

(b) 57 7 Answer
1/6

(c) # Answer
3 7 2

(d) 258%7 Answer

1.3 Powers, reciprocals and roots

1.3.1 Powers

Most people are familiar with the fact that2 can also be written asZsaid as
‘two squared’) and X 2 x 2 as 2 (said as ‘two cubed’). This shorthand notation
can be extended indefinitely, sx2 x 2 x 2x 2 x 2 becomes 2(said as ‘two raised
to the power of six’ or ‘two to the power of six’, or more usually just as ‘two to the
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six’). In these examples, 2 is called thase numbeand the superscript indicates

the number of ‘2’s that have been multiplied together. The superscript number is
variously called theexponenttheindex (plural indices) or thgower. In the rest

of this section, the term exponent will be the one used, because that ties in most
closely with the notation on calculators.

‘Power’ is a slightly confusing term because it is commonly used to denote two
different quantities:

¢ the value of the superscript number (as in ‘two to the power of six’),
¢ the complete package of base number and exponent .
The context should make it clear what is meant in any particular example.

In the following example, the base number is 5:

Exponent 1 2 3 4

Power of 5 g 52 53 54
Value 5 25 125 625

If you read this table starting at the right and stepping to the left, each time you take
a step you are subtracting 1 from the number in the top row and dividing the number
in the bottom row by five. On the basis of this pattern, mathematicians extend this
table further to the left by continuing to apply the same ‘rule’ for each step, giving:
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Exponent -3 -2 -1 0 1 2 3 4
Power of 5 53 52 51 50 g5 5 58 5
Value o 2 & 1 5 25 125 625

Firstly, note the extremely important result thit51.

Any base number raised to the power of zero is equal to 1.

. . . 1
Next, notice that 5 = 5. But since 25= 52, 5 is alsog. So we have developed
a new form of shorthand such that

1 1
53=_— and so on.

1
1_ 2 _
5+ = 5_2 3

Another way of saying this is that 3 is thereciprocalof 52. The reciprocal of any
number is 1 divided by that number. Note that this also works the other way round:

. . . 1
52 is the reciprocal of %. This means thaE{)T = 52,
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The system shown above for powers of 5 could be applied to any base number,
and is especially useful when applied to powers of ten, because then it ties in with
our normal system for writing decimal numbers. In the example below, the table is

constructed the other way round to emphasise this:

thousands hundreds tens units point tenths hundredths thousandtas

Value 1000 100 10 1 . 01 0.01 0.001
Power of 10 18 107 10t 1® 101 102 103
Exponent 3 2 1 O -1 -2 -3

In the next chapter, you will see how useful tipiswers of ten notatiocan be in
scientific work.
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Question 1.7

Without using a calculatqrevaluate
(@) 27

1
) 5
© 3

@ =

Your calculator probably has axf button, and either ar™! or a 1/x button, but
to evaluate other powers you will have to use a special ‘powers’ button. On some
calculators this is marke®”, on others it has the symbal. To input a negative
exponent, you may have to combine the powers button withkfhebutton. Make
sure at this point that you can operate your own calculator to obtain correctly:

5% = 625
51 =02 (i.e. I5)
572 = 0.04 (i.e. ¥25)

Answer

Answer

Answer

Answer
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Question 1.8
Use your calculator to evaluate:
(a) 2° Answer
(b) 373 Answer
1
(©) 2 Answer

Box 1.2 An intimate knowledge of powers!

Srinivasa Ramanujan (1887-1920), an Indian mathematician of immense "alent,
came to England in 1913 at the invitation of the distinguished British methe-
matician, G. H. Hardy. In his biography of Ramanujan, Hardy wrote:

| remember once going to see him when he was lying ill at Putney. | had ridden
in taxi cab number 1729 and remarked that the number seemed to me ra:her a
dull one, and that | hoped it was not an unfavorable omen. “No,” he replied “it

is a very interesting number; it is the smallest number expressible as the sum of
two cubes in two gierent ways.”

Indeed: 172913 + 128 =93+ 103
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1.3.2 Multiplying and dividing with powers

In scientific calculations, it is very common to have to multiply and divide by
powers, especially powers of ten. It is therefore extremely important to become
confident in manipulating powers in this way, both with and without a calculator.
However, the rules for doing so are quite easy to work out.

Suppose we wanted to multiply 10y 10?. We could write this out more fully as

10% x 107 = (10x 10x 10) x (10x 10) = 10°

The exponent of the result (5) is the same as the sum of the two original exponents
(3+2).

The process is of course not limited to powers of ten. It works for any base number.
For example:

2x2=2x2)x(2x2x2x2)=2°

Again, the exponent of the result (6) is the same as the sum of the two original
exponents (2 4).

The process also works for negative exponents. For example, Siﬁces%

53x5-2:(5x5x5)><i:5:51
5%x5
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Adding the exponents here again gives the exponent of the answer:

3+(-2)=1

In science and maths, general rules are often stated in terms of symbols. We could
express the rule we have discovered through the above examples in the much more
general form

N2 x NP = N2+P (1.1)

whereN represents any base number arghdb represent any exponents

Quantities such as those represented by the synh@sandb, which can take any
value we choose, are calledriables

The example involving a negative exponent we looked at previously shows immedi-
ately how to extend the rules to cover situations in which we want to divide powers.
We had:

53 X 5—2 — 53+(—2) — 51 — 5

But as you will remember frorBection 1.2.5multiplying by a fraction is the same
as dividing by that fraction turned upside down (i.e. its reciprocal). So multiplying
by 52 is the same as dividing by its reciprocaf)5and we can write

58-.52-532_5l_5
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This time, instead of adding the exponents, we have subtracted the second from the
first. More generally,
N2 = NP = N2P (1.2)
whereN represents any base number arahdb represent any exponents
Question 1.9
Without using a calculatqisimplify the following to the greatest possible exte:nt
(leaving your answer expressed as a power).
(a) 2%9x 22 Answer
(b) 3%°x3° Answer
(c) 10%/10° Answer
(d) 10?/10°3 Answer
(e) 104 + 107 Answer
10° x 1072
_— Answer
O — &
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1.3.3 Powers of powers

Consider now what happens when a number which is already raised to a power, for
example 3, is again raised to a power. Suppose for examplis &self cubed, so

that we have{32)3. Writing this out in full shows that

()= (@) x (@) x () = Bx)x (Bx ) x (3x3) = 3°

This time the exponents have been multiplied together to obtain the exponent of the
answer: 3 2 = 6.

More generally,

(Nm)n =N mxn (13)

whereN represents any base number amendn represent any exponents

Equation 1.3 applies for all values b, m andn whether positive or negative. So
for example:

3
( 1 ) _ (10—20)3 _ 10-293 _ 1060 — 1

1020 1050
This is equivalent to saying that
1Y B 1
(1020) T (120 10P98 T 10%0
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Question 1.10

Without using a calculatgisimplify the following to the greatest possible extent,
leaving your answer expressed as a power.

(a) (416)2 Answer

(b) (5‘ ) Answer

(c) (1025) Answer
1\8

(d) (?) Answer
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1.3.4 Roots and fractional exponents

Finally, how are we to interpret a power with a fractional exponent, suci/a8 2
The rule for multiplying powers gives a clue. Suppose we were to multiBR/it®y
itself. Applying Equation 1.1suggests that:

2125 o112 _ 9(3+3) — ol = »

But the positive number that multiplied by itself gives 2 is more commonly written
as V2. The two shorthands!Z and V2 are often used interchangeably.

Similarly, the number that multiplied by itself three times gives 125 is sometimes

written as V125 (said as ‘the cube root of 125’), but more commonly written in
science as (128. This number is clearly 5, and you should notice the correspon-
dence:

53 = 125 and conversely (125§ = 5
More generally,

The positiventh root of a numbeN can be written as eithe¥/N or asN/"

In practice, the first type of notation is only used wimea 2 orn = 3.
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Worked example 1.3

521/2)7
Without using a calculator, evalu

(23)1/2
Answer
FromEquation 1.3

(242) =257 =272 and (28)"% = 23 = 2302
o)

(21/2)7 272

(23)1/2 23/2
FromEquation 1.2

27/2

LT 572 532
sz =27"-2
_ 942
=22
=4
Back |

51



Contents

Equation 1.3an now be used to bring meaning to a number likg27

Since$ = £ x 2, applyingEquation 1.3shows that 273 = (27/%)? i.e. the square

of the cube root of 27. The cube root of 27 is 3, sé/2¥ equal to 3 or 9.
Question 1.11

Without using a calculatgisimplify the following to the greatest possible extent,
expressing your answer as an integer or a decimal.

(a) (24)1/2 Answer
(b) V10* Answer
(c) 100°%/2 Answer
(d) (125)1/3 Answer
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1.4 Doing calculations in the right order

In Section 1.1.2 brackets were used to make it clear that the minus signs were
tied to particular numbers. Brackets can also be used to show the order in which
calculations are to be performed.

If a calculation were written as
3+2x5=

should one do the addition first or the multiplication first? Try entering this expres-
sion into your calculatoexactly as it is written Do you get the answer 13? If so,
your calculator knows the convention adopted by mathematicians everywhere that
multiplication takes precedence over addition. The calculator has ‘remembered’ the
3 until it has worked out the result of multiplying 2 by 5 and has then added the 3
to the 10. According to the rules all mathematicians follow, if you wanted to add
the 3 and the 2 first and then multiply that result by 5 you would have to write

(3+2)x5=25

Again, check that you can use the bracket function on your calculator to enter this
expression exactly as written on the left-hand side of this equation and that you
obtain the correct answer.

There are similar rules that govern the order of precedence of other arithmetic op-
erations, which are neatly encapsulated in the mnemonic BEDMAS.
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Order of arithmetic operations

Brackets take precedence over
Exponents. Then...

Division and

M ultiplication must be done before. ..
Addition and

Subtraction.

So if we write-3 — 12 = 6, the BEDMAS rules tell us we must do the division
(12 + 6 = 2) before carrying out the subtraction — 2 = -5). Try this on your
calculator too; you may have to use thg- button to input the-3.

Many people, including scientists, find it hard to visualize the rules in a string of
numbers. They often opt to use brackets to make things clear, even when those
brackets simply reinforce the BEDMAS rules. So one could choose to write

(12+3)+2=6

There is nothing wrong with adding such ‘redundant’ brackets — they are simply

there for clarity and can even be entered into your calculator (try it). Far better to

have a few additional brackets than to be confused about the order in which the
calculation must be carried out!
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There is one final quirk associated with the use of brackets. In mathematics, the
multiplication sign is often left out (though its presence is implied) between num-
bers and brackets, and between brackets and brackets. So

23+1)=2x(3+1)=8
and

Q1+1)A4+3)=2x7=14

Some calculators ‘understand’ this convention and some do not. Check your own

calculator carefully using the two examples above.

The next operation in precedence after brackets involves exponents. If there are
powers in the expression you are evaluating, deal with any brackets first, then work
out the powers before carrying out any other arithmetical operations.

Question
Evaluate 2< 32 and (2x 3)?

Answer
In the first case, there are no brackets so the exponent takes precedence:

2x3¥=2x9=18
In the second case, the bracket takes precedence:
(2x3)°=6°=236
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Question 1.12
Evaluate (preferably without using your calculator):
(@) 35-5x2 Answer
(b) (35-5)x2 Answer
(c) 5(2-3) Answer
(d) 3x 22 Answer
(e) 22+3 Answer
f (2+6)(1+2) Answer
Back < 56



Contents O
1.5 Learning outcomes for Chapter 1

After completing your work on this chapter you should be able to:

1.1 carry out addition, subtraction, multiplication and division operations
involving negative numbers;

1.2 add two or more fractions;

1.3 subtract one fraction from another;

1.4 multiply a fraction by an integer or by another fraction;

1.5 divide a fraction by a non-zero integer or by another fraction;

1.6 evaluate powers involving any base and positive, negative or fractional
exponents;

1.7 multiply or divide two powers involving the same base;

1.8 evaluate any given power of a number already raised to a power.
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Measurement in Science

Observation, measurement and the recording of data are central activities in science.
Speculation and the development of new theories are crucial as well, but ultimately
the predictions resulting from those theories have to be tested against what actually
happens and this can only be done by making further measurements. Whether
measurements are made using simple instruments such as rulers and thermometers,
or involve sophisticated devices such as electron microscopes or lasers, there are
decisions to be made about how the results are to be represented, what units of
measurements will be used and the precision to which the measurements will be
made. In this chapter we will consider these points in turn. Then in Chapter 3
we will go on to think about how measurements offelient quantities may be
combined, and what significance should be attached to the results.
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2.1 Large quantities and small quantities

Scientists frequently deal with enormous quantities — and with tiny ones. For
example itis estimated that the Earth came into being about four and a half thousand
million years ago. It took another six hundred million years for the first living
things — bacteria — to appear. Bacteria are so small that they bear roughly the
same proportion to the size of a pinhead as the size that pinhead bears to the height
of a four-year old child!

In the previous chapter, we saw how convenient powers of ten could be as a way of
writing down very large or very small numbers. For example,

10° = 1000 000 (a million) and I = 1/1000= 0.001 (a thousandth)

This shorthand can be extended to any quantity, simply by multiplying the power
of ten by a small number. For instance,

2 x 10° = 2 x 1000 000= 2 000 000 (two million)

(The quantity on the left-hand side would be said as ‘two times ten to the six’.)

Similarly,

3.5x 10° = 3500000 (three and a half million)
7% 1073 = 7/1000= 0.007 (seven-thousandths)
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Scientists make so much use of this particular shorthand that it has come to be
known asscientific notation(although in maths texts you may also find it referred
to asstandard index forrmor standard forn)

A quantity is said to be expressed in scientific notation if its value is written as

a number multiplied by a power of ten. The number can be a single digit or a

decimal number, but must be greater than or equal to 1 and less than 10.
Note the restriction: 7% 107 is not in scientific notation and nor is7® x 10%,
though these are both equivalent t6 ¥ 10° whichis in scientific notation.
Scientific notation can be defined more succinctly by making use of some of the
mathematical symbols denoting the relative sizes of quantities. These symbols are:

> greater than (e.g. 3 2);

> greater than or equal to (e.@. > 4 means that the quantisymay take the

exact value 4 or any value larger than 4);

< lessthan;

< lessthan or equal to.
Note that a > 4’ and ‘4 < & convey exactly the same information about the
quantitya.
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Using these symbols, scientific notation may be defined as a notation in which
the value of a quantity is written in the forenx 10", wheren is an integer and
l<a<10.

To move from scientific notation to integers or to decimal notation, first deal with
the power of ten, then carry out the multiplication or division.

Worked example 2.1
Express the following numbers as integers or in decimal notation:

(a) 453x 10°
(b) 8.371x 10?
(c) 6.4x 1073

Answer

(a) 453x 10° = 453 x 1000= 4530

(b) 8.371x 10?2 = 8.371x 100= 8371

1 6.4
4x103 =6.4x — 4
(c) 6.4x10°=6. T SO = 0.006

Note that, as in Worked example 2.1, a requirement to express a quantity in a dif-
ferent form simply involves taking the quantity and writing down its equivalent in

Back <« >

61



Contents O

the new form. You may do this in one step, or write down intermediate steps as was
done in the worked example.

Question 2.1

Without using your calculatgrexpress the following numbers as integers o in
decimal notation. Note that (a) and (b) are in scientific notation, while (c) is not.

(a) 5.4 x 10 Answer
(b) 21x 1072 Answer
(c) 0.6x 1071 Answer

Moving from an integer or decimal notation to scientific notation is equivalent to
deciding what power of ten you need to multiply or divide by in order to convert
the number you are starting with to a number that lies between 1 and 10.
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Worked example 2.2
Express the following numbers in scientific notation:

(a) 356 000
(b) 497 x 10*
(c) 0.831

Answer

(a) 356 000= 3.56 x 100 000= 3.56 x 10°

(b) 497 x 10* = 497 x 10x 10* = 4.97 x 1004 = 497 x 10°

(c) 0.831= 8'1—?(’)1 =831x 101

In this worked example, all the steps have been written out in full. You may be able
to manage with fewer steps in your own calculations — just use as many or as few
as you feel comfortable with in order to get the right answer!
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Question 2.2
Without using your calculatoexpress the following numbers in scientific no:a-
tion:
(a) 215 Answer
(b) 46.7 Answer
(c) 152x 103 Answer
(d) 0.0000876 Answer
It is only too easy to lose track of the sizes of things when using scientific notation,
so you should make a habit of thinking carefully about what the numbers mean,
bearing in mind that numbers may be positive or negative. For example:
-1x 10'is a very large negative number;
-1x 10'%s a very small negative number;
1 x 107%%is a very small positive number.
Figure 2.1places on the number line some numbers in scientific notation. You may
find this helps you to visualize things.
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We started this section thinking about the early Earth and the first appearance of life.
Using scientific notation, the age of the Earth can be neatly expresseglag @

years and the size of one type of those early bacteriazag 107 metres. Of
course the value we come up with for such sizes will depend on the units in which
we choose to make the measurements. If we were measuring the diameter of the
Moon, we could elect to express it in metres or in kilometres, or even in miles.

2.2 Units of measurement

In the UK, two systems of units are in common use. We still use old imperial mea-
sures for some things: milk is sold in pints and signposts indicate distances in miles.
But for many other everyday measurements metric units have been adopted: we buy
petrol in litres and sugar in kilogram bags. A great advantage of metric units is that
we no longer have to convert laboriously from imperial units, such as gallons, feet
and inches, in order to trade with continental Europe. Also, calculations are easier
in a metric (i.e. decimal) system! Similar advantages were the main consideration
when in 1960 an international conference formally approved a standard set of sci-
entific units, thus replacing at a stroke the manfjedent systems of measurement
that had been used up until then by scientists fiédent nationalities. This ‘univer-

sal’ system for scientific measurement is referred t&lasnits(short for Systéme
International d’Unités).
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In SI, there are seven ‘base units’, which are listed in Box 2.1. Surprising as it
may initially seem, every unit for every other kind of quantity (speed, acceleration,
pressure, energy, voltage, heat, magnetic field, properties of radioactive materials,
indeed whatever you care to name) can be made up from combinations of just these
seven base units. For instance, speed is measured in metres per second. You will
find some other combinations of base units described in Chapter 3. In this course
we shall work mainly with the familiar base units of length, mass, time and temper-
ature, and some of their combinations, but it is worth knowing that the other base
units exist as you may meet them in other courses.
Box 2.1 The Sl base units
Physical quantity Name of unit Symbol for unit
length metre m
time second S
mass kilogram kg
temperature kelvin K
amount of substance mole mol
electric current ampere A
luminous intensity candela cd
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Most of these base units relate to physical descriptions that apply universally.
The Sl base unit of time, the second, is defined as the period over vhich
the waves emitted by caesium atoms under specific conditions cycle exxactly
9192631770 times. Then the Sl base unit of length, the metre, is defined by
stating that the speed of light in a vacuum, which is a constant throughout the
Universe, is exactly 299 792 458 metres per second.

The SI base unit of mass, the kilogram, is the only fundamental unit that is
defined in terms of a specific object. The metal cylinder which constitute:; the
world’s ‘standard kilogram’ is kept in France. Note that the kilogram is actually
the standard unit ofmass not of weight In scientific language, the weight of

an object is the downward pull on that object due to gravity, whereas its mass
is determined by the amount of matter in it. When astronauts go to the M oon,
where the pull of gravity is only about one-sixth of that on Earth, their mass
remains the same but their weight drops dramatically! And in zero gravity, they
experience a condition known as ‘weightlessness’.

The Sl base unit of temperature is the kelvin, which is related to the everyday
unit of temperature, the degree Celsius:

(temperature in kelvin¥ (temperature in degrees Celsius27315

(You will find some of the rationale for the kelvin scale of temperature in Chap-
ter 5.)
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The amount of a pure substance is expressed in the S| base unit of the mole.
Whatever the smallest particle of a given substance is, one mole of tha: sub-
stance will contain 2211367 10?3 (known as Avogadro’s number) of those
particles. A mole of graphite contains Avogadro’s number of carbon atoms.
Carbon dioxide is made up of molecules in which one carbon atom is joind to
two oxygen atoms, and a mole of carbon dioxide contains Avogadro’s nu nber
of these molecules.

You will have noticed that while the base unit of length is the metre, not the kilo-
metre, the base unit of mass is the kilogram, not the gram.

It is important to realize that, although in everyday usage it is common to say that
you ‘weigh so many kilos’, there are two things wrong with this usage from the
scientific point of view. First, as noted Box 2.1, the kilogram is not a unit of
weight, but a unit of mass. (The Sl unit of weight, the newton, will be discussed in
Chapter 3.) Secondly, in scientific language, ‘kilo’ is never used as an abbreviation
for kilogram, in the sense of the everyday phrase ‘he weighs so many kilos’. In
science, kilo is always used ageefix, denoting a thousand: one kilometre is a
thousand metres, one kilogram is a thousand grams.

Another prefix with which everybody is familiar is ‘milli’, denoting a thousandth.
One millimetre, as marked on ordinary rulers, is one-thousandth of a metre; or put
the other way round, a thousand millimetres make up a metre. There are many other
prefixes in use with Sl units, all of which may be applied to any quantity. Like kilo
and milli, the standard prefixes are based on multiples of 1000 (i®. TBe most
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commonly used prefixes are listed in Box 2.2.

It is important to write the symbols for units and their prefixes in the correct case.
So k (lower case) is the symbol for the prefix ‘kilo’ whilst K (upper case) is the
symbol for the Kelvin; m (lower case) is the symbol for the metre or the prefix

‘milli” whilst M (upper case) is the symbol for the prefix ‘mega’.

Box 2.2 Prefixes used with S| units

prefix symbol multiplying factor

tera T 132 = 1000 000 000 000
giga G 1@ = 1000 000 000

mega M 16 = 1000 000

kilo k 10% = 1000

—~ —~ 1P =1

milli m 10~2 = 0.001

micro 1 106 = 0.000 001

nano n 10° = 0.000 000 001

pico p 1012 = 0.000 000 000 001
femto f 101° = 0.000 000 000 000 001

* The Greek lettent is pronounced ‘mew’.

The following data may help to illustrate the size implications of some of the
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prefixes:

¢ the distance between Pluto (the furthest planet in the Solar Systerr) and
the Sun is about 6 Tm,

a century is about 3 Gs,

eleven and a half days contain about 1 Ms,

the length of a typical virus is about 10 nm,

the mass of a typical bacterial cell is about 1 pg.

Astronomers have long been making measurements involving very large qanti-
ties, but scientists are increasingly probing very small quantities. ‘Femtociem-
istry’ is a rapidly developing area, which involves the use of advanced aser
techniques to investigate the act of chemical transformation as molecules collide
with one another, chemical bonds are broken and new ones are formed. n this
work, measurements have to be made on the femtosecond timescale. Ahrned H.
Zewail (whose laboratory at the California Institute of Technology in Pasaidena
is often referred to as ‘femtoland’) received the 1999 Nobel Prize in Chemistry
for his development of this new area.

Although scientific notation, Sl units and the prefixe8wx 2.2are universal short-
hand for all scientists, there are a few instances in which other conventions and units
are adopted by particular groups of scientists for reasons of convenience. For ex-
ample, we have seen that the age of the Earth is abéut 40° years. One way
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to write this would be 4.6 ‘giga years’ but geologists find millions of years a much
more convenient standard measure. They even have a special symbol for a million
years: Ma (where the ‘a’ stands for'annum’, the Latin word for year). So in Earth
science texts you will commonly find the age of the Earth written as 4600 Ma. It
won’t have escaped your notice that the year is not the SI base unit of time — but
then perhaps it would be a little odd to think about geological timescales in terms
of seconds!

A few metric units from the pre-Sl era also remain in use. In chemistry courses,
you may come across the angstrém (symbol A), equal t3%®etres. This was
commonly used for the measurement of distances between atoms in chemical struc-
tures, although these distances are now often expressed in either nanometres or pi-
cometres. Other metric but non-SI units with which we are all familiar are the litre
(symbol I) and thelegree Celsiugsymbol°C).

There are also some prefixes in common use, which don’t appézmrR.2 be-
cause they don’t conform to the ‘multiples of 1000’ rule, but that when applied to
particular units happen to produce a very convenient measure. One you will cer-
tainly have used yourself enti(hundredth): rulers show centimetres (hundredths

of a metre) as well as millimetres, and standard wine bottles are marked as holding
75 cl. One less commonly seerdisci(tenth) but that is routinely used by chemists

in measuring concentrations of chemicals dissolved in water, or other solvents, as
you will see in Chapter 3. In the next section you will also come across the decibel,
which is used to measure the loudness of sounds.
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Worked example 2.3

Diamond is a crystalline form of carbon in which the distance between adja-

cent carbon atoms is 0.154 nm. What is this interatomic distance expressed in
picometres?

Answer
1pm=101mso

1nm=10°mso
1 nm=10"°x 10*? pm

— 10—9+12 pm
= 10° pm

0.154 nm= 0.154x 10° pm
=154 pm
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Question 2.3

Using scientific notation, express:

(a) 3476 km (the radius of the Moon) in metres. Answer
(b) 8.0 um (the diameter of a capillary carrying blood in the body) Answer
in nm,
(c) 0.8 s (atypical time between human heartbeats) in ms. Answer
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2.3 Scales of measurement

In thinking about the sizes of things, it is sometimes useful to do so in quite rough
terms, just to the nearest power of ten. For example, 200 is nearer to 100 than it is
to 1000, but 850 is nearer to 1000 than itis to 100. So if we were approximating to
the nearest power of ten we could say 200 was roughfy Bt 850 was roughly

10°. This process is called reducing the numbers to the neamgst of magnitude

The approximate value of a quantity expressed as the nearest power of ten to
that value is called the order of magnitude of the quantity.

The easiest way to work out the order of magnitude of a quantity is to express it
first in scientific notation in the forma x 10". Then ifais less than 5, the order of
magnitude is 1Q But if ais equal to or greater than 5, the power of ten is rounded
up by one, so the order of magnitude is"10 For example, the diameter of Mars

is 6762 km. This can be written as762 x 10° km, and because 6.762 is greater
than 5, the diameter of Mars is said to be ‘of ordef kov'.

This is normally written as:
diameter of Mars- 10* km

where the symbot denotes ‘is of order’.
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Question
What is the order of magnitude of the mass of the Earthx6L0%* kg?

Answer

Mass of the Earth- 10?° kg (since 6.0 is greater than 5, the power of ten nas
been rounded up).

Question
What is the order of magnitude of the mass of Jupitéx110°” kg?

Answer

Mass of Jupiter~ 10?7 kg (since 1.9 is less than 5, the power of ten remaiins
unchanged).
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Question
What is the order of magnitude of the average lifetime of unstable ‘sigma plus’
particles, 07 x 10710 s?

Answer
Particle lifetime= 0.7 x 10°°s
=7x10s
Since 7 is greater than

~ 10 5 5, the power of ten
must be rounded up

~1010g
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The phrase ‘order of magnitude’ is also quite commonly used to compare the sizes
of things, e.g. a millimetre is three orders of magnitude smaller than a metre.

Worked example 2.4

To the nearest order of magnitude, how many times more massive is Jupiter than
the Earth?

Answer
We had:

mass of Jupiter~ 10?7 kg
and
mass of Earth~ 107° kg

SO

mass of Jupiter 10°7 1027-25) _ 1P
mass of Earth 1025

Jupiter is two orders of magnitude (i.e. roughly 100 times) more massive than
the Earth.
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Question 2.4
What is the order of magnitude of the following measurements?

(a) The distance between Pluto (the furthest planet in the SolarAnswer
System) and the Sun: five thousand nine hundred million kilo-
metres.

(b) The diameter of the Sun, given that its radius.B76< 10’ m. Answer
(c) 2m. Answer

(d) The mass of a carbon dioxide molecule3Tx 10726 kg. Answer

Sophisticated instrumentation now allows scientists to measure across 40 orders of
magnitude, as shown iRigure 2.2 If you turn back toFigure 1.2 you will see

that the scale there is quitefidirent to that in Figure 2.2. On the thermometer,
the interval between marked points was always the same, with marked points at
-0.1,0,0.1,0.2, etc. In other words, each step from one division to the next on the
scale represented tlaeldition or subtractiorof a fixed amount (0.1 in that case).
This kind of scale is calledinear. In Figure 2.2 on the other hand, each step
involves multiplication or divisionby a fixed power of ten (Rin this particular
case). As a result, the intervals between divisions are fitrént. This kind of
scale is calledogarithmic The next question allows you to investigate some of the
properties of this type of scale.
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Question 2.5
Use information fronfigure 2.2to answer the following questions.
(a) What is the diference in value between: Answer
(i) the tick marks at 1 m and 18 m;
(i) the tick marks at 19m and 18 m, and
(iii) the tick marks at 19m and 16 m?
(b) Calculate to the nearest order of magnitude, how many timesAnswer
taller than a child is Mount Everest.
(c) Calculate to the nearest order of magnitude, how many typicalAnswer
viruses laid end to end would cover the thickness of a piece of
paper. Hint: you may find it helpful to look back atjorked
example 2.9
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2.3.1 Logarithmic scales in practice

In Figure 2.2 a logarithmic scale was used for the purposes of display, and the
power of ten for the multiplying factor (B)was chosen because it was the one that
best fitted the page. In drawing diagrams and graphs we are always free to choose
the scale divisions. However, logarithmic scales are used in a number of fields to
measure quantities that can vary over a very wide range. In such cases, an increase
or decrease of one ‘unit’ always represents a ten-fold increase or decrease in the
guantity measured. The following sections give two examples.

Sound waves

Thedecibel(symbol dB) is the unit used to measure the relative loudness of sounds.
The ‘intensity’ of a sound is related to the square of the variation in pressure as the
sound wave passes through the air, and the range of intensities that people can detect
is enormous. The sound that just causes pain 18 tifies more intense than the
sound that is just audible! To deal with this huge range, a logarithmic scale for
loudness was devised, according to which every 10 dB (or ‘1 B’) increase in sound
level is equivalent to a 10-fold increase in intensity. The decibel is also a convenient
measure because a sound level of 1 dB is just within the limit of human hearing, and

a change of 1 dB is about the smalledtetience in sound that the ear can detect.
(SeeFigure 2.3)
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Earthquakes

The Richter scaledescribes the magnitude of earthquakes. An instrument called

a seismometer is used to measure the maximum ground movement caused by the
earthquake, and a correction factor is applied to this reading to allow for the distance
of the seismometer from the site of the earthquake. Seismometers are very sensi-
tive and can detect minute amounts of ground movement (they have to be shielded
from the dfects caused just by people walking near them), but some earthquakes
can produce ground movements millions of times greater than the minimum de-
tectable limit. To cope with this huge variation, the Richter scale is logarithmic: an
increase of one unit on the scale implies a ten-fold increase in the maximum ground
movement. A magnitude 2 earthquake can just be felt as a tremor. A magnitude 3
earthquake produces 10 times more ground motion than a magnitude 2 earthquake.
Damage to buildings occurs at magnitudes in excess of 6. The three largest earth-
quakes ever recorded (in Portugal in 1775, in Columbia in 1905 and in Japan in
1933) each had a Richter magnitudes of 8.9.
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Worked example 2.5

A whisper corresponds to a sound level of about 20 dB, and a shout to a level of
about 80 dB. How much greater is the intensity of a shout compared to thet of a
whisper?

Answer
The increase in sound level is

80 dB—- 20 dB= 60 dB

This may be expressed as (10 B0 dB+ 10 dB+ 10 dB+ 10 dB+ 10 dB),
andeach10 dB increase corresponds to multiplying the intensity by 10.

So the intensity of a shout is (2010x 10x 10x 10 x 10) = 10° times greater
than a whisper!

Question 2.6 Answer

How much more ground movement is there in an earthquake measuring 7 n the
Richter scale compared to one measuring 3?

The basis of logarithmic scales will be discussed in Chapter 7.

Back <« >



Contents

2.4 How precise are the measurements?

Scientists are always trying to get better and more reliable data. One way of getting
a more precise measurement might be to switch to an instrument with a more finely
divided scale. Figure 2.4 shows parts of two thermometers placed side by side to
record the air temperature in a room.

f17 18 19 20 21 22 23 24 25°C§

R PR PR T PR PR PR Y

B

Figure 2.4: Parts of two thermometers A and B, measuring the air temperature in
the same place.

The scale on thermometer A is quite coarse. The marked divisions represent integer
numbers of degrees. On this scale we can see that the temperature is beti@€en 21
and 22°C. | might estimate it as 271 °C, but somebody else could easily record it

as 216 °C or 218 °C. So there is some uncertainty in the first decimal place, and
certainly there is no way we could attempt to guess the temperature to two decimal
places using this particular thermometer.
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Thermometer B has a finer scale, with divisions marked evdry®©. Now we can
clearly see that the temperature is betwees® 2C and 217 °C. | might read it as
21.63 °C, but a second person could plausibly read it a6 21C or 2165 °C. With
this scale we are sure of the first decimal place but uncertain of the second.

When quoting the result of a measurement, you should never quote more digits
than you can justify in terms of the uncertainty in the measurement. The number of
significant figuresn the value of a measured quantity is defined as the number of
digits known with certainty plus one uncertain digit. With thermometer A we could
be sure of the 21 (two digits), but were uncertain about the digit in the first decimal
place, so we can quote a reading to three significant figures, asQJ1or 216 °C

or 218 °C). With thermometer B it was the fourth digit that was uncertain, so we
can quote our reading to four significant figures, as, for examplé42C.

Question 2.7 Answer

How many significant figures are quoted in each of the following quantiiies:
1221 m; 223 km; 1487 km?

Question 2.7 emphasizes that significant figures mustn’t be confused with the num-
ber of decimal places. After all, if you had measured the length of something
as 13 mm, you wouldn’t want the precision of your result to be changed just be-
cause you converted the measurement to centimetres. Whether you write 13 mm or
1.3 cm you are expressing the result of your measurement to two significant figures.
Now suppose you convert to metresO03 m. The uncertainty in your result still
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hasn’t changed, so this shows thedding zeroes in decimal numbers do not count
as significant figuresScientific notation is helpful in this regard. Expressing the
result as 13 x 1072 m makes it very obvious that there are two significant figures.

Another circumstance in which one has to be careful about not using unjustified
precision occurs when the results of measurements are used as the basis for calcu-
lations. Suppose we had measured the diameter of a circular pattern to two signifi-
cant figures and obtained the resul8 8m. If we then needed to calculate the radius

of the circle, it might be tempting simply to divide the diameter by 2 and say ‘the
radius of the pattern is.85 cm’. But 165 cm implies that the value is known to
three significant figures! So we need to routickbe figure in some way, to express

the fact that the last significant digit in this particular case is the first digit after the
decimal point. The usual rule for doing this is to leave the last significant digit un-
changed if it would have been followed by a digit from O to 4, and to increase it by
one if it would have been followed by a digit from 5 to 9. To two significant figures
our circular pattern therefore has a radius gf dm. The issues involved in dealing
with significant figures in more complex calculations are discussed in Chapter 3.

Scientific notation also shows up the need for care in dealing with very large num-
bers. The speed of light in a vacuum (the constantEinstein’s equatioft = mc

is, to six significant figures, 299 792 kilometres per second. Remembering the
rounding rule, this can quite properly be written as 30° kilometres per sec-

ond (one significant figure), or.®0 x 10° kilometres per second (three significant
figures). But it would be misleading to write it as 300 000 kilometres per second,
because that could imply that all six digits are significant.
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One of the advantages of using scientific notation is that it removes any ambiguity
about whether zeroes at tleemd of a number are significant or are simply place
markers. For example, if a length is measured to just one significant figure as
8 m, how should the equivalent value in centimetres be expressed? It would be
ambiguous to write 800 cm, since that could imply the value is known to three
significant figures. The only way out of thisfiiiculty is to use scientific notation:
writing 8 x 10° cm makes it clear that the quantity is known only to one significant
figure, in line with the precision of the original measurement.

Question

If the speed of light through glass is quoted &&>210° metres per second, how
many significant figures are being given?

Answer

Final zeroesre significant, so the speed is being given to two significant figures.
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Question

Neon gas makes up 0.0018% by volume of the air around us. How many signif-
icant figures are being given in this percentage?

Answer

Leading zeroes ameot significant, so this value is also being given to two sig-
nificant figures.

Worked example 2.6

The average diameter of Mars is 6762 km. What is this distance in metres,
expressed to three significant figures?

Answer

The only way to express this quantity unambiguously to fewer than the four
significant figures originally given is to use scientific notation.

6762 km= 6.762x 10°> km
= 6.762x 10> x 10 m
= 6.762x 103 m
= 6.762x 10° m

The final digit is a 2, so no rounding up is required and the average diameter of
Mars is 676 x 10° m to three significant figures.
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Question 2.8
Express the following temperatures to two significant figures:

(a) —38.87°C (the melting point of mercury, which has the un- Answer
usual property for a metal of being liquid at room temperature);

(b) —1958 °C (the boiling point of nitrogen, i.e. the temperature Answer
above which it is a gas);

(c) 10834 °C (the melting point of copper). Answer
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In the following chapter and in your future studies of science generally, you will
be doing lots of calculations with numbers in scientific notation, and will also be
expected to quote your results to appropriate numbers of significant figures. Chapter
3 will discuss the fiicient way to input scientific notation into your calculator, and
how to interpret the results.

2.5 Learning outcomes for Chapter 2

After completing your work on this chapter you should be able to:

2.1 convert quantities expressed as integers or in decimal notation to scientific
notation and vice versa,;

2.2 use prefixes in association with the Sl base units and convert between prefixes;
2.3 express a given quantity as an order of magnitude;
2.4 state the number of significant figures in any given quantity;

2.5 express a given quantity to any stipulated number of significant figures.
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Calculating in Science

There comes a point in science when simply measuring is
not enough and we need ¢alculatethe value of a quantity
from values for other quantities that have been measured
previously. Take, for example, the piece of granite shown in
Figure 3.1. We can measure the lengths of its sides and its
mass. With a little calculation we can also find its volume,
its density, and the speed at which seismic waves will pass
through a rock of this type following an earthquake.

This chapter looks at several scientific calculations, and in
the process considers the role of significant figures, scien-
tific notation and estimating when calculating in science. In

addition, it introduces unit conversions and the use of for-

mulae and equations.

Figure 3.1: A specimen of granite.
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3.1 Calculating area; thinking about units and significant
figures

Suppose we want to find the area of the top of the granite spec-
imen shown inFigure 3.1 The lengths of its sides, measured
in centimetres, are shown in Figure 3.2, and the area of a rect-
angle is given by

area of rectangle lengthx width

Thus the area of the top of the granite is

area= 84 cmx5.7 cm

Multiplying the two numbers together gives 47.88. However, Figure 3.2: The lengths of the sides of
if given as a value for the area, this would be incomplete and the specimen of granite.
incorrectly stated for two reasons.

1 No units have been given.

2 The values for length and width which we've used are each
given to two significant figures, but 47.88 isfaur signifi-
cant figures. This is too many.
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3.1.1 Units in calculations

The length and the width of the specimen of granite aren't just
numbers, but physical quantities, with units. The area — the
result of multiplying the length by the width — is a physical
guantity too and it should also have units. The units which have
been multiplied together are crcm, which can be written as
(cmY, or more commonly as c¢fn In fact any unit of length
squared will be a unit of area. Conversely, a value given for
area shouldlwayshave units of (lengtt)

My garden has
an area of two

All measurements should be given with appropriate uriits,
and when performing calculations the units of the answer
must always be consistent with the units of the quanti:ies
you input.

Care needs to be taken when multiplying together two lengths which have been
measured in dierent units. Suppose, for instance, that we needed to find the area
of a 1 cm by 4 m rectangle. Units of crim are meaningless; we need to convert
the units to the same form before proceeding, and if in doubt it is best to convert to
Sl base units. Since 1 cm0.01 m, this gives an area of@ mx 4 m = 0.04 n?.
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Question 3.1 Answer
Which of the following are units of area:
(inchy; 8% m=2; c?; km?3; square miles?

Note: the symbols used for Sl units are as giveBax 2.1

3.1.2 Significant figures and rounding in calculations

It is not appropriate to quote answers to calculations to an unlimited number of
significant figures. Suppose that, as part of a calculation, you were asked to divide
3.4 (known to two significant figures) by 2.34 (known to three significant figures).
Entering 34+2.34 on most scientific calculators gives 1.452 991 453, but to quote a
result to this number of significant figures would imply that you know the answer far
more precisely than is really the case. The fact that 3.4 is quoted to two significant
figures implies that the first digit is precisely known, but there is some uncertainty
in the second digit; similarly the fact that 2.34 is quoted to three significant figures
implies that there is some uncertainty in the third digit. Yet in giving the result as
1.452991 453 we are claiming to be absolutely confident of the answer as far as
1.452 991 45, with just some uncertainty in the final digit. This is clearly nonsense!
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The sensible number of significant figures to quote in any answer depends on a
number of factors. However, in the absence of other considerations, a simple rule
of thumb is useful:

When multiplying and dividing numbers, the number of significant figures in
the result should be the same as in the measurement witbwhastsignificant
figures.

Applying this rule of thumb, the answer to the calculatiof:32.34 should be given
to two significant figures, i.e. as 1.5.

Similarly, the result of the multiplication.8 cmx 5.7 cm (used in finding the area
of the top of the granite specimen) should be given as 48 again to two signifi-
cant figures.

There are two points of caution to bear in mind when thinking about the appropriate
number of significant figures in calculations.

Avoiding rounding errors

You should round your answer to an appropriate number of significant figures at
the end of a calculation. However, be careful not to round too soon, as this may
introduce unnecessary errors, knownrasnding errors As an example of the
dangers of rounding errors, let’s return to our previous example. We found that:

34 +234=1452991453
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Or, giving the answer to two significant figures:
34+234=15

Suppose that we now need to multiply the answer by 5.9:
1452991453 5.9 = 8572649 573= 8.6 to two significant figures

However, using the intermediate answer as quoted to two significant figures gives
1.5x 5.9 = 8.85 = 8.9 to two significant figures

Rounding too soon has resulted in an incorrect answer.

The use of scientific calculators enables us to work to a large number of significant
figures and so to avoid rounding errors. If this is not possible, you should follow
the following advice:

Work to at least one more significant figure than is required in the final answer,
and just round at the end of the whole calculation.

In our example, the final answer should be given to two significant figures, which
means that we should work using the result of the first calculation to at least three
significant figures (1.45).

1.45x 5.9 = 8.555 = 8.6 to two significant figures.
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Applying common sense!

Always bear in mind the real problem that you are solving, and apply common
sense in deciding how to quote the answer. Particular care needs to be taken when
the calculation involves numbers which aeactlyknown. A light-hearted example
should illustrate this point.

Question

Suppose you have 7 apples to share between 4 children. How many apple s does
each child get?

Answer
Dividing the number of apples by the number of children gives

7

7= 1.75
If we were to assume that the number of apples and number of children were
each quoted to one significant figure, we would round the answer to one signifi-
cant figure too, i.e. to 2 apples. But we would then need eight apples, wh ch is
more than we've got. In reality there aggactly4 children and 7 apples, so the
number of significant figures need not bother us. Provided we have a knife, it is
perfectly possible to give each child 1.75§§]apples.
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Question 3.2

Do the following calculations and express your answers to an appropriate num-
ber of significant figures.

6.732

(@) Tl Answer
(b) 20x 25 Answer
2
4.2
(c) (3—1) Answer
(d) What is the total mass of threeslkg bags of flour? Answer

3.2 Calculating in scientific notation

In science it is very often necessary to do calculations using very large and very
small numbers, and scientific notation can be a tremendous help in this.

3.2.1 Calculating in scientific notation without a calculator

Suppose we need to multiply3Dx 10* and 200x 10°. The commutative nature of
multiplication is completely general, so it applies when multiplying two numbers
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written in scientific notation too. This means thats@x 10%) x (2.00 x 10°) can
be written as (50 x 2.00) x (10* x 10°), i.e.

(2.50% 10%) x (2.00% 10°) = (2.50 % 2.00) x (10* x 10°)
= 5.00x 10*°
= 5.00x 10°

All of the rules for the manipulation of powers discussed in Chapter 1 can be applied
to numbers written in scientific notation, but care needs to be taken to treat the
decimal parts of the numbers (such as the 2.5050 2 10°) and the powers of ten
separately. So, for example

250x10* 250 10 250
= =T %107 =125x101
500x 106 200 10 ~ 200" %

and

(250 10°)° = 2502 x (10P)° = 6.25x 1010

Back <« >

98



Contents

Question 3.3

Evaluate the following without using a calculator, giving your answers in scien-

tific notation.

(@) (3.0x 10°) x (7.0 x 107?)

8x 10*
4% 101

10* x (4 x 10%)
1x10°5

(d) (300x 10%)°

(b)

(€)

Answer

Answer

Answer

Answer
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3.2.2 Using a calculator for scientific notation

In the rest of this chapter, and in your future studies of science generally, you will be
doing many calculations with numbers in scientific notation, so it is very important
that you know how to input them into your calculatéii@ently and how to interpret

the results.
First of all make sure that you can input numbers in scientific notation into your cal-

culator.You can do this using the button you used to input poweseation 1.3.1

but it is more straightforward to use the special button provided for entering scien-
tific notation. This might be labelled as EXP, EE, E or EX, but there is considerable
variation between calculators. Make sure that you can find the appropriate button
on your calculator. Using a button of this sort is equivalent to typing the whole of
‘x10 to the power’. So, on a particular calculator, keying 2.5 EXP 12 enters the
whole of 25 x 102,
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In addition to being able to enter numbers in scientific notation into
your calculator, it is important that you can understand your calculator
display when it gives an answer in scientific notation. 25 x

Enter the number.8x 102 into your calculator and look at the display. @

Again there is considerable variation from calculator to calculator, but it
is likely that the display will be similar to one of those shown in Figure maE
3.3. The 12 at the right of the display is the power of ten, but notice

thatthe ten itself is frequently not displaydflyour calculator is one of

those which displays.2 x 102 as shown in Figure 3.3e, then you will 25e+12
need to take particular care; thdses nomean 252 on this occasion.
You should be careful not to copy down a number displayed in this way
on your calculator as an answer to a question; this could cause confusiot -~ (=
at a later stage. O L

No matter how scientific notation is entered and displayed on ‘vour

calculator or computer, when writing it on paper you should always Padm
use the form exemplified by.2x 102, -
To enter a number such ax3.0 ¢ into your calculator, you may need Figure 3.3: Examples of how
to use the button labelled something lik¢— (as used irSection 1.1.3 various calculators would dis-
in order to enter the negative exponent. play the number 3 x 10*2

To enter a number such as®lbito your calculator using the scientific notation
button, it can be helpful to remember thatt16 written as 1x 108 in scientific
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notation, so you will need to key something like 1 EXP 8.

If you are at all unsure about using your calculator for calculations involving sci-
entific notation, you should repe@uestion 3.3this time using your calculator.

Question 3.4 Answer

A square integrated circuit, used as the processor in a computer, has sides of
length 978 x 1072 m. Give its area in rhin scientific notation and to an appro-
priate number of significant figures.

3.3 Estimating answers

The first time | attempted Question 3.4, my calculator gave me the ansvéem85

This is incorrect (I'd forgotten to enter the power of ten). Itis sensible to getinto the
habit of checking that the answer your calculator gives is reasonable, by estimating
the likely answer. In the case of Question 3.4, the answer showdgfeximately

(1x 102 m)2 which you can see (without using a calculator!) is 104 m2. So

a calculator answer of 9 n¥ is clearly wrong.
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In addition to being useful as a way of checking calculator answers, estimated an-
swers are, in their own right, quite frequently all that is needed. Chapter 2 began
with a comparison between the size of a bacterium and the size of a pinhead. We
could use precise measuring instruments to find that the diameter of a particular
bacterium is 169 um (i.e. 169x 10°® m) and that the diameter of the head of a
particular pin is 86x 10* m. The diameter of the pinhead would then be

9.86x 104 m
1.69x10%m

However, to get a feel for the relative sizes, we only really need to estimate the
answer. If an estimate is all that is required, it is perfectly acceptable to work to one
significant figure throughout (indeed, working to the nearest order of magnitude is
sometimes dfticient) and since the final answer is only approximately known, the
symbol =’ (meaning ‘approximately equal to’) is used in place of an equals sign.

= 5.83x 107 times bigger than that of the bacterium.
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Worked example 3.1

Working to one significant figure throughout, estimate how many times big-
ger a pinhead of diameter.85x 10™* m is than a bacterium of diameter
1.69x 10°% m.

Answer

Diameter of pinheag 1 x 1073 m.
Diameter of bacteriun 2 x 10°° m.

diameter of pinhead  1x 1073 m
diameter of bacterium 2 x 10-6 m
1 103
R =X —
2 10°
~0.5x 10739
~ 05x 10°
~ 5x 10°

So the diameter of the pinhead is approximately 500 times that of the bacte rium.
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It is important that you write out your mathematical calculations carefully, and
one of the functions of the worked examples scattered throughout the course is to
illustrate how to do this. There are three particular points to note from Worked
example 3.1.

Taking care when writing maths

1 Note that the symbols and~ mean ‘equals’ and ‘approximately equals’ axd
shouldneverbe used to mean ‘thus’ or ‘therefore’. It is acceptable to use
the symbol.. for ‘therefore’; alternatively don’t be afraid to writeords of
explanation in your calculations.

2 It can make a calculation clearer if you align theor ~ symbols vertically,
to indicate that the quantity on the left-hand side is equal to or approxim ately
eqgual to each of the quantities on the right-hand side.

3 Note that the diameter of the bacterium and the pinhead each have metrzes (m)
as their units, so when one diameter is divided by the other, the units cancel
to leave a number with no units.

The handling of units in calculations is discussed further in Section 3.5.4.
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Question 3.5 Answer

The average distance of the Earth from the Sun5®% 10'' m and the dis-
tance to the nearest star other than the Sun (Proxima Centau@pis 30° m.
Working to one significant figure throughout, estimate how many times fuither
it is to Proxima Centauri than to the Sun.

3.4 Unit conversions

In calculating the area of the top of the granite specimen earlier in this chapter, we
measured the length of the sides in centimetres and hence calculated the area in
c?. If we had wanted the area in the Sl units of we could have converted the
lengths from centimetres to metres before starting the calculation. We would then
have had

area= (84x102m)x (5.7x 102 m) = 48x 103 m?

It is best, whenever possible, to convert all units to Sl units before starting on a
calculation.

Unfortunately it is not always possible to convert units before commencing a calcu-
lation; sometimes you will be given an area in, say?cwithout knowing how the
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area was calculated, and you will need to convert this to an ared ifiinis section
discusses this, as well as some more complex unit conversions.

3.4.1 Converting units of area

Let’s start with an example which is relatively easy to visual-
ize. Suppose we want to know how many fthere are in a ~—10mm —»
cn?. There are 10 millimetres in a centimetre, so each side of the
square centimetre in Figure 3.4 measures either 1 cm or 10 mm.
To find the area, we need to multiply the length by the width.
Working in centimetres gives

«—1cm—
<«—10mm——>

<«1cm—>

area=1cmx1cm= (1 cm?=1?cm? = 1cn?

Working in millimetres gives
Figure 3.4: A square centimetre

area= 10 mmx 10 mm= (10 mm? = 10> mn¥ = 100 mnf (not to scale)
Thus 1 cnd = 100 mnf and 1 mm = 1_%)0 cne.

If we want to convert from crhto mn? we need to multiply by 100; if we want to
convert from mm to cn? we need to divide by 100.
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Figure 3.5 illustrates another example which is a little harder to
visualize. Each side of the square measures either 1 km or 1000 n ,
(10® m). Working in kilometres gives — —

area= 1 kmx 1 km= (1 kmy = 1° km? = 1 kn?

Working in metres gives

<« 1km ——>

<« 108 m—

area= 10° mx 10° m = (103 m)2 = (103)2 m? = 106 m?

<« 1km —>

1
_ 2 _ 2
Thus 1 knf = 10° m*and 1 nf = 106 km®. Figure 3.5: A square kilometre
To convert from kmd to m? we need to multiply by 19 to convert
from m? to km? we need to divide by 10

The number by which we need to divide or multiply to convert from one unit to
another is known as theonversion factor’ In general, to convert between units
of area we need tsquarethe conversion factor which we would use to convert
corresponding lengths.
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As a final example consider a conversion betweeR &nd mnf.

There are 1®millimetres in a metre and £anetres in a kilome-
tre, so there are POmillimetres in a kilometre as illustrated in
Figure 3.6.

To convert from kilometres to millimetres we need to multiply by
10°; however to convert from kfto mn? we need to multiply by

(16F)",ie. 202
Similarly, to convert from mr to km? we need to divide by

(1), ie. 102

Question 3.6

A desk has an area of(4 n?. Express this area in:
(a) cm?

(b) pm?

(c) km?

<« 105 mm —>

<« 1km —>
<« 10 mm ——>

<« 1km ——>

Figure 3.6: A square kilometre

Answer
Answer

Answer
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3.4.2 Converting units of volume

The volume of the piece of granite shownHRigure 3.2is given by
volume= lengthx width x height
The lengths of the sides ared&m, 57 cm and 48 cm, so

volume= 8.4 cmx 5.7 cmx 4.8 cm
= 2.3 x 107 cm® to two significant figures.

Note that the units which have been multiplied together arexam x cm, so in

this case the units of volume are & value given for volume shouldlwayshave

units equivalent to those used for (lengttdnd if we had converted the lengths of
the sides to metres before doing the calculation, we would have obtained a value
for volume in n¥:

volume= (8.4 x 1072 m) x (5.7 x 102 m) x (4.8 x 1072 m)
= 2.3x 10™* m? to two significant figures.

The method for converting betweerfldrent units of volume is a direct extension
of the method for converting betweerfférent units of area. Suppose we want to
know how many mrathere are in a cfh
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There are 10 mm in 1 cm, so each side of the cubic centimetre
in Figure 3.7 measures either 1 cm or 10 mm. The volume can «~—1cm—>
be written as ejther 1 cfror 16 mm®. Thus 1 cni = 10° mm® Ao

and 1 mni = 5 cm?. To convert from crato mm® we need to

multiply by 10%; to convert from mm to cn? we need to divide
by 10°.

In general, to convert between units of volume we needutze
the conversion factor that we would use to convert corresponding ~—10mm—>

lengths.

We can convert a volume of2x 107 cm® into m® simply by say-  Figure 3.7: A cubic centimetre (not
. : 3 .

ing that there are Zocm in 1 m; hence there a(éoz) cme in to scale).

1ms, so

1cnP =

<«—10 mm—

10 mm

<—1cm*>\

1 m3
1®)®

and

23x 107
23x 10° cm® = Ls m3
(10

=23x104m3

This value is, of course, the same as the one we obtained from first principles!
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The prefix ‘deci’ meaning one tenth was introduce&atction 2.2thus 1 decimetre
(dm) is one tenth of a metre. The cubic decimetre{dsisometimes used as a unit

of volume. The litre (I) (also introduced in Chapter 2) was defined in 1901 as the
volume of a kilogram of water at 4C, under standard atmospheric pressure. This
voll:rr;e turns out to be.@00 28 dnd, and since 1969 a litre has begefinedto be
1dnv.

Worked example 3.2
Convert a volume of 1 dénto: (a) cn¥ (b) m?

Answer

(@ 1m=10dmand 1 m= 100 cmso 1 dm= 10 cm.
Thus 1 dni = 10° cm?.

(b) 1 m=10dm
Thus 1 nf = 10° dm?

1
and1dmi=-— m3=103m3
108
{Thus 1 dn? (i.e. 1 litre) is a thousand times bigger than a cubic centimetre and
a thousand times smaller than a cubic metre. You may already have been aware
that 1 litre= 1000 cn¥. Thus 1 mi= 1 cn®. }
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Figure 3.8is a summary of unit conversions for length, area and volume, but you
should try to remember the general principles involved rather than memorizing in-
dividual conversion factors.

Question 3.7

Express each of the following volumes in scientific notation fh m

(a) the volume of the planet Mars, which i$6# x 10! km3; Answer
(b) the volume of a ball bearing, which is 16 m Answer

3.4.3 Converting units of distance, time and speed

You were introduced ifBox 2.1to the metre as the base unit of distance or length
and to the second as the base unit of time. The average speed with which an object
moves is the total distance travelled divided by the total time taken, so when Marion
Jones won the women’s 100-metre final at the 2000 Sydney Olympicsib $0

her average speed was

1000 m
10.75 s

Similarly, if a girl grows a total of 116 cm in 12 years, her average rate of growth
is

average speed =9.302ms*

116 cm
125 years
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Note that it is appropriate to give the answer to the first example to four significant
figures (assuming that the length of the running track was known to at least four
significant figures). Also note the way in which the units have been written in both
examples.

The notation of negative exponents, which we have used to represent numbers
like 1/2% as 22 and 1/10° as 108, can also be used for units. Sgslcan

be written as s, m/s can be written as nT$ and cmyear can be written a3
cmyear?.

The SI unit of speed is nT$ and this is usually said as ‘metres seconds to the
minus one’. Although m3 is the correct scientific way of writing the unit, it is
sometimes written as 8, and quite frequently said as ‘metres per second’, even
when written as mg. The  for per is quite commonly used in other units too.
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Many things move arfdr grow in the world around us, and it is useful to compare
different values for speed or rate of growth.fiBient speeds are frequently mea-
sured in diferent units, so in order to be able to compare like with like itis necessary
to convert between fterent units for distance, time and speed. Box 3.1 considers
various examples of speed and growth, and the text immediately following the box
looks at ways of converting one unit to another.

Box 3.1 How fast?

Light (and other forms of radiation such as X-rays and radio waves) travels in a
vacuum with a constant speed 008x 108 ms™L. Itis currently believed tha:
nothing can travel faster than this.

Towards the opposite extreme are stalactites and stalagmites, which grow just
fractions of a millimetre each year. A typical growth rate i$ hhm year?!. Sta-
lactites form when water drips from the roof of an underground cave, depositing
calcite (frequently from the limestone in the rock above the cave) in an icicle
shaped formation as it does so. Stalagmites form as the water drips onto the
floor of the cave, depositing further calcite.
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Figure 3.9: The Saskatchewan Glacier, BaNational Park, Canada.

It is not normally possible to detect the motion of a glacier by eye, but there

is considerable variation in the speed with which they move. The Franz Josef
Glacier in New Zealand is particularly fast moving, with an average speed of

about 15 mday . The speed of the Saskatchewan Glacier in Canada (Figure
3.9) is rather more typical, at about 12 cm day

In addition to geological processes such as glacier flow and stalactite formation,
the theory of plate tectonics tells us that the surface of the Earth is itself maving.

The Earth’s surface is thought to comprise seven major tectonic plates and nu-
merous smaller ones, each only about 100 km thick but mostly thousands of
kilometres in width. Evidence, including evidence from sea-floor spreadinj (to
be discussed in Chapter 5) indicates that plates move relative to one another with
speeds between about 10 kmMand 100 km Ma' (where Ma is the abbrevi-
ation for a million years, as discussed3ection 2.2.
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P waves S waves Love waves Rayleigh waves

|
5 minutes

Figure 3.10: A seismogram (the printout from a seismometer) showing tke ar-
rival of P waves, S waves, Love waves and Rayleigh waves from a distant ¢arth-
guake. Elapsed time increases from left to right.

Earthquakes and volcanoes occur all over the Earth, but they are more common
close to the boundaries of tectonic plates than elsewhere. Following an 2arth-
guake, seismic waves (the word ‘seismic’ is from the Greek for ‘shaking’) travel
out from the centre of the quake and are recorded by seismometers at various lo-
cations. There are severaft@rent types of seismic waves, including P waves, S
waves, Love waves and Rayleigh waves, each travellingfardnt speeds (and
sometimes also by flerent routes), so reaching a given seismometefiardnt

times (see Figure 3.10). P waves travel fastest, with an average speed ot about
5.6 kms in rocks close to the Earth’s surface, so reach the seismometer first
(the name P wave was originally an abbreviation for primary wave). S wav:s (S
for secondary) travel with an average speed of abaukB s in rocks close

to the Earth’s surface.

Perhaps the most dangerous sort of volcanic eruption is one that leads to a high-
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speed pyroclastic flow (a mixture of rock fragments and gases, moving as a
fluid) away from the volcano. Pyroclastic flows are particularly destructive lhoth
because of their high temperatures (typically between°Zb@nd 700°C) and

the high speed at which they travel (up to about 100 kmHur

The speeds given so far have related to processes on the Earth, but remember
that the Earth itself is moving too! The rotation of the Earth on its axis leads to

a movement of up to.8 km s at the surface. In addition, the Earth is orbiting

the Sun at about 30 kmi$ and the entire Solar System is moving around the
centre of the galaxy at about 250 knts

To convert from one unit of speed to another, we may need to convert both the
unit of distance and the unit of time. To start with, let's consider the rather more
straightforward case when we only have to convert the unit of distance, for example
in converting from mmst toms™.

We know that 1 m= 103 mm

1
solmm=—m=1x103m

108
We can therefore say straight away that 1 mm=s 1 x 103 mst
We have simply applied the same conversion factor as in converting from mm to

m. Note that the answer makes sense: it is reasonable to expect that the numerical
value of a speed in nT$ will be smaller than the same speed when given in mim's
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Worked example 3.3
Convert the speed of the Earth as it orbits the Sun (given above as 30kins
into a value in mst,
Answer
1km=1x10"m
So
1kms!t=1x1ms?
30 kms!t=30x10®ms
= 3.0 x 10* m st in scientific notation.
The Earth orbits the Sun with a speed of abo0t310* ms™. Again the an-
swer makes sense: it is reasonable to expect that the numerical value of € speed
in m s will be larger than the same speed when given in ko s
Next let’'s consider what happens when we need to convert only the time part of
units of speed, for instance in converting from km hduo km s2.
We know that there are 60 minutes in an hour and 60 seconds in a minute, so
1 hour= 60x 60 s= 3600 s
However, in this case we don’t want to convert from hours to seconds, but rather
from kilometresper hourto kilometresper second The way forward comes in
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recognizing that the word ‘per’ and the use of negative exponents inhand st
indicate division. So to convert from hotrto s (or from km hour? to kms1)
we need to find the conversion factor from hours to seconds andithiele by it.

1 hour= 3600 s

1
_1 ~1
so 1 kmhour- = _3600kms

In deciding whether to divide or multiply by a particular conversion factor, common
sense can also come to our aid. It is reasonable to expect that a speed quoted in
km s will be smallerthan the same speed when quoted in km hbuso it is
reasonable tdivide by the 3600 on this occasion.
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Worked example 3.4

Two tectonic plates are moving apart at an average rate of 35 krh. NTanvert
this to a value in kmyeat.

Answer
We know that
1 Ma= 10° years

SO

1kmMal= % kmyear?!

and therefore

35 kmMa?l = 1%56 kmyear?!

= 3.5x 10> kmyear! in scientific notation.
The plates are moving apart at an average ratesok 30> kmyear.

This answer is reasonable: you would expect the rate of separation quoted in
kmyear?! to be smaller than the same rate quoted in kmiMa
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Question 3.8

Convert the average speed of the Saskatchewan Glacier (12 ch) tag value
in:
() mday™* Answer

(b) cmst? Answer

Finally we need to consider conversions for speed in which both the units of dis-

tance and the units of time have to be converted. This is simply a combination of

the techniques illustrated in Worked examples 3.3 and 3.4. Suppose we want to
convert from km hout* to ms1,

1km=10°m
1 hour= 3600 s

To convert from km hout* to ms'1, we need tanultiply by 1 (to convert the km
to m) anddivide by 3600 (to convert the hott to s71):

103 S :
1 kmhour? = 3600™ s1=0.278 ms! to three significant figures.
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Worked example 3.5

Convert the average speed of separation of the tectonic plates discussed in
Worked example 3.4 (35 km M4) to a value in mm yeat-.

Answer
1km=10mand 1 m= 10> mm, so 1 km= 10° mm
1 Ma = 10° year

To convert from km Mat to mmyear?, we need tanultiply by 1 (to convert
the km to mm) andlivide by 1 (to convert the Ma' to year?.

10°
1 kmMa! === mmyear! = 1 mmyear*
106
Thus a speed given in km Mais numerically equal to one given in mm y&r

The plates are moving apart at a 35 mmyeéarThis is similar to the rate at
which human fingernails grow and is easier to imagine than is 35 kntMa
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Question 3.9

Convert each of the following to values in mtsand then compare them.

(a) A stalactite growth rate of.@ mmyear?. Answer
(b) The average speed of the Saskatchewan Glacier (12 chh)day Answer

(c) The speed of separation of the tectonic plates discussed iknswer
Worked examples 3.4 and 3.5 (35 km Mz

(Note for the purposes of this question, consider 1 year to be 365 days lorig.)
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3.4.4 Concentration and density; more unit conversions

Methods for converting units for physical quantities, such as concentration and den-
sity, follow directly from the discussion in the previous sections.

Box 3.2 Concentration

The concentration of a solution is a term used as a measure of how much of
a certain substance the solution contains, relative to the solution’s total vo ume.
For example, we may want to know how much sugar has been dissolved in water
to give one litre of syrup.

The amount of the substance can be measured in moles, in which case the con-
centration will have units of motf or mol dn3. Alternatively, the amount can

be measured by mass, in kg, g, mg, etc., leading to units for concentration of
kgdn3, gm3, or mg?, and so on.

The World Health Organization (WHO) sets limits for safe concentrations of
various impurities in water, for example, the limit for the concentration of ni-

trates in water is currently 50 mgi. This means that there should be no more

than 50 mg of nitrate in each litre (cinof water.
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To convert a concentration from, say, m§to ug mlI~* you need to follow a very Itis very easy to
similar procedure to the one introducedSection 3.4.3as the following worked confuse the letter ‘I,

example shows. used as the symbol for
litres, with the number
Worked example 3.6 1. Take care!

Convert 50 mgt! (the World Health Organization’s limit for the concentration
of nitrates in water) to a value img mI~.

Answer

We can easily write down the conversion factors for mggoand from litres to
ml.

1 mg= 10° ug
1litre=11=10°ml

So to convert from mgt to ug mi~t, we need tonultiply by 10® (to convert the
mg toug) anddivideby 10 (to convert the1! to mI™1).

1mgl?!= % ugmit =1 pgmi~t

Thus a concentration given in ngtlis numerically equal to one given in
ng mi~2, in particular 50 mgit = 50 ug mi=2.
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Box 3.3 Density

The density of a piece of material is found by dividing its mass by its volume.
In other words

mass
volume

density=

If mass is measured in kg and volume is if, rthen it follows that the unit of
density will be kgm? (said as ‘kilograms per metre cubed’) or, written in the
form favoured in this course, kgTh (said as ‘kilograms metres to the minus
three’).

The density of pure water is3 10° kgm-3; materials with a density greater
than this (such as steel of density8% 10° kg m3) will sink in water
whereas materials of lower density (such as wood from an oak tree, density
6.5 x 107 kg m3) will float.

If mass is measured in g and the volume is irfcthen the unit of density will be:
gcnT3. Note that g cm? is not an Sl unit, but it is nevertheless quite frequernitly
used.
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Question

The specimen of granite shown fiigure 3.2has a mass of.80x 10? g. Cal-

culate the density of the granite in g cfn

Answer
The volume of the specimen8.4 cmx 5.7 cmx 4.8 cm, so

mass

volume
6.20x 107 g

- 8.4 cmx5.7cmx 4.8 cm
=2.6977 gcm®

= 2.7 g cni 3 to two significant figures.

density=

Note that it was not necessary actually to calculate a value for volume before
completing the calculation of density. If you had used the value for volume
calculated at the beginning 8kction 3.4.2you would have obtained

mass _ 6.20x 1% g
volume 2.3 x 102 cm3

density= =27gcm?3

but you would have risked introducing rounding errors.
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The final worked example in this section converts the units of the density of the
granite specimen from g crito kg nT3, using a method which is a combination of

the techniques taught throughout Section 3.4. You can convert units of concentra-
tion such as mg dnt to g2 in a similar way.

Worked example 3.7

Convert 27 g cnt? (the density of the specimen of granite shown in Figures 3.1
and 3.2) to a value in the Sl units of kg

Answer
1kg=1039,solg=%kg=103kg

1m= 10 cm,solrﬁ:(loz)3 cm? = 10° cm? (from Section 3.4.D
_ 1 3 _ 106 3
solcmt= s m®=10°m

To convert from g cm?® to kg 2 we need tanultiply by 10-2 (to convert the g
to kg) anddivideby 107° (to convert the crm® to m3).

3
1gents = % kgm=2 =103 kgm=3 =10 kgm3

Thus 27 gent3 = 2.7 x 10° kg m™3.
The specimen of granite has a density a2 10° kg m™3.
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You may have already known that you need to multiply by 1000 in order to convert
from units of g cn® to units of kg nT3, but as was the case with the unit conversions
for area and volume, it is better to consider general principles rather than trying to
memorize conversion factors.
Question 3.10
The World Health Organization reduced its maximum recommended concentra-
tion for arsenic in drinking water from 50g 1~ to 10 ug 1=t in 1999. Convert
10 ug =1 to a value in:
(@) pgml™ Answer
(b) mgdnr2 Answer
(c) gm3 Answer
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3.5 Anintroduction to symbols, equations and formulae

To progress further in our exploration of ways of calculating in science, we need
to enter the world of symbols, equations and formulae. The walgebra’is used

to describe the process of using symbols, usually letters, to represent quantities
and the relationships between them. Algebra is a powerful shorthand that enables
us to describe the relationships between physical quantities briefly and precisely,
without having to know their numerical values. Some people consider algebra to
be a beautiful thing: others are filled with terror by the very word. This course may
not convince you of algebra’s beauty, but it should at least illustrate its usefulness
and give you an opportunity to learn and practise new techniques or revise old ones.

Chapter 4 is devoted to algebraic techniques such as simplifying, rearranging, and
combining equations. The remainder of Chapter 3 simply introduces the language
of algebra by looking at a few equations very carefully, and substituting values into
them.

The wordequationis used for an expression containing an equals sign. The quanti-
ties under consideration may be described in words, for example

mass
volume

density=
in which case the equation is known asv@rd equation; or represented by sym-
bols, for example
m
Py
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but the important thing to remember is that what is written on the left-hand side of
the ‘=" sign mustalwaysbe equal to what is written on the right-hand side. Thus,
as explained infaking care when writing matha Section 3.3 you should never
use =’ as a shorthand for anything other than ‘equals’.

The wordformulais used in mathematics to mean a rule expressed in algebraic

symbols. Thup = 9 is a formula which tells you that the densjiyof a substance

can be obtained by dividing the mass,of a sample of the substance by the volume,
V, of the sample. Strictly speaking, not all equations are formulae, but the words
tend to be used interchangeably.

3.5.1 What do the symbols mean?

Mathematics textbooks teaching algebra frequently contain page after page of equa-
tions of the form:

X+3=8 (3.1)
and
y=Xx+5 (3.2)

In Equation 3.1x can only have one value, i.e. it is a constant. In this calsas
the value 5. In Equation 3.% andy arevariableswhich can each take an infinite
number of values, butwill always be 5 greater thax The values (ok andy, etc.)
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which satisfy a particular equation are knownsautionsand if you are asked to
solvean equation you need to look for solutions.

In both Equation 3.1 and Equation 3)2andy represent puraumbers Equations
in science are often ratherffirent. Rather than representing pure numbers, the
symbols usually represent physical quantities and will thereforeinaitgattached.

3.5.2 Which symbols are used

Box 3.4contains a range of scientific formulae in common use, along with a brief
explanation of the meaning of each symbol used. Have a quick at these equations
now, but don’t worry about their details; you are not expected to learn them or to
understand the meanings of the scientific terms introduced. The equations in the
boxes will be used as examples throughout the rest of this chapter, and have been
numbered for ease of reference.

The symbol chosen to represent something is often the first letter of the quantity in
guestion, e.gm for masst for time andl for length, but it isn’t always so simple.
Greek letters are also frequently used as symbols £(¢ambda) for wavelength

in Equation 3.13andp (rho) for density inEquations 3.93.10and3.11 A list of
Greek letters and their pronunciation is given in ffable 3.1and you will soon
become familiar with those that are commonly used. In a sense it doesn’t matter
which symbol you use to represent a quantity, since the symbol is only an arbitrar-
ily chosen label. For instance, Einstein’s famous equatmuétion 3.7 is usually
written asE = mc, but the equation could equally well be written using any sym-
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bols you wanted to use, e.qn = qr2, provided you also made it clear thaivas

used to represent energyyas used to represent mass awdas used to represent

the speed of light. However, the use of conventional symbols, suelH@snergy,

saves scientists a lot of time in explaining their shorthavdths for Sciencéol-

lows convention as far as possible in its use of symbols. Sometimes the reason for
the choice of symbol will be obvious but unfortunately this is not always the case.

Sometimes a subscript is used alongside a symbol in order to make its meaning
more specific, as in;, vy andvy, used inEquation 3.130 mean initial, final, and
average speed, arg in Equations 3.1@&nd3.17used to mean acceleration along
thex-axis. Note that althoughy, for example, uses two letters, it represents a single
physical entity; note also that is not the same aax. The symbolA (the Greek
upper case delta) is frequently used to represent the change in a quamityjrso
Equation 3.14means a change in temperatdieagain asingle physical entity is
represented biwo letters.

A few letters have more than one conventional meaning, for exaoipl&quation

3.7 represents the speed of light, butkguation 3.14he same letter represents
specific heat capacity. Other letters have two meanings but lower case is conven-
tionally used for one meaning and upper case for the other, for examimepeed

andV for volume ort for time andT for temperature. Care needs to be taken, but
the intended meaning should be clear from the context.
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Unfortunately some Greek letters look rather like everyday English ones; for exam-
ple p (rho), used for density, can look rather like the English lower gasBome
textbooks use lower cagefor pressure (this course uses capRaland Equation
3.11(P = pgh) can then appear to have the same quantity on both the left- and
right-hand sides of the equals sign, especially when written out by hand. In reality,
this formula hagpressureon the left-hand side argkensity(and other things) on the
right-hand side. A similar confusion can arise because the lettar look like the
number 1.

A final possible source of confusion stems from the fact that the same letter may

sometimes be used to represent both a physical quantity and a unit of measurement.

For example, an object with a mass of 6 kilograms and a length of 2 metres might be
described by the relationships= 6 kg,| = 2 m, where the letter m is used to rep-
resent both mass and the units of length, metres. In all material for this course, and
in most other printed text, letters used to represent physical quantities are printed in
italics, whereas those used for units are not.
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3.5.3 Reading equations

To understand, and thus use, the equatiori8ar 3.4you need to be aware of a
few rules and conventions. Most of these are extensions of things you have learnt
earlier in this course. First:

When using symbols instead of words or numbers, it is conventional to drop the
‘X’ sign for multiplication.

So inEquation 3.6mameans massmesmagnitude of acceleration andiguation
3.1], pgh means densityimesacceleration due to gravitymesdepth.

Rules of arithmetic, such as the fact that addition and multiplication are com-
mutative, and th@EDMAS order of operations, apply when using symbols t>o.

The fact that multiplication is commutative means that equations involving sev-
eral multiplications can be written in any order. Equation 3.14could be (and
sometimes is) written ag = cm AT instead ofg = mc AT. Addition is also com-
mutative, sdEquation 3.1@&ould be written asy = axt+ Uy instead ofvy = uy+ayt.
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Although the order in which multiplications are written doesn’t matter, various con-
ventions are generally applied. Note thaBquation 3.3C = 27tr), the number 2

is written first, then the constant then the variable. This order (numbers, then
constants, then variables) is the one that is generally applied. SimEagymc
(Equation 3.7 could be written a€ = ¢?m, but it generally isn't! Variables that
are raised to a power tend to appear at the end of equations.

BEDMAS tells us that operations within brackets take precedence, i.e. operations

inside brackets should be evaluated before those outside the brackets. When work-
ing with symbols, this means that an operation applied to a bracket applies to every-

thing within the bracket. So ikquation 3.19the whole of(%) is raised to the

power%. Equation 3.2Quses two sets of brackets fi@rent styles of brackets have
been used to avoid confusion). The inner, round brackets ( ) are used to indicate
thatL should be divided by the whole of /4~) and the outer, square brackets [ ]

are used to indicate that the wholelgf(47t F) should be raised to the powér.

There are two further points to note that are linked to the use of brackets.

1 A square root sign and a horizontal line used to indicate division can both be
thought of as containing invisible brackets, i.e. the square root sign is taken to
apply to everything within the sign and the division applies to everything above

the line. So, inEquation 3.10the square root applies to the whole(gf), (this
u Vi

means that /= could be written asT) and inEquation 3.15he whole of

(Vi +v) should be divided by two.
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2 Throughout this course, brackets are sometimes used for added clarity even when
this is not strictly necessary. In addition, you are encouraged to add your own
brackets whenever you think doing so would make the meaning of an equation
clearer.

The ‘E’ in BEDMAS (seeSection 1.4 tells us that exponents take precedence over
divisions and multiplications, so iBquation 3.1E = mc) the c must be squared
before being multiplied byn. This means that it isnly the c that is squared, not
them. For clarity you could write this aE = m(cz), but it is very important to

remember thamc # (md?, i.e. thatmc® # mPc?, where the symbok means ‘is
notequal to'.

BEDMAS also reminds us that multiplications should be carried out before addi-
tions and subtractions, so Eguation 3.16ax andt should be multiplied together
beforeuy is added.

Finally, note that all of the rules discussed in Chapter 1 for the writing and manipu-
lation of fractions and powers apply when using symbols, in exactly the same way

as they do when using numbers. &muation 3.1%ould be written as, = uxt +
2

axt® . _ . G
XT instead ofs, = Uyt + 3a,t% Equation 3.1&ould be written a&g = —Témz
instead ofFg = G _:;nz ; and the following two representationsBfjuation 3.20

although they look very dierent, are actually identical in meaning:

d=/—¢ d = [L/(4nF)]Y?
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Question 3.11 Answer

Which two pairsof equations foa of those given below are equivalent? You
should be able to answer this question by just looking at the equations, but you
might like to check your answer by substituting values suck as3,y = 4,

Z=5.
() a=x(y+2
(i) a=xy+z
(i) a=(y+2x

(iv) a=x+yz

(v) a=z+yx
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Question 3.12 Answer

Two of the equations given below famare equivalent. Which two? Again, ycu
should attempt this question initially by simply looking at the equations.

(i) m:%
2.2
(i) m:abTC
(iii) m:a¥
(iv) ng
2,22
() M= bzc
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3.5.4 Using equations

Substituting values into equations provides a way of checking your understanding
of many of the techniques introduced in this chapter, especially the correct reading
of equations, the use of scientific notation, and the need to quote answers to an
appropriate number of significant figures. It also provides an opportunity for you to
extend your understanding of units in calculations and to begin to think about how
to choose an appropriate equation to use in answering a particular question. Don'’t
worry about the science in the worked examples in this section; they are given as
illustrations of good practice for substituting values into equations.

Worked example 3.8

Usevy = Ux + axt (Equation 3.1pto find the speed reached aftedB s by a
stone thrown downwards from afflivith initial speed 15 m s, This situation
is illustrated inFigure 3.11 You can assume that theagnitude(size) of the
acceleration is 81 ms?2, where ms? are the Sl units of acceleration.

Answer

Equation 3.16&tates thaty = uyx+ayt, and we are trying to findy. The question
tells us that

Uux=15ms! a,=981ms? t=045s
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Thus
Vy = (1.5 m §1) + (9.81 ms?2 x 0.45 s)

where the units ofi, are ms2 and the units of are s, so the units d,t are

ms 2 x s. Simplifying this gives

ms?

—2 m mxg m
MS“XS= = XS= = — =
2 SX% S

So

Vg =15ms?!+44145 ms?

= 5.9 ms ! to two significant figures,

i.e. the speed after 0.45 seconds.B & s L.
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Note, fromWorked example 3.,8&he following points about the handling of units:

1 Calculations have been done in Sl units.

2 Units have been included next to values at all times, and the units in the final
answers are both consistent with the workargl what we would expect the
units of the final answer to be.

The second point follows from what was said about unitSaation 3.1.1lwe have

input values with units of ms for initial speed, units of s for time, and units of
ms2 for acceleration, and the units for final speed hexeked out to bems™.

We have not simply assumed the units for final speed to be!nbsit rather have
calculated the units fory at the same time as calculating the numerical value. Han-
dling units in this way ensures that the answers are expressed as physical quantities
(with units), not just numbers. It also gives an easy way of checking a calculation.

If the final units inWorked example 3.8:ad come out as A5~ you might have
realized that, since these aret units of speed, you must have made a mistake.

Itis good practice to work out the units in this wayal your scientific calculations.
To enable you to do thifBox 3.5explains a little more about some of the derived
units that you will encounter in this course.

Back < > 143



Contents O

Box 3.5 Derived Sl units

Box 2.1introduced the Sl base units, and since then you have encounterid the
Sl units of m s for speed, kg m? for density and m for acceleration. Thes2

units are combinations of the base units m, kg and s; other physical quantities
have units involving other base units too. Some physical quantities are so com-
monly used that their units have names and symbols of their own, even though
they could be stated as a combination of base units. Several of these derived
units are listed in Table 3.2. Note that if you become ficently famous sci-
entist you are likely to end up with a unit named after you! The units in Table
3.2 are named after Sir Isaac Newton, James Prescott Joule, James Watt Blaise
Pascal and Heinrich Hertz respectively.

Physical quantity Name Symbol Base unit
of unit for unit equivalent
force, such as weight  newton N kg 1ts
energy joule J kg rhs2
power watt W kgmMs3
pressure pascal Pa kg s 2
frequency hertz Hz g

Table 3.2: Some derived units
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Note also that many of the derived units are interlinked:

1J=1Nx1m

1J
1W="——
1s

1N
1Pa= —5
1n?

The following data may help to illustrate the sizes of the units:

An eating apple has a weight of about 1 N on Earth;

An athlete with mass 75 kg, sprinting at 9 mtshas an energy of about
3000 J;

A domestic kettle has a power rating of about 2500 W,

Atmospheric pressure at sea-level is about RE;

The human heart beats with a frequency of aboBitHz.
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To find the units ofvesc in Worked example 3.9, you need to use the fact, from
Table 3.2, that 1 N= kgms2. This worked example also provides a reminder of
the importance of converting to Sl base units before beginning a calculation.

Worked example 3.9
GM\"?

Use Vese = R (Equation 3.19to find the escape speeds, needed

for an object to escape from the Earth’s gravitational attraction. The mass of
the Earth M = 5.98 x 10°* kg, the radius of the EartiR = 6.38x 10° km and
G =6.673x 10X Nm?kg2.

Answer

ConvertingR to S| base units gives

R = 6.38x 10° km
=6.38x10°x 10° m
= 6.38x 10° m

M = 5.98x 107* kg
G =6.673x 10 Nm? kg2
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Substituting in Equation 3.19

v (BM)?
esc — ?
 (2x6.673x 1071 Nm2kg2 x 598 x 10%* kg
B 6.38x 106 m

Rearranging this so that the units on the top of the fraction are all together we
get

2% 6.673x 10711 x 5.98 x 107N m2 kg2 kg)l/ 2

V, =
ese ( 6.38x 10° m

Since 1 N= 1 kg m s, this can be rewritten as

 (2x6673x 1071 x 5,98 x 10P*kgm s2m? kg2 kg)l/ 2
eser 6.38x 106 m

This can be simplified by cancelling some of the units

- (2 x 6.673x 10711 x 5,98 x 102 kg prs 2 m? Kg%,kg)” ?
esc —

6.38x 10° prr
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Calculating the numeric value, and reordering the units, we have
1/2
VeSC: (1.2509X :l.(j3 m2 S_z) /

Taking the square root of both2609x 10° and nf s~2 gives

Vesc= 1.12x 10* m s to three significant figures.

The escape speed isl2 x 10* ms™1, with units of m s, as expected.

Question 3.13 Answer

In a classic experiment in the USA in 1926, Edgar Transeau calculated the
amount of energy stored in the corn plants in a one-acre field in a 100-day yrow-
ing period to be D6x 10 kJ. This isNPPin Equation 3.8 For the same field

and the same time period, he found the energy used by the plants in resp ration
(R) to be 323x 10" kJ. UseEquation 3.8to find the corresponding value of
GPP, the total energy captured by the plants.
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Question 3.14 Answer

UseEquation 3.13o find the speed of waves (in m'$ which have a frequency
of 4.83x 10'* Hz and a wavelength of 621 nm.

The final worked example in this section returns us to the piece of granite introduced
at the beginning of the chapter. Itis perhaps a somewhat more realistic example than
Worked examples 3.8 and 3.9 because the question does not tell us which formula
to use.
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Worked example 3.10

The rigidity modulus of granite (a measure of the rock’s ability to resist de for-
mation) near the surface of the Earth i® 8 10'°© Nm~2. Use this value, and
the value you found previously for the density of granite to find the speed of S
waves travelling through granite.

Answer

Which equation shall we use? When faced by this dilemma it is best to start
by thinking carefully about what you already know and what you want to find.
On this occasion we're told that the rigidity modulus i8 8 10'° Nm~2 and we
know (fromWorked example 3)hat the density of granite is2x 10° kg m™2
(using a value to three significant figures to avoid rounding errors). We need
to find a value for S wave speed. So we need an equation which links density,

rigidity modulus and S wave spedtiguation 3.1qvs = \/E) from Box 3.4fits
P
the bill.

Simply finding an equation from a list, all that is possible in this course, is

somewhat unlike the situation you are likely to encounter in the real scieitific
world. Nevertheless, the principle of starting each question by thinking about
what you already know and what you want to find is a good one, and or this
occasion it makes it straightforward to find an equation to use from Box 3.:.
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VS: /—l

P
u=30x109Nm>2

p=270x10> kgm3

So

_ [3.0x100Nm2
*~ \2.70x 108 kg m-3

Since 1 N= 1 kg m s2, this can be rewritten as

_ [3.0x100kgms2m2
5T 2.70% 108 kg m-3

This can be simplified by cancelling the kg on top and bottom of the fracticn

3.0x 1010me s2m-2
VS =
2.70x 108 yg’ -3
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Calculating the numeric value, and combining the m and am the top of the
fraction with the n® on the bottom, we have

Vs = V111X 107 m2s2
= 3.3x 10® m s to two significant figures

So the S waves travel with a speed @& 8 10° m st through granite.

Question 3.15

The Earth has an average radius &< 10° km and a mass of.87 x 10?4 kg.
The Moon has a mass of36x 10?2 kg. The distance between the Earth end
the Moon is 334 x 10° km andG = 6.673x 10-11 Nm2kg~2. Use appropriate:
equations fronBox 3.4to calculate:

(a) the Earth’s volume (in M); Answer
(b) the magnitude of the gravitational force between the Earth andAnswer
the Moon (in newtons).

Note on this occasion you should be able to work out the final units of your
answer without expressing newtons in the form of base units. This is further
discussed in the answer to the question.
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3.6 Learning outcomes for Chapter 3

After completing your work on this chapter you should be able to:

3.1 demonstrate understanding of the terms emboldened in the text;
3.2 perform calculations to an appropriate number of significant figures;
3.3 give answers to calculations in appropriate Sl units;

3.4 carry out calculations in scientific notation, both with and without the use of a
scientific calculator;

3.5 estimate answers to one significant figure;

3.6 convert between various units for quantities such as area, volume, speed,
density and concentration;

3.7 demonstrate understanding of the rules and conventions used in scientific
formulae;

3.8 substitute values (numbers and units) into scientific formulae.
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Algebra

At the end of Chapter 3 we used the equatgn= # to calculate the S wave
P

speedys, of seismic waves passing through a rock of dens#nd rigidity modulus
u. But suppose that, instead of knowip@ndu and wanting to findis, we knowvg

andp and want to find:.. The best way to proceed is to rearrange H to make
P

u the subjectof the equation, where the word ‘subject’ is used to mean the term
written by itself, usually to the left of the equals sign. Rearranging equations is the
first topic considered in Chapter 4. The rest of the chapter introduces methods for
simplifying equations and ways of combining two or more equations together, and
it ends with a look at ways of using algebra to solve problems.
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4.1 Rearranging equations

There are many tlierent methods taught for rearranging equations, and if you are
happy with a method you have learnt previously it is probably best to stick with
this method, provided it gives correct answers to all the questions in this section.
However, if you have not found a way of rearranging equations which suits you,
you might like to try the method highlighted in the blue-toned boxes throughout
this section. This method draws on an analogy between an equation and an old-
fashioned set of kitchen scales, and considers the equation to be ‘balanced’ at the
equals sign. The scales will remain balanced if you add a 50 g mass to one side of
the scales, or halve the mass on one gidavidedyou do exactly the same thing to

the other side. In a similar way, you can do (almost) anything you like to one side
of an equation and, provided you do exactly the same thing to the other side, the
equation will still be valid. This point is illustrated frigure 4.1

The following rule summarizes the discussion above:

Whatever you do mathematically to one side of an equation you must also do to
the other side.

This rule is fundamental when rearranging equations, but it doesn’t teliwa
operation to perform to both sides of an equation in order to rearrange it in the way
you want. The highlighted points below should help with this, as will plenty of
practice.
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Two things are worth noting at the outset:

1 Equations are conventionally written with the subject on the left-hand side of the
equals sign. However, when rearranging an equation it can very often be helpful
simply to reverse the order.

So if you derive or are given the equatios: a+byou can rewrite itasa+b = c;
if you derive or are given the equatial = ¢ you can rewrite it as = ab.

2 Even if you choose the ‘wrong’ operation, provided you correctly perform that
operation to both sides of the equation, the equation will still be valid. Suppose
we want to rearrange the equation= a + b to obtain an expression fa We
could divide by two, as illustrated Hyigure 4.1¢this gives

c a+hb

2 2

This is a perfectly valid equation; it just doesn’t help much in our quesafor
The numbered points below give some hints for more helpful ways forward, and
each guideline is followed by an illustration of its use.

In the numbered hints the wordgpressiorandtermare used to describe the parts

of an equation. An equation must always include an equals sign, but an expression
or term won't. A term may be a single variable (suchva®r uy in the equation

Vx = Ux + axt, or a combination of several variables (suclag3; an expression is
usually a combination of variables (suchas or uy + axt, but the words are often
used interchangeably.
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Hint 1

If you want to remove an expression thahtdedto the term you wansubtract
that expression from both sides of the equation.

To rearrangea + b = c to makea the subject, note that we need to removelthe
from the left-hand side of the equation. Thés currently added t@, so we need
to subtracb from both sides. This gives

a+b-b=c-b
or

a=c-b (sinceb—b=0)

Hint 2

If you want to remove an expression thasishtractedrom the term you want
addthat expression to both sides of the equation.

To rearrange — b = ¢ to makea the subject, note that we need to removelthe
from the left-hand side of the equation. Thés currently subtracted from, so we
need to addb to both sides. This gives

a-b+b=c+b
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or

a=c+b (since—b+b=0)

Hint 3

If the term you want isnultipliedby another expressiodijvideboth sides of the
eguation by that expression.

To rearrang&b = c to makea the subject, note that we need to removelitigom
the left-hand side of the equation. Taés currently multiplied byb, so we need to
divide both sides of the equation by This gives

ab ¢

b b

Theb in the numerator of the fraction on the left-hand side cancels with th¢he
denominator to give

&
b
Hint 4

If the term you want islividedby another expressiomultiply both sides of the
equation by that expression.
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a :
To rearrange- = c to makea the subject, note that we need to removelitieom

the left-hand side of the equation. Thes currently divided byb, so we need to
multiply both sides of the equation liy This gives

Tzcxb

Theb in the numerator of the fraction on the left-hand side cancels with thehe
denominator to give

a=cb

Hint 5

If you are trying to make a term the subject of an equation and you currzntly
have an equation for theuareof that term, take thequare rootof both sides

of the equation.

To rearranga? = b to makea the subject, note that theeis currently squared, and
take the square root of both sides of the equation. This gives

a= i‘/B

Note the presence of thesign, indicating that the answer could be either positive
or negative, as discussed$ection 1.1.3In practice, the reality of the problem we
are solving sometimes allows us to rule out one of the two values.
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Hint 6

If you are trying to make a term the subject of an equation and you currently have
an equation for thequare rootf that term,squareboth sides of the equation.

To rearrangeya = b to makea the subject, note that you currently have an equation
for the square root ad, and square both sides of the equation. This gives

a=b?
Hints 1 to 6 all follow from a general principle:

To ‘undo’ an operation (e.g+, —, X, +, square, square root) you should do the
opposite, (i.e—, +, +, X, square root, square).

The following worked examples use the principles introduced in the numbered hints
above, in the context of equations which are frequently encountered in science.
Worked example 4.1 also involves substituting numerical values and units into the
equation once it has been rearranged.
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Worked example 4.1

As discussed iBox 2.1, mass and weight are not the same. However, the rag-
nitude of the weightyV, of an object at the surface of the Earth and its mass,
are related by the equatidl = mg The magnitude of the acceleration due to
gravity, g, can be taken as®. m s?

A teenager’s weight is 649 N. What is his mass?

Answer
We need to start by rearrangiilg = mgto makem the subject of the equation.
It is helpful to start by reversing the order of the equation, i.e. to write it as

mg=W

To isolatem we need to get rid aof, andm s currentlymultiplied by g so, from
Hint 3 we need talivide by g. Remember that we must do thishioth sides of
the equationso we have
g
g g

Theg in the numerator of the fraction on the left-hand side cancels witly the
the denominator to give
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Substituting values fow andg gives

_ 649N
"~ 9.81 ms?2

Since 1 N= 1 kg ms2 (from Table 3.2 and

N _ kgpms?
ms? - ps?

we then have

_ 649 kgms?

98ims2 ~ 002kg

So the teenager’s mass is.Bkg
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Worked example 4.2

The timeT for one swing of a pendulum is related to its lendthby the equa-
tion
T2 _ 4r?L
g

whereg is the magnitude of the acceleration due to gravity. Write dowr an
equation forT .

Answer

T is currently squared, so froiint 5, we need to take the square root of both
sides of the equation. This gives

4L
T- |2t
g

SinceT is a period of time, its value must be positive, so we only need to vrrite
down the positive square root.
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|
Question 4.1
(2) Rearranger = fA to makef the subject. Answer
(b) Rearrangde: = Ex + Ep so thatE is the subject. Answer
m . :
(c) Rearrange = v to obtain an equation fan. Answer
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When rearranging more complicated equations, it is often necessary to proceed in
several steps. Each step will use the rules already discussed, but many people are
perplexed when trying to decide which step to take first. Expertise in this area
comes largely with practice, and there are no hard and fast rules (it is often possible
to rearrange an equation by several, equally correct, routes). However, the following

guidelines may help:

Hint 7
Don't be afraid of using several small steps to rearrange one equation.

Hint 8

Aim to get the new subject into position on the left-hand side as soon as you can.

(This will not always be possible straight away.) Simply reversing an equation
can sometimes be a helpful initial step.

Hint 9

You can treat an expression within brackets as if it was a single term. This i true
whether the brackets are shown explicitly in the original equation or whether
you have added them (or imagined them) for clarity. If the quantity reqtired

as the subject is itself part of an expression in brackets in the original equation,
it is often best to start by making the whole bracketed term the subject cf the
equation.
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Let’'s look at these guidelines in the context of a series of worked examples, in-
terspersed with questions for you to try for yourself. Note that although ‘real’
science equations have been used as much as possible in the worked examples and
questions, the symbols have not been explained, and you do not need to know the
meaning of them. This is to allow you to concentrdite,the time being onlyon

the algebra rather than getting side-tracked into the underlying science.

You may be able to rearrange the equations in the following worked examples in
fewer steps than are shown, but if you are in any doubt at all it is best to write down
all the intermediate steps in the process.
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Worked example 4.3
Rearrangd®V = nRT to give an equation for.

Answer

This example is perhaps more straightforward than it looks, but it is best to
proceed in steps.

The first step is to reverse the equation so thatTthe on the left-hand side
(from Hint 8). This gives

nRT = PV

We now need to remove theR by which theT is multiplied. Dividing both
sides bynRgives

nRT PV
nR  nR
The nRin the numerator of the fraction on the left-hand side cancels with the
nRin the denominator to give
B PV
" nR
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Worked example 4.4
Rearrange = g so thatV is the subject.

Answer

The first step is to multiply both sides My(thus gettingV into the right position,
as inHint 8). This gives

mV
V=—
PY =7y
that is
oV =m

Then dividing both sides by gives

pV _—m
p P

that is
m
V=—

P
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Worked example 4.5
Rearrangey = Uy + axt to makeuy the subject.

Answer
This equation can be written as

UX + axt = VX

which hasuy on the left-hand sideHint 8).

We can treat the expressi@yt as a single term (by considering there to be
brackets around it, as idint 9) and subtract it from both sides of the equation
to give

UX + axt - a.xt = VX - axt
that is

UX = Vx - a.xt
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Worked example 4.6
Rearrangd = %gt2 to give an equation far.

Answer

We can consider there to be brackets aroufidand start by finding an expres-
sion fort? (Hint 9). The equation can be written as

1 2 _
égt_h

which hagt? on the left-hand sideHint 8). Multiplying both sides by 2 gives
1o
2% Egt =2h
that is
gt? = 2h
Dividing both sides by gives
gt?  2h

g g
that is
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Now we can take the square root of both sides to give

N
=0
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Worked example 4.7
Rearrangess = \/E so thatu is the subject.
Je,

Answer

We can consider there to be brackets aro@-ﬁ)iand start by finding an expres-
P

sion for(l—l) (Hint 9).
P

The equation can be written %?/E = Vs, Which has” on the left-hand side:
p p
(Hint 8).

Squaring both sides gives

Now we can multiply both sides kyy, to giveu = V3p .
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Box 4.1 Interlude: why bother with algebra?

You may have recognized the equation rearrang&ddrked example 4,4t was

the one discussed at the beginning of the chapter. Thinking back to the beg nning
of the chapter reminds us of the purpose of what we are doing. The abil ty to
rearrange equations is useful (arguably the most useful skill developed in this
course), but it's not something that you should do just for the sake of doing so,
but rather because you want to work something out, and rearranging an equation
is the means to this end. Suppose you have been told that S waves pass through
rocks of density = 3.9 x 10° kg m™3 with a speedss = 3.0x 10° ms1, and

you want to find the rigidity modulug. The equation in the formas = His
P

not much use, but the rearranged form immediately tells us that
[=Vip
=(30x10°m 8_1)2 x (39x 10° kgm™)

=35%x10"°m?s?kgm™3
=35x100kgmts?

So the rigidity modulus is.3 x 1010 kgm1s2.
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Question 4.2
(a) Rearrangd = c — d + e so thateis the subject. Answer
(b) Rearrange = pghto give an equation fan. Answer
2GM .
(c) Rearrange?,.= R to makeR the subject. Answer
(d) Rearrangd = hf — ¢ so thaty is the subject. Answer
b2 :
(e) Rearranga = ' to give an equation foc. Answer
b :
() Rearranga = \/; to makeb the subject. Answer
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Question 4.3

The massm, speedy, and kinetic energykg, of an object are linked by th2
equationEy = 3mv.

(a) Rearrange this equation so thvas the subject. Answer

(b) Use your answer to part (a) to estimate (inTh® one signif-  Answer
icant figure) the speed needed in order for a tectonic plate of
mass 4x 10?1 kg to have a kinetic energy of210° J.

(c) Use your answer to part (a) to estimate (inTh® one signif-  Answer
icant figure) the speed needed in order for an athlete of mass
70 kg to have the same kinetic energy as the tectonic plate in
part (b).

The final group of worked examples in this section involve equations which may
appear rather more complex than the previous ones, but they can all be rearranged
using the rules and guidelines already introduced. SomeWikéed example 4,8
appear more complex partly because they use symbols that are rather unwieldy.
However, these final worked examples are genuinely more complicated too, and are
best solved by taking a logical stepwise approach (as the early Arab mathematicians
did; seeBox 4.2). Rearranging complicated equations is rather like peeling away
layers of an onion, systematically removing layer by layer in order to get to the part
you want. But that doesn’t mean it should end in tears!
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Box 4.2 Al-Khwarizmi and al-jabr

The techniques of algebra have developed over a period of several thousand
years, but the word ‘algebra’ comes from ‘al-jabr’ in the title of a book writ:en

by Mohammed ibn-Musa al-Khwarizmi in about 830. The book, whose title
Hisab al-jabr w'al mugabelacan be translated as ‘Transposition and reduction’,
explained how it was possible to reduce any problem to one of six standard
forms using the two processes, al-jabr (transferring terms to eliminate negative
guantities) and mugabela (balancing the remaining positive quantities).

Arab mathematicians like al-Khwarizmi did not use symbols in their work, but
rather explained everything in words. Nevertheless, their stepwise approach
was very similar to the one advocated in this course. Al-Khwarizmi is also
remembered for his work on the solution of quadratic equations, discussed later
in this chapter.

A little less working is shown in Worked examples 4.8, 4.9 and 4.10 than previ-
ously, and hints are not explicitly referred to. This has been done so as to make the
working more akin to what you might reasonably write when working through the
guestions in this course. You are encouraged to show as many steps as necessary in
your working, and to use words of explanation wherever they help you.
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Worked example 4.8
Rearrang\G§, = AHS, — TASS, so thatAS,, is the subject.

(Note: AGS,, AHS, andASE, each represent a single physical entity.)

Answer
Adding TASS, to both sides of the equation gives

AGS, + TASS, = AHS
SubtractingAG§;, from both sides gives
TASS, = AHS, - AGS
Dividing both sides by’ gives

AHE, - AGS,

ASS =
m T

Back < > 177



Contents O

Worked example 4.9
Rearranges, = uyt + %axt2 to makeay the subject.

Answer
The equation can be written agt + %axt2 = S,.

Subtractinguyt from both sides gives
Ta,t? = 5 — Uyt

Multiplying both sides by 2 gives
axt? = 2(Sy — Uxt)

Dividing both sides by? gives

_ 2(Sx — Uxt)

Ay 2
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Worked example 4.10

mimy . .
Rearrangd-g = Gr—2 to give an equation far.
Answer

m : G ,
Note thatFg = G :;ng can be written afg = AL (seeSection 3.5.3

r2

We can get the? into position on the left-hand side by multiplying both sides
by r2. This gives

Fgr? = Gmumy
Dividing both sides by-4 gives

2 _ Gmmp
Fg

r

Taking the square root of both sides gives

Gmump
Fg

r==«
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Box 4.3 Using algebra in astronomy

The luminosity of a star (the total rate at which it radiates energy into space, in
all directions),L, is related to its radiusR, and the temperature (measured in
kelvin), T, of its outer layer (called the photosphere) by the equation

L = 4nRPoT? (4.1)

whereo (the lower case Greek letter sigma) represents a constant known as
Stefan’s constant, with the valwe= 5.67x 108 Wm—=2 K4,

It is impossible to take direct readings for the luminosity, radius or temgera-
ture of distant stars, but indirect measurements can lead to values for photo-
spheric temperature and luminositfigure 4.2is a so-called Hertzsprung-
Russell diagram, comparing the photospheric temperatures and luminosity of
different stars. Note thatftierent types of stars appear in distinct groupings on
the Hertzsprung—Russell diagram.

If we know a star’'s luminosity and photospheric temperature we can find its
radius from Equation 4.1, but first of all we need to rearrange the equation to
makeR the subject.

Equation 4.1 can be reversed to give

AR T4 = L
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Dividing both sides by #oT# gives

L
 40T4

(Note that the same results would have been achieved by dividinghy4and
T# separately.)

Taking the square root of both sides gives

R:id =
4oT4

SinceRis the radius of a star, we are only interested in the positive value.

The star Alcyone (in the Pleiades) has a photospheric temperatugofl0* K
and a luminosity of 2 x 10°° W. So its radius is

o 3.2x 1029 W
4x5.67x 108 Wm-2K-4x (1L2x 10* K)*
~ \/ 3.2x 1020 W

4% 5.67x 108 Wm-2K% (1.2 x 104" k¥
= V217 x 1019 m2
=47%x10°m
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The radius of Alcyone is Z x 10° m.

Notice that in this example, the units of watts cancelled without having t> be
expressed in Sl base units.

Question 4.4
(a) Rearranger, = Uy + axt so thatay is the subject. Answer
(b) Rearrange/s = \/E to makep the subject. Answer
P
L _ .
(c) Rearrangd- = o to give an equation fod. Answer
U
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4.2 Simplifying equations
Sometimes it is possible (and helpful) to write an algebraic expression tfeaedht
form from the one in which itis originally presented. Whenever possible you should
aim to write equations in their simplest form, i.e. dgnplify them. For example,
. L . , a 3a o a

you will see in this section that the equatios 4— + 4— can be simplified ta = B;
the latter form of the equation is rather more useful than the former.
In order to simplify equations it is often necessary to apply the rules for the manip-
ulation of fractions and brackets that were introduced in Chapter 1.
4.2.1 Simplifying algebraic fractions
Algebraic fractions can be multiplied and divided in exactly the same way as nu-
merical fractions, using the methods introduce&ettion 1.2.4andSection 1.2.5
Sojust as

2 X 4_2x4_ 8 (multiplying numerators and denominators together)

3°573x5 15 Pying g
we can write

a c_axc_ac

b d bxd bd
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Similarly, just as

2 5 2
—+-==X

377 (turning theg upside down and multiplying)

375

2x7
3x5

14

~ 15

we can write

a E—§X9 (turnin the>
b 'd b c 9]
_axd

" bxc
_ad

" bc

upside down and multiplying)
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Worked example 4.11 illustrates a division in which several of the terms cancel.

Worked example 4.11
2ab 2
Simplify — + -
implify - T3

Answer

Turning the(—Z: upside down and multiplying gives

2ab 2 2ab c

s —=— X
c ¢ ¢ 2

We can cancel the ‘2’s and the's to give

Z;ab+2:@><g:ab
c ¢ ¢ 2
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The method described iBection 1.2.Zor adding and subtracting numerical frac-
tions can also be extended to algebraic fractions. We need to find a common de-
nominator in a similar way, so, much as we can write

2 4 2><5 4x3 10 12 _10+12 22
3 5" 3><5 5x3 15 15~ 15 15

where the common denominator is the product of the denominators of the original
fractions, we can also write

c ad cb ad+cb

d " bd db” bd

2,
b

Worked example 4.12

Electrical resistors can be combined together in various ways. You don’t need
to know or understand the scientific details, but when three resistors of -esis-
tanceRy, R, andR3; are combined in a particular way (‘in parallel’) thextive
resistance is given by the terfRag in the equation

1 _1.1 1
Rt Ri R Rs
Rearrange Equation 4.2 to maRg; the subject.

(4.2)

Answer
We need to start by expressing the right-hand side of Equation 4.2 as a single
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fraction. The product oR;, R, andRs will be a common denominator, so we
can write

1 1 1 1

R Ri R Rs
_ RoR3 N R1R3 N Ri1R>
RiIR.R: RiRR3  RiRR3
_ RoR3 + R{R3 + RiR»
- RiR2R3

. . 1
In order to makdRes the subject of the equation, rather thﬁ\;, we could mul-

tiply and divide both sides of the equations by a series of expressions. Hov/ever,
it is more straightforward simply to turn the equation upside down, i.e. to take
the reciprocal of both sides. This gives

) RiR:Rs
~ RR3 + RiRs + RiRy

Reit

A note of caution when simplifying algebraic expressions

When you simplify an algebraic expression, especially one involving fractions, the
answer you arrive at doesn’t always look very simple! If you are asked to simplify
an expression which is the sum or product of two separate fractions, your answer
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should normally be ginglefraction, but an expression like
B Ri1R2Rs
Rl = RoRs + RiRs + RiRs
(the answer to Worked example 4.12) may be the simplest you can give. It can be
very tempting to ‘cancel’ terms incorrectly in an attempt to get to the sort of simple
fraction which is generally achievable when simplifying numerical fractions, but
less likely to be achievable when dealing with symbols.
Question
Express 2cya X (b+2) as a single fraction of the simplest possible form.
@+2)  2cvb
Answer
We can cancel the & to give
2C+/a o (b+2) +a(+2)
(@+2) 2¢6vb  (a+2)Vb
_Va(b+2)
Vb (a+2)
It can be tempting to ‘cancel’ the square roots and #&s too, but this would
be incorrect:
ﬁqtg and (b+2)¢l—)
Vb Db @+2) a
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As discussed irsection 1.2.3a fraction is unchanged by the multiplication or
the division of both its numerator and denominator by the same amount. How-
ever,all other operations will alter its value

ab+2). L : - .2cva _ (b+2)
o] \/; @r2) is as far as it is possible to Slmp|l.(,a+ ) X 265"
Va «f 2 (0

a.
Note however that\/; is equivalent to— S0——

a (b+2)
as\/g(aJrz)'

can also be writter
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Question 4.5

Simplify the following expressions, giving each answer as a single fraction.

(a) /21—7(1 X % Answer
(b) 3—‘3 / 2 Answer
(c) %’ + %C Answer
(d) Z—ib + Z_ta)c Answer
(e) %— f-1+1 Answer
() 25 25 Answer

b+0  (a+09
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image

lens of object
B} on film
u "

<

f

Figure 4.3: The object and image of a simple camera.

Question 4.6 Answer

The distancey, of an object from a lens (such as the lens in the simple carnera
illustrated in Figure 4.3) is related to the distangedrom the lens to the imag:2
of the object (on the film) and the lens’s focal lengthpy the equation

1 1 1
N —
u v f

Add the fractions 1u and J/v and hence rearrange the equation to give an ex-
pression forf.
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4.2.2 Using brackets in algebra

You should be familiar by now with the notion that an operation applied to an
expression in a bracket must be applie@verythingwithin the bracket, so

(20)* = 2°b° = 4b®

(@+2b)-(a+b)=a+2b-a-b=Db
(a+2b)-(a-b)=a+2b-a-(-b)=a+2b-a+b=3b
2@+2b)=(2xa)+(2x2b) =2a+4b

and
2a(a + 2b) = (2ax a) + (2a x 2b) = 2a® + 4ab

If we need to multiply two bracketed expressions, suclkaab)and ¢+d) together,
we need to multiplyeachterm in the first bracket bgachterm in the second bracket
as indicated by the red lines shown below.

)

(a+b)c+d)

(

Multiplying the terms in order gives

® © ® @
a+b)c+d)=ac+ ad+ bc + bd

2
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Worked example 4.13

Rewrite the following expressions so that the brackets are removed:

(@ x-3)(x+5)

(b) (x+y)(x-y)

(©) (x+y)?

(d) (x-y)

Answ%\

(@) (x —S)QLS) =x2+5x-3x-15

=x2+2x-15

(b) (x@) :xz—xy+yx—y2

=x2-y2 since xy =yx, so—xy+yx=0

(©) <x+y>2=<x@>
=)52+xy+yx+y2
= x2+2xy +y?

@ (=92 = (=D
=x-xy—yx+y’

= x* = 2xy + y?
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An examination of the answers to parts (b), (c) and (d) of Worked example 4.13
serves as a reminder of the fact that

(X+Y)? # X% +y?
(x=y)? # X = y?

In other words, remember to watch out for brackets!

Question 4.7
Rewrite the following expressions so that the brackets are removed:

1
(@) > (Vx + Uy) t Answer
(b) (@-b) ; @-9 Answer
(c) (k-2)k-3) Answer
(d) (t-2) Answer
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So far, this section has discussed removing brackets from expressions, but it can
very often be useful to do the reverse.

The numbers 6 and 4 are describedaadorsof 24 and in general, when speaking
mathematically, ‘factors’ are terms which when multiplied together give the original
expression. Since, for example,

y(y+3) =y +3y
we can say thag and f/ + 3) are factors of? + 3y
Similarly, since

(x +3)(xd)= x2—x+3x-3

=x2 +2x -3

we can say that(+ 3) and & — 1) are factors ok? + 2x — 3.

The verb ‘tofactorizé means to find the factors of an expression. If you are asked
to factorizey? + 3y then you should write

Y+ 3y =Yy +3)
and if you are asked to factoriz + 2x — 3 you should write

X2 +2x—3=(x+3)(x-1)
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Note, fromWorked example 4.13lthat the factors o%? —y2 are +Yy) and K—),
le.

X =y = (X +Y)(x~Y) (4.3)

The diference of two squared numbers can always be written as the prod uct of
their sum and their dierence.

Question 4.8

Factorize the following expressions:

(@) y? -y Answer
(b) x> —25 (Hint: you may find it helpful to compare this ex- Answer

pression with Equation 4.3, remembering that525.)

Factorizing can be useful when rearranging equations, as Worked example 4.14
illustrates.
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Worked example 4.14
Rearrange = mc AT + mL so thatmis the subject.

Answer

Both terms on the right-hand side of this equation inclogiso we can rewrite
the equation as

g=m(CAT +1L)
This can be reversed to give
M(CAT +L)=q

Now we divide both sides byc(AT + L) to give

q
m= ————
CAT +L
Question 4.9 Answer

Rearrangé=o; = %mv2 + mgAh to give an equation fam.
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An ability to factorize expressions suchygs+ 3y andx? + 2x — 3 can also help us
to find the solutions of equations suchyds- 3y = 0 andx? + 2x— 3 = 0. Equations
of this form are known agjuadratic equations

We know from above that

y' +3y=y(y+3) (4.4)

Soify?+3y = 0, it follows thaty (y+3) = 0 too. Multiplying by zero gives zero (as
discussed irsection 1.1.% Soy (y + 3) = 0 implies that eithey = 0 ory + 3 = 0.

y + 3 = 0 implies thaty = —3, so the solutions of? + 3y = 0 arey = 0 andy = —3.

We can check that = 0 andy = —3 really are solutions of the equatigh+ 3y = 0,
by substituting each value fgrinto the left-hand side of the equation and verifying
that it gives 0, as expected.

Fory=0,y?+ 3y =0+0=0, as expected.
Fory=-3,y?+3y=(-3)% + (3 X (—3)) =9+ (-9) = 0, as expected.

It is sensible to check your answers in this way:

You should check your answers whenever possible.
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Worked example 4.15
Use the fact that

X2 +2x—-3=(x+3)(x—1) (4.5)

to find the solutions of the equatiof + 2x — 3 = 0.

Answer
If X2+ 2x — 3 = 0 then, from Equation 4.5x(+ 3)(x—1) = 0

Thusx+3=0o0rx-1=0,i.e.x=-3orx=1.

Checking forx = —3:
X2 +2x—3=(-3)?+2(-3)-3=9-6-3 =0, as expected.
Checking forx = 1:

X2 +2x-3=1°+(2x1)-3=1+2-3=0, as expected.

So the solutions of the equatiod + 2x — 3 = 0 arex = -3 andx = 1.
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Using factorization to solve quadratic equations relies on us being able to spot the

factors of an expression; this is quite easy for expressions/ike3y (seeEqua-

tion 4.4, but if we had not known or been told thet + 2x — 3 = (x + 3)(x - 1)
(Equation 4.5, finding the factors 0k? + 2x—3 would have been largely a matter of
trial and error. An ability to find factors in this way can be developed with practice,
but it remains somewhat tedious and this method for solving quadratic equations
doesn’t work at all unless the solutions are whole numbers or simple fractions. For-
tunately help is at hand in the form of thguadratic equation formuladescribed

in Box 4.4.

Box 4.4 The quadratic equation formula

Al-Khwarizmi and other early Arab mathematicians developed general methods
for solving quadratic equations. A quadratic equation of the form

axZ +bx+c=0

will have solutions given by the quadratic equation formula
~b+ Vb2 - 4ac
2a

If b? > 4ac (i.e. b? is greater than ac) thenb? — 4ac will be positive, and the
formula will lead to two distinct solutions.

X =

If b%2=4ac then b2—4ac=0, so the two solutions will be identical
(x = —b/(24)).
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If b < 4ac(i.e. b? is less than 4c) thenb? — 4ac will be negative. This means
that the solutions will include the square root of a negative number. and hence
will involve ‘ imaginary numberfs Such numbers were mentioned@napter 1

but will not be considered further iaths for Science

Worked example 4.16 demonstrates the use of the quadratic equation formula in
solving the equation that was solved by factorization in Worked example 4.15.

Worked example 4.16

Use the quadratic equation formula to find the solutions of the equation
X2 +2x-3=0.

Answer

Comparison of

X2 +2x-3=0
and
axX +bx+c=0
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shows that = 1, b = 2 andc = —3 on this occasion, so the solutions are

—b+ Vb2 - 4ac
2a

-2+ \/22 - (4>< 1x (—3))

2x1
2+ A= (-12)

2
-2+ V16
2
_—2+4
2
Sox = _2+4:1
524
:—:—3
or X >

The solutions can be checked in exactly the same way as in Worked example
4.15.

X =

Once again, we have found that the solutions of the equafier2x— 3 = 0 are
x=-3andx = 1.
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Question 4.10

(a) Use your answer tQuestion 4.7 (cjo solvek? — 5k + 6 = 0 Answer

by factorization.

(b) Use your answer tQuestion 4.7 (djo solvet? — 4t + 4 = 0 by Answer
factorization.

(c) Use the quadratic equation formula to check your answer toAnswer
part (a).

(d) Use the quadratic equation formula to check your answer toAnswer
part (b).

4.3 Combining equations

Consider the equatioB = hf. This equation, first proposed by Einstein, links the
energy,E, of light to its frequencyf (his a constant known as Planck’s constant).
Suppose that you knolwvand are trying to findk, but that you don’t knowf . Instead

you know the values of (speed of light) and (wavelength) in a second equation,

c = fA. It would be possible to calculate a value fofrom the second equation
and then substitute this value in the first equation so as toHinéHowever, this
approach runs the risk of numerical slips and rounding errors. It is more useful to
do the substitutiomlgebraically, in the way shown in the following example.
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Worked example 4.17
Combine the following two equations to find an equationEarot involving f:

E = hf (4.6)
c=1"fA 4.7
Answer

Rearranging Equation 4.7 gives

7=
A

Substituting this expression forinto Equation 4.6 gives

E:th:h—C
A A

This mathematical technique, sometimes referred &iasnation(because a vari-
able, f on this occasion, is being eliminated), can be used in many situations, as
illustrated in the worked examples throughout this section.
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Worked example 4.18
. Mm . . . ,
CombineFg = 67 andFg = mgto give an equation far not involving Fg.

Answer

Since both equations are already given wi (the variable we are trying to
eliminate) as the subject, we can simply set the two equationsf@qual to

each other:
Mm
mg = Gr_2

We now need to rearrange to give an equatior fdtirst note that there is an
on both sides of the equation, so we can divide both sides of the equatian by
to give

9=G

Multiplying both sides by ? gives
gr’ =GM

Dividing both sides by gives

2 GM
g
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Taking the square root of both sides gives
/G M
r==+,/—
g

Question 4.11

(a) CombineEy = %mv2 andp = mvto give an equation foEy Answer
not involvingv.
(b) CombineE = %mv2 andE = mg Ah to give an equation fov Answer
not involving E.
(c) CombineEx = hf —¢ andc = fA to give an equation fap not Answer
involving f.
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Two (or more) diferent equations containing the same two (or more) unknown
guantities are calledsimultaneous equationg the equations must be satisfied
(hold true) simultaneously. It is usually possible to solve two simultaneous equa-
tions by using one equation to eliminate one of the unknown quantities from the
second equation, in an extension of the method discussed above. This is illustrated
in Worked example 4.19.
Worked example 4.19
Find values ofx andy which satisfy both of the equations given below:
X+y=7 (4.8)
2X—y =2 (4.9)
Answer
If we rewrite Equation 4.8 to give an equation fpim terms ofx, then we can
insert this result into Equation 4.9 to give an equationdatone.
Subtractingx from both sides of Equation 4.8 gives
y=7-X (4.10)
Substituting fory in Equation 4.9 then gives
2X—(7T-x) =2
e. X-7+x=2
or 3x-7=2
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Adding 7 to both sides gives

3x=9,i.e.x=3
Substitution ofx = 3 into Equation 4.10 shows that
y=7-x=7-3=4

So the solution (i.e. the values farandy for which both of the equations hold
true) isx = 3 andy = 4. We can check this by substituting the valuesX¥@and
y into the left-hand side of Equations 4.8 and 4.9.

Equation 4.8 gives +y = 3+ 4 = 7, as expected.
Equation 4.9 gives2-y = (2x3)—4=6-4 = 2, as expected.

We could have arrived at the same result by using Equations 4.8 and 4.2 in a
different order, but there is only one correct answer.
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Worked example 4.19 shows that in order to find two unknown quantities, two
different equations relating them are required. This is always true and by extension:

When you combine equations so as to find unknown quantities, it is always
necessary to have at least as many equations as there are unknown quantities.

Worked example 4.20 shows how four equations can be combined together in a case
where there are four unknown quantities (we are trying to find the total surface area,

S, but the masan, and volumey, of a single particle and the number of particles,

n, are unknown too and so must be eliminated). This worked example concerns the

use of metal particles as catalysts in the chemical industry (see Box 4.5).

Box 4.5 Chemical catalysts

A catalyst is a substance which makes a chemical reaction proceed more rapidly.
The catalyst itself does not undergo permanent chemical change, and it can be
recovered when the chemical reaction is completed. Metal particles can be used
as catalysts. A large number of small particles will have a greater surface: area
than a small number of larger particles, and the total surface &yed the par-

ticles is of critical importance to the speed of the reaction. In a typical industrial
chemical reactoiS can be approximately 5000 Knroughly a third the area of
Yorkshire!
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Worked example 4.20

The total surface are&, of n metal particles of average radiusgs given by the
equation

S = 4ntnr? (4.11)

The number of particles n is linked to the mass of one partinlend the total
mass of metalM by the equation

M
= — 4.12
n=— (4.12)
The massn of one particle is linked to its volumé and the density of the metal
p by the equation

m

The volumeV of a particle is given by
V:gﬂﬁ (4.14)

wherer is the radius.
Find an equation fo$ in terms ofM, p andr only.

Answer

Reversing Equation 4.13 gives

m_
V_p
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Multiplying both sides by gives
m=Vp
Substituting forV from Equation 4.14ives
4

3
m= —mr
3" P
Substituting this expression faninto Equation 4.13jives
M
n=—
m
M
3nrdp
3™
~ 4nrdp

Substituting this expression farinto Equation 4.11gives
S = 4nnr?

3M
:MX Aﬂfl’zp % VZ

_3Mm
-
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4.4 Putting algebra to work

So far, Chapter 4 has been concerned almost exclusively with symbols. Equations
have been given to you and you have been told to manipulate them in a particular
way. In the real scientific world, you are likely to need to:

1 Choose the correct equation(s) to use or derive equation(s) for yourself.

2 Combine, rearrange and simplify the equation(s) using the skills introduced in
the earlier sections of this chapter.

3 Substitute numerical values, taking care over things like significant figures, sci-
entific notation and units, as you did in Chapter 3.

4 Check that the answer is reasonable.

The final section of this chapter considers these points, combining skills from Chap-
ters 3 and 4, but it starts with a more light-hearted look at the uses of algebra.
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4.4.1 Algebrais fun!

Try this:
e Think of a number.
e Double it.
e Add four.
e Halve your answer.
e Subtract 1.

If you have arrived at an answer of 4, | can tell you that the number you first thought
of was 3; if your answer is 6, the number you first thought of was 5, if your answer is
11, the number you first thought of was 10, and so on. Magic? No, a demonstration
of the power of algebra! We could perform exactly the same operatiorsnfpr
number; let's represent the number by the syntbolhen we have

e Think of a number. N

e Double it. N

e Add four. N+4

e Halve your answer. 32N +4)=N+2
e Subtract 1. N+2)-1=N+1
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So the final answer will always be one more than the number you first thought of.
Here’s another one for you to try:

e Think of a number.

e Add5.

Double the result.

Subtract 2.
Divide by 2.

e Take away the number you first thought of.

Whatever number you first thought of, the answer will always be four.

Question 4.12 Answer

Use a symbol of your choice to represent the number in the ‘think of a number’
example immediately before this question and thus show that the answer viill be
four, whatever number you choose at the beginning.

You may wonder why a course entitlddaths for Sciencdias suddenly started
discussing number tricks. There is a serious point to this, namely to illustrate how
you can get from an initial problem to a solution by using algebra. Worked example
4.21 illustrates another use of algebra.
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Worked example 4.21

Chris and Jo share a birthday (but aratient ages). On their birthday this year
Chris will be five times older than Jo. Their combined age on their birthday last
year was 58. How old was Chris when Jo was born?

Answer

Let C represent Chris’s age in years on her birthday this yearJarepresent
Jo’s age in years on her birthday this year.

Since Chris will be five times older than Jo we can say
C=5J (4.15)
Last year Chris’'s age wa€(- 1) and Jo’s age wasl (- 1), So we can say

(C-1)+(J-1)=58
iie.C+J-2=58
C+J=60 (4.16)

Substituting forC from Equation 4.15 in Equation 4.16 gives

5J+J=60
i.e. 6] =60
J=10
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Thus, from Equation 4.1%; = 5x 10 = 50.

Thus Chris will be 50 this year and Jo will be 10. But this wasn’t the question
that was asked! When Jo was born, Chris was- 30, i.e. 40 years old.

You may remember questions like Worked example 4.21 from your school days.
Problems like this can seem intimidating, but they are relatively easy to solve once
you have found the equations that describe the problem. Many people struggle with
this first step — they can't find the equations to use. Look at Worked example 4.21
carefully; all that has been done in order to derive Equation 4.15 and Equation 4.16
has been to study carefully the information given in the question, and to write it
down in terms of symbols. So ‘On their birthday this year Chris will be five times
older than Jo’ has becon@= 5J. In solving problems, it is almost always helpful

to start by writing down what you already know. Drawing a diagram to illustrate
the situation can help too; you may find this helpful in Question 4.13.

Question 4.13 Answer

Tracey is 15 cm taller than Helen, and when Helen stands on Tracey’s shoulder
she can just see over a fence 3 m tall. Assume that it is 25 cm from Tracey’s
shoulder to the top of her head and 10 cm from Helen’s eyes to the top of her
head. How tall is Helen?

Back <« >

216



Contents

4.4.2 Using algebra to solve scientific problems

In much the same way as people struggle when trying to derive equations for use
in problems like Worked example 4.21, they often hav@dilty deciding which
formulae to use from those given in a book or on a formula sheet. Again, it can
be helpful to draw a diagram and itadwayshelpful to start by writing down what

you know and what you're trying to find. This often helps you to decide how to
proceed.

Worked example 4.22 discusses the choice of appropriate formulae for use in an-
swering a particular question. It also works through the other steps you are likely
to follow when using algebra to solve scientific problems.

Worked example 4.22

A silver sphere (density 189 g cnt3) has a radius of. 8 mm. What is its mass?

Use formulae given iBox 3.4

Which equations shall we use?

We know density4) and radiusK) and are trying to find massnj, so we neec
: : . . m . .

an equation to link these three variabldsquation 3.9p = v’ links density

and mass, but it also includeslumewhich isn't either given or required by
the question. Fortunately help is at hand in the fornkqéiation 3.5V = %’71 r3
which gives the volum¥ of a sphere of radius We should be able to substitu:e
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for V from Equation 3.5nto Equation 3.9 This will give an equation involving
only p, r andm, as required, and we can then rearrange it to nmakee subject.

Combining and rearranging equations
Substituting forV from Equation 3.5nto Equation 3.9jives

m

%7’([’3
Multiplying top and botom of the fraction by 3 gives

3m

P= 4rnre
Reversing this so thahis on the left-hand side gives

3m
213 =p
Multiplying both sides by #r3 gives
3m=4nr3p
Dividing both sides by 3 gives

m—47rr3
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Substituting numerical values

Note that we have used symbols for as long as possible in this question, so as to
avoid numerical slips and rounding errors. However, we are now almost ready
to substitute the values given forandp. First we need to convert the values
given into consistent (preferably Sl) units:

r=25mm=25x1023m

p = 1049 gcm3 = 1049 x 10° kg kg3 (1.049x 10* kg kg2 in scientific no-
tation), converting from g cr¥ to kg m 2 in the way described iBection 3.4.4
Then

m = gﬂl‘?’p
= gn (25x 1073 m)3 x 1.049x% 10* kg kg3
=6.9x 104 P kgm™®
=6.9x10%kg

Is the answer reasonable?

It is always worth spending a few minutes checking whether the answer you
have arrived at is reasonable. There are three simple ways of doing this (it is not
normally necessary to use all three methods to check one answer):
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1 We can check the units of the answer. We have given units next to al the
numerical values in the calculation, and the units on the right-hand side of the
equation have worked out to be kilograms, as we would expect for mass.

If we had made a mistake in transposing the formula for mass, and had written
itasm= %’nrzp by mistake, then the units on the right-hand side would have
been nd x kgm3 = kgm™L. These are not units expected for mass by itself,
so we would have been alerted to the fact that something was wrong.

Checking units in this way provides a good way of checking that you have

written down or derived an equation correctly; the units on the left-hand side

of an equation should always be equal to the units on the right-hand side. You
can use this method for checking an equation even if you are not substituting
numerical values into it.

2 We can estimate the value (in the way describefantion 3.3, and compare
it with the answer found on a calculator. In this case

4
m~ 2 x3(3x10° m) x 1x 10* kg3

3
%><3><33><1(T9,|9rf3><1><104kgm”3
~ 4% 27x 10 kg

~ 100x 107° kg

~1x 103 kg

~
~
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This is the same order of magnitude as the calculated value, so the calculated
value seems reasonable.

3 We can look at the answer and see if it is what common sense might lead us
to expect. Obviously this method only works when you are doing a calcula-
tion concerning physical objects with which you are familiar, but it gives a
sensible check for worked examples like the one we are considering. It seems
reasonable that a silver sphere with a diameter.®fcth might have a mass
of something less than a gram. If you'd arrived at an answerlok 1.0? kg
(by forgetting to cube the value given foryou might have thought that this
mass (equivalent to more than 100 bags of sugar!) was rather large for such a
small sphere.

Note that checking doesn’t usually tell you that your answer is absolutely
correct — none of the methods described above would have spotted small
arithmetic slips — but it does frequently alert you if the answer is wrong.
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Tips for using algebra to solve scientific problems

1 Start by writing down what you know and what you're trying to find, and ise
this information to find appropriate equations to use.

2 Combine, rearrange and simplify the equations, using symbols for as long as
possible so as to avoid numerical slips and rounding errors.

3 When you substitute numerical values, take care with units, scientific notation
and significant figures.

4 Check that your final answer is reasonable, by asking yourself the following
guestions:

(a) Are the units what you would expect?
(b) Is the answer similar to the one you have obtained by estimating?

(c) Is the answer about what you would expect from common sense?

Worked example 4.23 shows the use of these tips in solvindgfereint problem,
concerning the conservation of energy. This worked example uses formulae in-
troduced in Box 4.6; you may also find these formulae useful when answering
Question 4.14.
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Box 4.6 The conservation of energy

Energy can never be destroyed, but it is frequently converted from one fo'm to
another. As a child climbs the steps of a slide, he or she gains in gravitational
potential energy; as he or she slides down the slide this energy is converted into
kinetic (movement) energy. As a kettle boils, the electrical energy increases the
energy of the water molecules and so raises the temperature of the water. In both
cases some energy is ‘lost’ to other forms (such as heat to the surroundings and
sound) but very often you can assume that all of the energy initially in one ‘orm
is converted to just one other form, and so equate formulae (such as those given
below) for diterent forms of energy. All forms of energy should be quoted using
the Sl unit of energy which is the joule (J), where £ 1 kg n?s2,

The kinetic energy (energy of motiorfl, of an object with a mass moving
at speed is given by

Ex = smV? (4.17)

The gravitational potential energig, of an object of massn at a heightAh
above a reference level is given by

Eg = mgAh (4.18)

whereg is the acceleration due to gravity.
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The energyg, needed to raise the temperature of a mas# a substance of
specific heat capacityby a temperaturdT is given by

g = mcAT (4.19)

Worked example 4.23

A lump of putty is dropped from a height of8m. The putty’s gravitational
potential energy is all converted into kinetic energy as it falls. If, on impacit, all
of this kinetic energy is used to raise the temperature of the putty, by how much
does the temperature of the putty rise? Assume that the specific heat ce pacity
of the putty is 50 x 10 Jkg 1 K~1 and that the acceleration due to gravity is
9.81 ms?2.

Which equations shall we use?

It is tempting to involveEquation 4.17 as the question talks about the putt’s
kinetic energy, but closer inspection of the question reveals that we can assume
that all the gravitational potential energy becomes kinetic energy as the putty
falls, and that all the kinetic energy is transferred to heat energy in the putty on
impact. So we can say that all the gravitational potential energy is transferied to
heat energy; we simply need to §&uations 4.1&nd 4.19 equal to each other.

We have not been told the mass of the putty, but since therteappears in bott
Equation 4.18 and Equation 4.19 we will be able to cancel this term, which will
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leave us with an equation linkirgy Ah, candAT. We knowg, Ah andc and are
trying to find AT.

Combining and rearranging equations
Since we can assume that all the gravitational potential engggis transferred

to heat energyy, we can seEquation 4.18nd Equation 4.1%qual to eact
other.

MCcAT = mgAh
There is arm on both sides, so we can divide byto give

CAT =gAh

Dividing both sides by gives

a7 980
c

Substituting numerical values
g=981ms?
h=48m
c=50x10% Jkg iK1
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SO

AT:g_Ah
C

_ 981ms?x48m

~ 50x 1R JkglK-1
_981x48msZ x m
5.0 10 kgn? 57 kg K1

= 0.094 K to two significant figures.

Is the answer reasonable?

In areal question you probably wouldn't use all the checks described biuke
toned boxafter Worked example 4.22, but the answer seems about the size you
might expect (you wouldn’t expect a big temperature rise) and the units have
worked out to be kelvin, as expected for a change in temperature.

Alternatively we can estimate the answer to be

10 ms? m
AT ~ Oms<x5

~ - ~101K
5x 10?2 Jkg 1K1

This is the same order of magnitude as the calculated value, so the calculated
value seems reasonable.
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Question 4.14 Answer

A child climbs to the top of a 8 m slide and then slides to the ground. £s-
suming that all of her gravitational potential energy is converted into kir etic
energy, find her speed as she reaches the ground.grak&81 ms?2 and use
appropriate formulae frorBox 4.6

In Worked example 4.24, the final worked example in Chapter 4, we return to a dis-
cussion of seismic waves travelling through the Earth’s crust (as introdudakin

3.1). In this example there are three unknown quantities (the distané@m the
earthquake, the timey, taken for P waves to reach the seismometer and the time,

ts, taken for S waves to reach the seismometer) so we need to combine three equa-
tions to find any of the unknown quantities. You will not be expected to combine
more than two equations together in any questions associated with this course, but
Worked example 4.24 has been included because it summarizes much of what has
been discussed in Chapter 4, and also because it illustrates the usefulness of algebra
in science.

Box 4.7 Locating an earthquake

Figure 4.4shows a seismogram recorded at the British Geological Survey in Ed-
inburgh on 12 September 1988. It is possible to see the points at which P waves
and S waves first reached the seismometer. We can assume that these seismic
waves originated in an earthquake somewhere. But where was the earthquake
and when did it occur? (although the recording was made at 2.23 p.m., it does
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not tell us the time at which the earthquake occurred, since the waves will have
taken some time to reach the seismometer from the point of origin or foc us of
the earthquake).

Figure 4.4shows that the P waves reached the seismometer 20 seconds before
the S waves.

We assume that the P waves travelled with an average speeds.6 kms?

and that the S waves travelled with an average spged.4 km s (these val-

ues are typical for the rocks of the Earth’s crust, through which the waves will
have been travelling).

distance travelled

average speed .
gesp time taken

d
SO  Vp= = (4.20)
p

d
and vs=— (4.21)
ts
whered is the distance from the earthquakgis the time taken for P waves to
travel to the seismometer amglis the time taken for S waves to travel to the
seismometer.
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Worked example 4.24
Use the information given iBox 4.7to find the distance from Edinburgh to the
focus of the earthquake recorded on the seismogram shokigune 4.4
Which equations shall we use?
d . d .
We know thatv, = = (Equation 4.2Dandvs = = (Equation 4.2}, where
p S
Vp = 5.6 kmstandvs = 3.4 kms?, butd, t, andts are all unknown, so we
need another equation.
Although we don’t know the travel time of the two types of wave, we know ihat
the diference in the arrival time of the two waves is 20 seconds, so we can write
t=ts—tp (4.22)
wheret = 20 s.
Equations 4.20, 4.21 and 4.22 give us three equations containing the three un-
knownsd, t, andts and we need to combine and rearrange them to give an
expression fod.
Combining and rearranging equations
Multiplying both sides oEquation 4.2y t, gives
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Dividing both sides by, gives

o
p Vo

Similarly, from Equation 4.21
ts = E
Vs

Substituting forts andt, in Equation 4.23jives

t:ts—tp
_ g g

VsV

:%i_i)

Vs Vp

Combining the fractions by makingv, a common denominatoséction 4.2.1
gives

(Vp — Vs)
VsVp

t=d

Reversing the equation so thais on the left-hand side gives

(Vp—Vs) i
VeVp
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Multiplying both sides bysv, gives
d (Vp - Vs) = tVsz
Dividing both sides by\{, — vs) gives

tVsVp
Vp — Vs

d=

Substituting numerical values
Substitutingt = 20 s,vp = 5.6 km st andvs = 3.4 kms! gives

20 sx 3.4 kms1x56kms?
d=
(5.6 kms1-34kmst?)
_ 20sx34kms!x56kms?

22 kms1
= 1.7 x 107 km to two significant figures

B X kmsT x kst 3
T kmst

The units work out to be kilometres sin km

Is the answer reasonable?

The units have worked out to be kilometres as expected for a distance. If we had
converted the speeds to values infsve would have obtained a value fin
metres @ = 1.7 x 10° m).
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In this case it is easy to check that the answer is reasonable; many members of
the public reported a small earthquake on that day in Ambleside in Cun bria.
Ambleside is 176 km from Edinburgh!

In general, to use this method to uniquely identify the location of an earthquake
you need to repeat the exercise using data received at other seismometers else-

where on the Earth’s surface.
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4.5 Learning outcomes for Chapter 4

After completing your work on this chapter you should be able to:

4.1 demonstrate understanding of the terms emboldened in the text;

4.2 rearrange an algebraic equation to makeféedknt variable the subject;
4.3 simplify an algebraic expression;

4.4 add, subtract, multiply and divide algebraic fractions;

4.5 re-write an algebraic expression so that the brackets are removed;
4.6 factorize a simple algebraic expression;

4.7 eliminate one or more variables so as to combine equations together;

4.8 check the answer to a problem by checking units, estimating an answer, or
comparing the answer with what would be expected from common sense.
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Using Graphs

The well-known saying that a picture is worth a thousand words reflects the fact
that human beings can derive a lot of information from pictorial representations of

a situation. When scientists want to condense data into a visual form that conveys
information at a glance, they most often turn to a graphical representation. Graphs
are essential tools for scientific work: they can illustrate clearly the nature of the
relationship between flerent quantities, they make it easy to see variations and
trends and sometimes they can be used to derive other interesting quantities or even
equations.

This chapter is mainly about the use and interpretation of graphs, rather than tech-
niques for plotting them (which are more the province of courses in practical sci-
ence). However, an understanding of the kind of information that can be derived
from different types of graph will be of considerable help when you do come to plot
your own data in the future.
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5.1 Graphical representations

Although all graphs share certain characteristics, there are nevertheless a number
of different ways in which data may be presented graphically. Let us start by con-
sidering some specific examples and the features they illustrate.

5.1.1 Bar charts and histograms

‘Bar chartsare commonly used to summarize data that require immediate com-
parison between various discrete categories. Examples of discrete categories are
human eye colour, blood group, countries and planets. The categories are listed
along a reference line, usually a horizontal one (the so-called horizaxigal The
number or percentage of things or events falling into each category is represented
by a bar; the scale for these bars, most commonly expressed either as a number
or a percentage, is given on a second reference line, at right angles to the first. If
the categories are listed along the horizontal axis, the bars will therefore be scaled
along the vertical axisFigure 5.1in Box 5.1 is an example of how ecological data
might be presented in the form of a bar chart.
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Box 5.1 Insects and trees

Figure 5.1 shows the number of species of herbiv- =10
orous insects associated with eighffelient types 450 1
of native and introduced tree. Tree species that
have been present in the country for a long time
and are widely distributed often support the largest
variety of insects.

400 +

350 +

300

250 -

number of insect species supported

Question 200 ¢
Roughly how many species of insect are as- oor
sociated with hawthorn? 10or
Answer ol H ﬂ T
About 220. E e s
The willows and oaks, which are among the com- %i %gc\% é E G § s

monest tree species in the UK, can support over
400 insect species. Sycamore, which is just as
widely distributed but came to this country more
recently, supports only around 50 species, and
the evergreen holm oak, which was introduced a
mere 400 years ago, supports fewer than 10 insect
species. However, one should not generalize too
far from these examples. There are other native trees, such as holly and yew, which also supgort ver
few insect species, many of which are specialist feeders not found on other trees.

Figure 5.1: Bar chart showing the number of
herbivorous insect species supported by some
native and introduced tree species in the UK
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A histogramis similar to a bar chart in that numbers or

percentages are again commonly plotted vertically, but
on a histogram the horizontal axis is used to represent a 30 —
continuously variable quantity such as height or mass. - —
The purpose of a histogram is to show how the data are
distributed into groups across a continuous range. Fig-
ure 5.2 shows a histogram which presents the results of
measurements taken of the height of 100 irises. In prin-
ciple, a plant selected at random could be of any height.

20

number of plants
T

Of those measured, a few specimens are particularly tall e o 2 o0 m e oo
and a few are particularly short, but the majority are of 3838582
intermediate height. This is typical of the natural varia- soagg 2228
tion in populations, and Chapters 8 and 9 deal with the RE388ggcn

statistical techniques that are required to analyse such
variations. Comparing Figure 5.2 witfigure 5.1 you

will notice that on the bar chart the bars do not touch
(because they refer toftierent categories), whereas on
the histogram the columns do touch, because all possi-
ble heights are represented within the groups marked on
the horizontal axis. In Figure 5.2 the groups are of equal
intervals, and this is common practice (though there are
also ways of constructing histograms using unequal intervals). Note that the whole
range of possible heights is covered, whether or not any of the measured plants
actually fell into a particular group.

height intervals in cm

Figure 5.2: Histogram representing the heights
of 100 of the same variety of iris. The hori-
zontal axis is divided into intervals to represent
different height groups.
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5.1.2 Graphs

On a histogram, the horizontal axis is
divided into intervals. On graph in
contrast, the horizontal axis is scaled
to represent a continuum. In Figure
5.3, for example, time is plotted along
the horizontal axis, with the years be-
ing evenly spaced. This graph clearly
shows the large variation in caterpil-
lar numbers that can occur from year
to year, though no overall trend can
be discerned. It is not necessary to
join the data points on a graph of this
type; if this is done, as here, the lines
have no significance beyond simply
emphasizing the downturn or upturn
in the numbers between one year and
the next.

1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962
year

Figure 5.3: Annual fluctuations in the population of Winter
Moth (Operophtera brumafecaterpillars feeding on oak trees in
Wytham Wood near Oxford.
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Figure 5.4a illustrates that negative, as well as positive numbers can be plotted on
a graph; in this case the vertical axis covers temperatures-f20C to +25 °C.

The data points have been joined, but the lines are only indicators of rises or falls
in average temperature between one month and the next; they could not be used to
predict the temperature on any particular day.

The vertical axis of Figure 5.4a is labelled to show that the quantity plotted is the
average temperature measured@ Whatever the variable we want to display
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graphically, we always have to take account of its units in such a way as to plot
a pure number(i.e. a number without units) on the graph. The labelling on the
vertical axis of Figure 5.4a could have been written more succinctly as ‘average
temperatur€C’, and this form of labelling has been used on the vertical axis in
Figure 5.4b The temperature values are divided by their un@)( to give pure
numbers that can be plotted on the graph:

eq. 23 _

P 2.3

It is conventional always to use ‘quantity divided by its units’ (usually in the
form ‘quantityunits’) in labelling the axes of graphs.

Box 5.2 Atmospheric pollution

In industrialized countries, air pollution was historically associated mainly with
emissions of smoke and sulphur dioxide arising from the combustion of fossil
fuels (chiefly coal) for domestic heating and industrial purposes. The resulting
‘smogs’ that occurred in Northern European cities for several centuries were
the result of this kind of pollution. The problem became particularly acute in
London in the 1950s, leading to the UK Clean Air Act of 1956. Subsequen! Eu-
ropean directives have further reduced emission limits and national emissions of
sulphur dioxide have fallen dramatically — by about 80% since 1962. Fijure

Back <« >

240



Contents O

5.5 shows air quality data recorded in the Tameside district of Greater Manch-
ester between 1963 and 2000.

3.0r
251

2.0r

1.0f

concentration/102 pg m=3
()]
T

0.5F

L L L L L L ."T'°"?'
1965 1970 1975 1980 1985 1990 1995 2000
year

Figure 5.5: Average annual concentrations of sulphur dioxide in Tameside,
Greater Manchester, 1963—-2000.

Note how the vertical axis in Figure 5.5 is labelled. Concentrations have been ex-
pressed in micrograms per metre cubed ifi-3), so the quantity represented along
the vertical axis has beefividedby g m3, in the same way as the temperature in
Figure 5.4bwas divided by’C. But in Figure 5.5, the quantity has been divided not
only by its units but also by a power of ten. This can be a useful strategy in graph
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plotting because it allows manageable numbers to be used in labelling the divisions
on the axis. To obtain the actual value of a quantity corresponding to a particular
tick mark on the axis, we have to multiply the value given at the mark by the power
of ten and by the units. For example, the mark labelled 1.5 represents:

1.5x 10? pgm 3 = 150pugm=3

Another way of looking at this is to say that a measured concentration has first been
expressed in scientific notation:

150 ugm 3 = 1.5x 10° ugm=3
and then reduced to a pure number by dividing it by the power of ten and the units:

15x 1P pgm®
7 g
Figure 5.5gives a clear visual image of a downward trend in sulphur dioxide con-
centration, but occasional blips such as occurred in 1990 mean that it is still not pos-
sible to use earlier data to predict future concentrations with any certainty. There
are simply too many variables that cdifiegt the concentration of atmospheric sul-

phur dioxide. In other circumstances, for instance when the two quantities plotted
are linked by an equation, i possible to use a graph for predictive purposes.

15

As an example of linked quantities, consider the daf&aible 5.1relating the mass

of a series of aluminium spheres to their diameter. The data are plottéid-in

ure 5.6 Notice that the columns of the table have been labelled according to the
same convention used to label the axes of the graph.

Back <« >

242



Contents

Diametefl0?m Masg10~2 kg

0.4
0.5
0.7
1.0
1.3
15
1.8
2.0

0.1
0.2
0.5
1.4
3.1
4.8
8.2
11.4

Table 5.1: Masses of aluminium spheres
of different diameters

14.0

12.0 -

10.0 -

8.0

mass/1073 kg

0 0.5 1.0 1.5 2.0
diameter/10 =2 m

Figure 5.6: Graph of the masses of aluminium
spheres of dierent diameters.
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Question
What is the diameter in centimetres of the smallest sphere?

Answer

The diameter of the smallest sphere is obtained by multiplying 0.4 by the power
of ten and the units:

diameter= 0.4x 102 m= 0.4 cm

In fact, the mas3svl of a sphere of diametat, made of material of density, is

given by the equatioM = mpd®/6. The data have been calculated and the graph
constructed using this formula, so all the points lie on a smooth curve. When the
axes of a graph represent quantities that are connected by an equation, the data
points should never be joined in the jagged point-to-point way usédgare 5.3
andFigure 5.4 Instead, a smooth line should be drawn through them. As you will
see later in this chapter, a line described as ‘smooth’ may be straight, or may be
curved in any direction, or may have humps and dips. Smoothness depends on the
absence of abrupt changes in direction, not on shape.

Once the line has been drawn Bigure 5.6 we can use the graph to find interme-
diate values. This graph has been drawn on graph paper to make it easier to read
values from it. You should start by working out the scale used on each axis. On this
occasion tick marks have been drawn eveB0102 m on the horizontal axis, so

each feint grid line represent0® x 1072 m; on the vertical axis the tick marks are
every 20 x 1072 kg so each feint grid line represent@ & 1072 kg.
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Question
What would be the mass of an aluminium sphere of diameécrh?

Answer

To find the mass corresponding to a diameter.6fcin (i.e. 16 x 1072 m) we

need to find the point on the horizontal axis representing this diameter and draw
a line vertically upwards from there until it meets the curve. We then draw a
line horizontally from that intersection to meet the vertical axis and réithe
corresponding mass. PriRigure 5.6and draw these lines directly on to it using
the grid lines on the graph paper to help you. You should find that the mass
corresponding to a diameter olcm is 58 x 102 kg (i.e. 58 g).

This process of readingetweerpoints plotted on a graph, in order to find corre-
sponding intermediate values of the plotted quantities, is caitedpolation

Provided we are sure that the equation connecting the two quantities is valid even
outside the plotted range, we can also extend the line on the graph to determine
corresponding values of the quantities that are larger or smaller than those plotted.
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Question
What would be the mass of an aluminium sphere of diameleci2?

Answer

To find the mass corresponding to a diameter.af@n (i.e. 21 x 1072 m) we

need to find the point on the horizontal axis representing this diameter and draw
a line vertically upwards from there. Then (and this is th&dlilt bit!) we

have to extend the curve until it meets this vertical line. We then draw a line
horizontally from that intersection to meet the vertical axis and readhe
corresponding mass. PriRtgure 5.6and try drawing the lines. If your drawinj
skills are high, you should obtain a mass of118 1023 kg, but most people find

it extremely dificult to draw smooth curves freehand, so if you obtain a value
between 18 x 1073 kg and 134 x 1073 kg you have done well.

This process of extending a graph beyond the highest or lowest data points, in order
to find corresponding values of the plotted quantities outside the original range, is
calledextrapolation Extrapolation is always particularlyfdicult in regions where
graphs curve, or have very steep or very shallow slopes. The latter situation applies
to Figure 5.6 in the region where the diameter becomes very small. It would be
practically impossible to determine by extrapolation the mass corresponding to a
diameter of, say, 0.2 cm. All we can legitimately say is that if the diameter is zero,
the mass will also be zero, so the curve must go through the point at which the axes
meet. On any graph the point at which both plotted quantities are equal to zero is
called theorigin.
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The fact that the graph in Figure 5.6 is curved makes both interpolation and ex-
trapolation more uncertain than they would be if the graph was a straight line. In

Question 5.1 you can practice these processes using a graph that is easier to deal
with.

Question 5.1 Answer
Five measurements have been made to inves-
tigate the way in which the voltage across the 500
terminals of a power supply varies according
to the current flowing in the circuit. The data . 40
are plotted on Figure 5.7. (The Sl unit of 8 4ol
voltage is the volt, symbol V; the SI unit of =

. o >
electric current is the ampere, symbol A.) 2.0
(a) What s the value of the voltage when the 1.0

currentis 15 A?

(b) What is the value of the voltage when the L L B

current is zero? currentA
(c) Whatis the value of the currentwhenthe .

voltage is zero? Figure 5.7: Measurements of voltage against current
for the circuit in Question 5.1.
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5.2 Straight-line graphs

As you have seen, it is possible to obtain useful insights and information from
curved graphs such as the one in Figure 5.6, and we will return to the interpretation
of curved graphs in Section 5.4. However, if data can be presented in the form of
a straight-line graph, the analysis becomes more straightforward. As you will have
discovered for yourself by doing Question 5.1, if you need to determine the values
of quantities lying between those that were actually measured, it is slightly easier
to perform the interpolation on a straight line than on a curve. And if you need to
estimate values of quantities outside the original range of measurementrit is
siderablyeasier to extrapolate a straight line than a curve. Furthermore, it is often
possible to use a straight-line graph to obtain additional quantities, other than those
measured. For example, the range of speeds at which the Earth’s tectonic plates
move was given irBox 3.1, but it is not possible to make a direct measurement

of these speeds. Scientists have to deduce them by measuring other quantities and
plotting graphs of their results.
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5.2.1 The gradient of a straight-line graph

Box 5.3 gives a brief outline of the phenomenon of

sea-floor spreading, the action of which is to split the Age of rockMa _ Separation distanden

Earth’s surface and move sections of the crust apart. In 0.78 17
order to work out the rate at which the separation takes 0.99 18
place, Earth scientists date the rocks and measure the 1.07 21
separation of rocks of the same age. 1.79 32
Table 5.2 shows some typical data. (Remember from 1.95 39
Section 2.2 that Ma is the abbreviation for ‘million 2.60 48
years'.) 3.04 58
As discussed irBection 5.1.2labelling the left-hand 3.11 59
column as ‘Age of rociMa’, and the right-hand column 3.22 62
as ‘Separation distangen’, means that pure numbers 3.33 65
can be entered in each row of the table. 3.58 68

Table 5.2: Positions of some dated areas either
side of the mid-Atlantic ridge south-west of Ice-
land
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Figure 5.9 shows a graphical representation of
the data fromTable 5.2 Although it is obvious
just from the table that the separation distance 80
increases with age, the graph immediately gives
more information. First, it tells us about the rela-
tionship between the quantities plotted: the points col
lie pretty much on a straight line. The relationship
between the age and the distance is thus said to be
linear. Secondly, the graph provides a good test
of the reliability of the data. It is clear that there
are no ‘rogue points’ lying well §§ the straight
line. However, the points do not all liexactly

on a single line. The black line that has been 20
drawn through them is thebést-fit liné — i.e.

the line that is most representative of the data as
a whole. Best-fit lines usually only go through ‘ ‘ i i

some of the data points (and need not necessarily ~ ° ‘ agoMa ° ¢

go through any); there should be approximately

the same number of points above and below the

line. The line has also been drawn to go through Figure 5.9: Graph of data in Table 5.2. The black
the origin, the point at which age is 0 Ma and line represents the ‘best-fit’ to the data. The red lines
distance is 0 km. This has been done because show that ocean crust of aget3Via has separated by
it is clear that newly-formed crust will not have 65 km.

moved any distance.

701

50

40 o

separation distance /km

30

10
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The aim of collecting the data for age and separation distance was to calculate
the rate of sea-floor spreading and this calculation can be made directly from the
graph. For an object moving at a steady rate, the spéecklated to the distanak
travelled in a time& by the equation:

v=d/t

The red lines orFigure 5.9show that, according to the best-fit to the data, ocean
crust of age 31 Ma has separated by 65 km. So the average spreading rate is:

Vav = 65 kmy3.4 Ma = 19 km Ma'! (to 2 significant figures)

Now you could of course carry out similar calculations using any of the individual
data pairs in Table 5.2. For example from the first data pair:

vi = 17 kmy0.78 Ma= 22 km Ma!
and from the fourth pair:
V4 = 32 kmy1.79 Ma= 18 kmMa!

The first pair corresponds to a point that lies above the best-fit line and therefore
gives a value oY that is higher than that calculated from the graph, while the point
corresponding to the fourth data pair lies below the line and consequently gives
a value ofv that is lower than that calculated from the graph. If we wanted to
calculate the average spreading rate directly from the tabulated data, the best we
could do would be to calculate values from each of the eleven data pairs in the table
(i.e. v; tov11) and then average all these speeds. Plotting a graph therefore saves a
tedious amount of calculation: using the best-fit line alle(sto be calculated in

a single step. In other words, a graph provides a reliable way of averaging results.
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Question

What can you deduce from the fact that all the data points are close to the test-fit
straight line, with some points lying above and others below the line?

Answer

The rate of spreading has remained roughly constant over time. Again the graph
provides this information at a glance, whereas it would require a lot of calcula-
tion to deduce it from the raw data in Table 5.2.

Another way of describing this process of calculating the spreading
rate from the distance—time graph is to say that we have determined
the ‘slope’ orgradientof the best-fit line. Figure 5.10 shows the
analogy with the gradients used to characterize steep hills, which
you may have seen on road signs. The gradient is defined in this un’ = 300m

context as the ‘rise’ (the total change in vertical distance) divided

by the ‘run’ (the total change in horizontal distance). It is important

to remember that the actual distance travelled along the road is notigure 5.10: Vertical cross-section
involved in the calculation. Note that in this particular case the through a road. The gradient of
gradient has no units, because it is calculated by dividing a lengththis road is given by: ‘risg"run’ =
by another length. In general, however, gradients must, as with thel 00 ny300 m,

example of Figure 5.9, be given their correct units. In the case ofi-e. gradientis I3 or 33%.

a road, it is common to quote the gradient in the form of a percentage (33% in the

case of Figure 5.10). With a graph it is more usual to quote the gradient as a single

number.
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The gradient of a straight line is the same

all the way along it, so any two points on y
the graph can be used to define the rise
and the corresponding run. If, as is the e F

case in Figure 5.11a, a graph goes through
the origin, it may be convenient to use that
fact in calculating the gradient; here the
rise is (/> — 0) and the run isx> — 0), so
there are no subtractions to do. This was
effectively the technique used in calculat-
ing the sea-floor spreading rate from Fig-
ure 5.9, when just one point on the best-fit
line was chosen from which to calculate
the speed. X2

I
NS
|
o

«——run=x,-0 ——

Figure 5.11a: This straight line goes through the origin, so
y2-0 _y2

its gradient=
9 Xo—0 X2
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However, not all graphs go through the
origin, so the method illustrated by Fig-
ure 5.11ais not always applicable. Figure
5.11b shows the most general method of O _—
determining the gradient of a straight-line T
graph, which can be used whether or not rise
the line goes through the origin. =Yz~ Y1

=
For a straight-line graph in which the D
value y> on the vertical axis corre-
sponds to a value, on the horizon-
tal axis, and a valug; on the vertical
axis corresponds to a valug on the

horizontal axis:

rise _y2—-y1 Figure 5.11b: For any straight line, the gradien{2 Y%

radient= _
¢ run  Xo — X1 Xo — X1

Whatever points are chosen for determining the rise and run, it is always a good
idea to choose ones that are easy to read on at least one axis and preferably on both
axes! It is also good practice to choose points as widely separated as possible.
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Worked example 5.1

When light is shone onto certain metals, electrons are emit-

ted from the metal. This phenomenon is called the photo- 10

electric dfect, and will be described in more detail in Box

5.4. Figure 5.12a shows a graph arising from a photoelec- & 8[

tric experiment on a particular metal, relating the energy of S o

the ejected electrons to the frequency (i.e. the colour) of E»

the light falling upon the metal. The energy is measured in % 4+

joules (symbol J) and the frequency in units of $which

are better known as hertz). What is the gradient of this 2r

graph? ! !
0 1 2

Answer frequency/1015s™

It is clear that even if the line were to be extrapolated to

smaller values of energy and frequency it would not go Figure 5.12a

through the origin, so the method shownhkigure 5.11b
is the appropriate one to use in calculating the gradient.
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From the lines drawn on Figure 5.12b,

(92x101°J)- (26 x 10°19))
(2.0x 105 s71) — (1.0 x 1015 s71)
_(92-26)x101°)
~ (20-1.0)x 105 st
_ 66x10197
~ 1.0x10% st

— 6.6 x 10(~19-19 =
51

gradient=

. 1
= 6.6x103*Js (remembering thasic_—1 =s)

Note that on this occasion the line drawn passes through,
or very close to, all the data points. If the best-fit lohges

not go through all the data points, care must be taken to
calculate the gradient of the graph from the line rather than
from just two data points.

energy/10~19J

10

1
frequency/10'9s™"

Figure 5.12b

|
[
|
2
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Question 5.2 Answer

The speed of seismic waves (d@ex 3.1) may be calculated by measuring the
time for the waves to reach measuring instruments fa¢r@int distances from

the epicentre of the earthquake. Some typical data from such a series 0’ mea-
surements on P waves are plotted in Figure 5.13. Use the graph to calculate the
average speed of the P waves.

200 |-

100 -

distance from epicentre/km

0 10 20 30 40
travel time after earthquake occurred/s

Figure 5.13: Graph showing how long it takes for P waves from a shallow-focus
earthquake to reach three detectors fiedeént distances from the epicentre. (Note
that the focus is the point within the Earth at which the seismic event takes place,
and the epicentre is the point on the Earth’s surface vertically above the focus.)
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5.2.2 Dependent and independent variables

In Figure 5.13the time was deliberately plotted on the horizontal
axis and the distance travelled on the vertical axis, so that the gra:
dient would be equivalent to the seismic wave speed. However,
for this particular example, plotting the graph this way round is
not standard practice. The convention that scientists follow is to
plot on thehorizontalaxis the variable that is under their control.
Because they can choose the values of this quantity, it is called the
independent variabldn the case of the measurements described
in Question 5.2, there is a choice (within reason) of where the
seismic wave detectors are located; therefore distance from the
epicentre is the independent variable. The time taken for the P
waves to arrive depends on where the detectors have been pos
tioned, so this is called th@ependent variableAccording to the
convention, the dependent variable is plotted onvértical axis.
Figure 5.14 shows the same data as Figure 5.13, but replotted s
that the convention is followed. The three points correspond to
those on Figure 5.13 and a best-fit line has again been drawn.

The seismic wave speed can be calculated equally well from Fig-
ure 5.14 as from Figure 5.13.

travel time after earthquake occurred/s

0 100 200
distance from epicentre/km

Figure 5.14
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Question
What will be units of the gradient of the graphfigure 5.12

Answer

The gradient will have units of seconds divided by kilometres, which can be
written either as/&m or as s km?.

Question

In Question 5.2you calculated the speed of the seismic wave in units ggkm
(or kms1). How are the units s knt related to these units of speed?

Answer
: . . 1
The units s k! and km s are reciprocals: e 7= kmst,
skm

Therefore to calculate the speed of the P waves from the time against distance graph
of Figure 5.14we need to determine the gradient and then take its reciprocal.

Question 5.3 Answer

UseFigure 5.14to determine the average speed of the seismic waves. Reinem-
ber to use the correct units at each stage of your calculation. Does your final
answer agree with the value you obtaine®nestion 5.2
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5.2.3 Interpreting straight-line graphs and gradients

The graphs we have looked at so far in this section
have all sloped up from left to right. But graphs
can slope the other way too. Figure 5.15 shows
the result of measuring the depth of snow in a par-
ticular location over a period of time, plotted on a
graph of depth against time.

depth/cm

When describing a graph, the convention is to
state the dependent variable first; a graph of | ‘ ‘
‘depth against time’ therefore plots depth on 0 1 2 ﬁme/ﬁours
the vertical axis and time on the horizontal axis.

J/

For the line drawn in Figure 5.15, gradientis given, Figure 5.15: Depth of snow measured over a five-
as before, by: hour period.

gradient= ¢ _ Y27 V1
run X2 — X1
If x1 is 1 hour andx, is 4 hours, the correspondingvalues areys = 20 cm and
y2 =5 cm, i.e.xz is greater tharx; buty; is greater thary,. This means that:
(5-20)cm -15cm
(4-1) hours 3 hours

In other words, the gradient is negative.

gradient= = -5 cm hour?
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Question
What physical meaning do you attach to the gradient in this context?

Answer

The graph shows that depth is decreasing with time — in other words the snow
is melting. The negative value of the gradient conveys this same information.
The gradient is constant over the time during which the measurements hav:2 been
made, so the snow is melting at a steady rate.

Now look at Figure 5.16, which shows the variation of distance from
a given point with time, for four objects A to D moving in a variety

of situations. A scientific way to say this is that the graphs all show
distance ‘as &unctionof’ time, ord as a function of. /A

d

In general, it is the dependent variable (which by convention is plot-
ted along the vertical axis) that is described as being a functicn of D
the independent variable (which is plotted along the horizontal axis).

So in the situations shown in Figure 5.16, time is the independent vari-
able: the experimenter has chosen specific times at which to make th t
measurements and has recorded the position of the object at those times. _

Figure 5.16

As with Figure 5.13the gradient of each line gives the speed with which
that particular object is moving.
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Question
Which, if any, objects are moving with constant speed? Of thzase,
which is travelling the most quickly? /A
Answer B
The gradients of the distance—time graphs for objects A and C are D
constant, so their speed is constant. The gradient of the lin¢ for c
object A is greater (i.e. the distance—time graph is steeper) than that
for object C, so A is moving at a higher speed than C.

0 t
Question Figure 5.16

What is happening to object B? What is the gradient of the line for
object B on the graph?

Answer

For object B the distance travelled is not changing with time. The
most likely explanation of this is that the object is stationary. On

the graph for this object, the rise is always zero, so the gradiet of
the graph is also zero. This is simply another way of saying thet its
speed is zero.
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Question
What is happening to object D?

Answer

The gradient for object D gradually decreases (i.e. gets less steep). In other
words the object is slowing down.

Question 5.4 Answer

The lowest level of the Earth’s atmosphere is called the 20
troposphere. Figure 5.17 shows the variation in temper-
ature of the troposphere from sea-level to an altitude of
about 25 km. Estimate to two significant figures the
gradient of this graph. (Because you are only being
asked for an estimate, you do not need to attempt creat
precision in reading valuedidhe graph, but you should

be careful over signs and units.) Describe clearly, in one 0 ‘ ‘

1 2
sentence, what your result means. altitude/km

10 -

temperature/°C

Figure 5.17
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Question 5.5 Answer

At higher levels in the troposphere, the tempera-
ture drops still further. Figure 5.18 shows the veri-
ation in temperature for altitudes between 4 km
and 11 km above sea-level. Estimate to two <ig-
nificant figures the gradient of this graph. Daces
your answer agree with that fQuestion 5.2

temperature/°C

5 10

altitude/km

Figure 5.18
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5.3 The equation of a straight line

In the preceding sections, you saw how useful information can be derived from a
straight-line graph by interpolation, extrapolation or calculation of the gradient. But
this does not exhaust the potential of a graph as a tool: it becomes even more useful
when it can be matched to an equation.

5.3.1 Proportional quantities

Two quantities are said to @oportionalto each other, or more precisely to be
directly proportionafto each other, if multiplying (or dividing) one by a certain
amount automatically results in the value of the other being multiplied (or divided)
by the same amount. If | buy 500 litres of heating oil | pay twice as much as if | had
bought 250 litres, but one-half as much as if | had bought 1000 litres — assuming
that on such amounts there is no bulk discount. The cost is directly proportional to
the volume. We can write this succinctly in the form:

total costx volume

where the symbok stands for ‘proportional to’. To determine the total cost of
something we multiply the number of items we are buying by the price per item, so
we can turn our original proportionality relationship into an equation of the form:

total cost= (cost per litre)x (volume in litres)
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We are assuming that the cost per litre is constant however big the delivery. This

constant factor, which is required to turn the proportionality into an equation, is
called theconstant of proportionality

Now consider how this relationship between cost and volume appears on a graph,
such as that plotted in Figure 5.19. If | don’t buy any oil, the cost is zero (but the

heating doesn’t work!), so the graph must go through the origin. If | buy 500 litres
it costs £100, and 1000 litres cost £200.

200

o

?

3

©

S 100

0 250 500 750 1000
volume/litres
Figure 5.19: The cost of heating oil.
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Question
What is the gradient of this graph? What does that value represent?
Answer

. £(200-0)  £200
(1000- 0) litre ~ 1000 litre

In other words the gradient represents the cost per litre. The gradient of the
graph is the constant of proportionality between total cost and volume of olil.

The gradient i = £0.20/litre = 20 pencditre

Generalizing from this example:

if y = kx, wherey andx are variables anllis a constant,

theny is said to be directly proportional tq

i.e.yo X
=k
A graph ofy againstx will go through the origin and hav: =

gradientk, as illustrated in Figure 5.20.

Graphs like Figure 5.20, that by their shape show the nature of 0
the relationship between quantities but do not have scales marked
on the axes, are calledKetch grapHs They can be very use-

ful for illustrating ideas, without the need for accurate plotting or
drawing.

Figure 5.20: A graph of = kx
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Question 5.6 Answer

Figure 5.21 shows the graphs corresponding to two dif-
ferent relationships between a varialeand another
variablez. The quantities ands are constants. Which

is larger,r or s?

Figure 5.21: Two proportional relation-
ships:v =rzandv = sz
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Question 5.7 Answer

Figure 5.22 shows three sketch graphs. Which of them represents a relationship
between directly proportional quantities?

f a u
e \ O Z
0 g 0 b
(a) (b) ()

Figure 5.22: Sketch graphs for use with Question 5.7.
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5.3.2 A general equation for a straight line

Returning to the example of the oil delivery, supposeftedent company decided
that it would sell at a lower cost per litre, but would impose a fixed delivery charge

in addition to the price of the oil. This situation is represented by an equation of the
form

total cost= (cost per litrex volume in litres+ delivery charge

and this is plotted on the graph in Figure 5.23.

200

total cost/£

100

| | | |
0 250 500 750 1000
volume/litres

Figure 5.23: Graph of the cost of heating oil as a function of volume delivered.
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Question
FromFigure 5.23 estimate both the price per litre and the delivery charge.

Answer

The cost per litre is still given by the gradient of the graph, which is this case is
approximately

£(200- 25) £175 .
e — = 17.5 pencditre
(1000—0) litre _ 1000 litre pencl

The fixed charge can be estimated from the point at which the line crosses the
vertical axis: at this point, there is no charge for oil (since the volume is zer») so

the fixed charge represents the only contribution to the total cost. The de ivery
charge is therefore £25.

Note that what this company igfectively doing is giving a discount for bul<
buying compared to the arrangement described by the grapigoie 5.19 For

a delivery of 1000 litres, the cost is identical whichever company is used. For
less than 1000 litres, it would be cheaper to buy from the first company. For
volumes larger than 1000 litres the second compdfgrethe better deal.

Back < > 271



Contents O

Generalizing from this example, if two quantitigand x are re-
lated by an equation of form

y = mx+c¢ (5.1)

y=mx+c

wherem andc are constants, then a graphyo&gainstx will be

a straight line that does not go through the origin. The graph will
have gradienm. And whenx = 0, theny = ¢, so the graph crosses
the vertical axis at. The point at which a line on a graph crosses
an axis is called thenterceptof the line with that axis. This is
illustrated in Figure 5.24.

c

The equation of a straight line is commonly written in the form

gradient of line Fi_gure 5._24: A strai_ght-line graph
_ , with gradientm and intercept on
/ intercept of line

y=mx+c with vertical axis the vertical axis.

plotted on plotted on
vertical axis horizontal axis
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Although the general equation of a straight line is most usually written in the form
Yy = mx+C, it is important to remember that the letters used and their order are quite
arbitrary:v = u+atis also the equation of a straight line. Also, althoygh mx+c

does not contain any minus signs, both the gradieanhd the constammight have

a negative value.

Question

If v = u+ atandv is plotted against what, in terms of the symbols in the
equation, are the values of the gradient of the graph and the intercept on the
vertical axis?

Answer

V = U+ at can be rearranged as= at + u. Comparison with the standard
equation of a straight line

gradient intercept
/ /
y = m x + c
v =—'a t 4+ u

shows that the gradient of a plot efagainstt is a and the intercept with the
vertical axis isu.

An example of how the gradient and intercept of a straight line may be used to
derive quantities of real interest to scientists is given in Box 5.4.
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Box 5.4 Einstein’s photoelectric equation
When light of particular colours is shone onto certa

metals, electrons are emitted from the metal, as sho
diagrammatically in Figure 5.25. Some of the ener % /
of the light is used to remove the electrons from tt /

metal; the amount of energy required to do this vari
from metal to metal, and is called the ‘work function
¢ of the metal. Any energy left over is given to the
escaping electrons:

/4 emitted
/ ~7  electrons
//L>

metal

energy of|  [energy required t energy of

incident | =|remove electrons| + | ejected

light . :
9 from the metal slizetons Figure 5.25: The photoelectridtect.

This word equation can be rearranged as:
energy of energy of| (energy required t

ejected [=[incident [-|remove electrons
electrons light from the metal
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The colour of light is characterized by a quantity called its frequency
and the energy of the incoming light is then giventily whereh is a
constant called Planck’s constant. So the word equation above can be
rewritten in the form:

E=hf-¢

where the work functio is a positive constant for any given metal.
You saw inFigure 5.12a typical graph of energ¥, against frequency,

f. Comparison with the standard equation for a straight line shows how
such a graph could be used to determine do#md¢. (Notice that

the photoelectric equation contains a minus sign and therefore has to be
slightly rearranged to allow direct comparison.)

y = m X + C

E h o+ (O
? A

gradient intercept

The gradient calculated iorked example 5.(.e. 66x 10734 J5s) is
therefore the value of Planck’s constéitind extrapolation of the line
in Figure 5.120 its intersection with the vertical axis could be used to
determine the work function of the metal.
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5.4 Graphs of dfferent shapes

The previous section showed that it is a relatively straightforward
matter to deduce the equation linking two variables when their  159]
relationship can be represented by a straight-line graph. But ol -
course not all the quantities of interest in science are linearly § 80r
related to one another. Suppose you were to plot one variable <
against another and obtained not a straight line but a curve. How L

Lol 1 1 1 1 1

could you then determine the relationship between the variables”

Imagine for example that you had taken a set of circular objects .

with radii 1, 2, 3, ...6 cm and measured their respective areas
Had you plotted the areA as a function of radius you would
have obtained a graph like that in Figure 5.26.

Figure 5.26: Ared of circles plot-
ted as a function of their radii

Question
What is the equation relating the ar&af a circle to its radius?

Answer
A = mr2

This equation shows thatis notdirectly proportional ta, so you should not have
been surprised that plotting againstr did not give a straight line. In fact, the
curved shape of Figure 5.26 is characteristic of a relationship involving the square
of one of the quantities plotted. This particular shape is callearabola
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Because in this case we know the equation relafirendr, it is
guite easy to see how the curve of Figure 5.26 can be ‘transformed’
into a straight-line graphA is equal tor? multiplied by a constant

7. So althoughA is not directly proportional ta, it is directly
proportional tor?:

A r?

0 10 20 30 40 50
Therefore the result of plotting againstr? is a straight line, as r?/cm?
illustrated in Figure 5.27.

Figure 5.27: Aread of circles plot-
. ted as a function of the squares of
Question their radiir?
Without measuring anything on the graph itself, can you state
the value of the gradient of the line in Figure 5.27?

Answer
Comparison with the standard equation for a straight line shows
that

y = m xX + ¢

A = m o (+ 0)

so the gradient of the line s.
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Worked example 5.2

The relationship between the distaretravelled by an object which has been
dropped from a height and the timhér which it has been falling is

s= 1gt?

whereg is a constant (the magnitude of the acceleration due to gravity). If you
had measured the time as the object passed various points on the way down, how
would you use a graph to determine the valug 6bm your data?

Answer

Sincesis directly proportional td?, these are the variables to plot. The descrip-
tion of the experiment shows thats the independent variable, which according
to convention should be plotted on the horizontal axis.

We could rearrange the equatiers- %gt2 to give
-2
g

Soift? is plotted againss, comparison with the standard equation for a straight
line shows that
y =

i =

niy 3
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: .2
so the gradient of the line 5 and

3 2
~ gradient

g

{If you chose to plots againstt?, then the gradient would bg in which case
g = 2x gradient.}

Question 5.8 Answer

Table 5.1showed the mass of a number of aluminium spheres as a function of
their diameters. When mass was plotted as a function of diameter, a curved
graph Figure 5. was obtained. The ma$4 of a sphere of diametel, made

of material of density, is given by the equatioM = 7pd3/6.

What quantities would you plot in order to obtain a straight-line graph fromr the
data in Table 5.17?

What expression would be given by the gradient of the line?
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Question 5.9 Answer

If you have ever regulated a long-case (grandfather) clock, you will know that
the length of the pendulunk, determines the perio@ (the time for one com-
plete swing) and hencdtacts the accuracy with which the clock keeps tirie.
For a simple pendulum, the period is given by

T=2m E
Vs

where, as inVorked example 5,3 is a constant (the magnitude of the acceler-
ation due to gravity). If you had measur&dor various values ok, how would
you use a graph to determine the valugd&fom your data?

{Hint: you may find it helpful to manipulate the equation so as to get rid of the
square root.}

The trick of plotting quantities in such a way as to obtain a straight line is very
useful when you want to discover the relationship between experimentally mea-
sured quantities. With practice, one can come to recognize curved graphs of vari-
ous shapes, and this helps considerably in deciding how to transform the original
data so as to obtain a straight-line plot. For example, if the result of plotting one
guantity against another is a parabolic curve, this is an immediate indication that
one of those quantities is proportional to the square of the other.
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The rest of this section will simply introduce you to a few
curves of diferent shapes and the equations to which they pressure P
correspond. (An explanation of the techniques by which one I :
can most easily take scientific data and discover what powers p/'Ston
of the variables should be used in order to get a linear plot |
will come in Chapter 7.) /

/

A completely diterent sort of curve is generated from experi-
ments using the apparatus in Figure 5.28. This piston arrange- gas
ment is designed for the study of a sample of gas. A pressure voltreR
P can be applied to the piston and as the pressure increases so
the volumeV of the gas in the chamber will decrease. Con- heat bath

versely, if the pressure is reduced, the gas in the chamber will temperature T
expand. If you have ever pumped up a bicycle tyre, you have o
probably noticed that when a gas is compressed it heats up,

so in order to be sure that pressure and volume are the onIyFigure 5.28: An apparatus for measuring
variables involved in this particular experiment, it is impor- how the volume of a sample of gas varies
tant to ensure that each time the pressure is changed the 985ith the pressure at constant temperature.
is allowed to return to its original temperatufebefore the

volume is measured. This temperature is maintained by the

heat bath.
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A sketch graph showing the shape of a plovadgainstP resulting

from such an experiment is shown in Figure 5.29. A plot of this
shape is called ayperbola A characteristic feature of the hyper-
bola is that as the variable on one axis approaches zero, the curve
approaches more and more closely to the other axis but never actu-
ally touches it.

A hyperbola arises from plotting two quantities that are linked by

one being directly proportional to the reciprocal of the other. In this

case, 0
1

V .
P

Figure 5.29: A graph of volume as
This could also be expressed in words by saying tWas ‘directly a function of pressure for a fixed

proportional to one oveP’ but it is more usual to say that is amount of gas at constant temper-
inversely proportionato P. ature.
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In order to obtain a straight-line plot, we would therefore have to Yletgainst
1/P, as illustrated by the sketch graph in Figure 5.30. In practice the volume of a

real gas can never fall to zero, but if the line were extrapolated it would go through
the origin.

1/P

Figure 5.30: At constant temperature, the volume of a fixed amount of gas is in-
versely proportional to the pressure.
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Question

If you wanted to plot a graph using measured valueP of P
andV, but with P as the dependent variable, what would

you have to plot on the horizontal axis in order to obtain a
straight line?

Answer

We know thatv « % i.e. thatV = g wherek is a constant.

. k . 1
Rearrangement givd3= —, i.e. P oc —. 0 1/V
\Y Vv
So a graph oP against 1V would also be a straight line, as Figure 5.31: At constant tempera-
illustrated in Figure 5.31. ture, the pressure of a fixed amount
Note that graphs of /& againstP and J/P againstv would Pl i pioboiionaiip
the volume.

also be straight lines.

So far we have been primarily interested in the relationship between the pressure
and the volume of the sample of gas, so the sketch graphs of Figures 5.29 to 5.31
correspond to a situation in which the temperature has been held constant. How-
ever, it would be equally possible to use the apparatus illustratedyure 5.280
measure the volume of the gas sample as a function of temperature. Such measure-
ments are the basis of the Sl (kelvin) scale of temperature, which is discussed in
Box 5.5.
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Box 5.5 The absolute zero of temperature

Figure 5.31shows that the pressure and volume of a fixed amount of gas at
constant temperature are related by an equation of rrk/V wherek is a
constant, i.e.

PV = k (at constant temperature).

This equation is a particular case of a more general equation which was intro-
duced in Box 3.4, namely

PV=nRT (3.12)

wheren is the number of moles of gaRis the so-called gas constant, ahd
is the temperature (measured in kelvin).

Equation 3.12 can be rearranged to give
nR
V=—
P

and if P is held constant then
volume= C x temperature

whereC is a constant equal toR/P.
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The value ofC will depend on the value dP chosen, so if the volume of the
sample of gas is measured as a function of temperature in three separate experi-
ments, each one at affirent constant pressure, three separate straight-line plots
will be obtained, each with a filerent gradient. The larger the valueRb€hosen,

the smaller the gradient will be.

Figure 5.32a shows how the volume of the
sample of gas measured at thredatent
pressures, varies over the temperature range
0°C to 100°C (note that the temperatures
here are given in degrees Celsius). The re-
ally interesting aspect of the graph is that
if the lines are extended to lower and lower
temperatures, as shown in Figure 5.32@, they | 100 57515 0 100

all meet at the same point on the horizon- temperature/°C temperature/°C

tal axis, corresponding to a temperature of (a) (b)

—27315°C, and to a volume of zero. Ex-

trapolation beyond this point would imply

a negative volume, which is impossible, so Figure 5.32: (a) At constant pressure, the volume: of
—-27315°C is the lowest possible tempera- a fixed amount of gas is clearly related to the temper-
ture. It is therefore known as thebsolute  ature. HereP; < P> < P3. (b) Extrapolation shows
zeroof temperature. The Sl (kelvin) scale of that when the volume is zero then the temperature is
temperature sets this lowest possible temper-—27315°C.

ature at O K.

volume
\ volume

\

I

P4
é”z _
/P3 ~
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Temperatures may be converted from degrees

Celsius to kelvin and vice versa using the wor v
equation: P4
temperature | E€Mperatur P,
remper = |in degrees |+ 27315
in kelvin :
Celsius Py

Figure 5.32hbis a reminder that at27315°C
(i.e. at 0 K) the volume is zero.

N
\

W

When T is expressed in kelvinY is directly
proportional toT, so the lines in Figure 5.33
go through the origin.

T/IK

Figure 5.33: IfT is measured on the kelvin scale, thzn
VoT.
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Yet another type of curved graph is obtained when
the activity of a radioactive sample is monitored over
time. The atoms of radioactive elements ‘decay’ by
emitting small particles from their nuclei, thereby
transforming themselves into atoms of quité&etient
elements. These other elements may themselves be
radioactive, or they may be stable. Radioactive de-
cay is a random process, in that, although the total
activity of a sample is predictable, one can never pre-
dict which individual nuclei are going to decay at any
particular time. One form of polonium, the element
named after the Polish homeland of Marie Curie, de-
cays to leave stable atoms of lead. The activity of a
sample of polonium is plotted as a function of time in
Figure 5.34; the unit of activity is the bequerel (Bq),
equal to 1 disintegration per second. Because disinte-
gration of a polonium nucleus produces a stable lead
nucleus, the number of unstable nuclei in the sample

— and hence the activity — falls as time goes on. ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500
time/days

activity/kBq

Figure 5.34: The activity of a sample of polo-
nium as a function of time.
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Question

How long does it take for the activity of the polonium samplé-igure 5.34to
drop to

(a) 40 kBq
(b) 20 kBq
(c) 10 kBq

Answer
Reading fromFigure 5.34

(a) the activity has dropped to 40 kBq after 140 days
(b) the activity has dropped to 20 kBq after 280 days
(c) the activity has dropped to 10 kBq after 420 days

A little further analysis shows that the time taken for the activity to drop:
e from 80 kBq to 40 kBg= 140 days
e from 40 kBq to 20 kBg= (280— 140) days= 140 days
e from 20 kBq to 10 kBg (420— 280) days= 140 days

This result demonstrates a very important property of the curve plottEdyure
5.34 whatever value of the quantity plotted on the vertical axis is chosen, the time
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taken for the quantity to fall to exactly one-half that value is a constant. This con-
stant interval of time is known as tlinalf-life, and curves that display this property
are called éxponential decays To the precision to which it is possible to read
Figure 5.34, the half-life of the polonium sample is 140 days.

In radioactive decay, the activity is dependent on the number of radioactive nuclei
present, which is usually denoted by the letter Figure 5.35shows that ifNg
radioactive nuclei are present when timing starts (i.e. at tim®), then

o after one half-lifeN = No x 3

[ J
QD
=
(0]
-
—
=
o
=0
=
T
=
3
Il
—
Z
o
X
~—
X
Nl
Il
s
o
—
Nl
~——
N

e after three half-livedN = NO(%

e so aftem half-livesN = No (3)"

After a long time, and many half-lives| will approach, though it will never reach,
zero.

The equation describing the exponential decay showhigire 5.35involves a
special number, e. Lika and V2, e is an irrational number and to four significant
figures its value is 2.718. The equation describing Figure 5.35 is

N =Nye™ (5.2)

where 1 is a positive constant. In Chapter 7, you will discover the relationship
betweem and the half-life for the decats 2. Then in Chapter 10 you will find that
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exponentials have another characteristic and defining property.

Question 5.10 Answer

Radium has a half-life of 1600 years. How long will it be before the number of
radioactive atoms in a sample is reduceq%@f the number there are today?

Box 5.6 Dating meteorites and Moon rock

The age of many dierent natural materials can be determined from their ra-
dioactivity. Potassium is one element that is used to date rocks; potassium-40
has a half-life of 13x 10° years, and decays to leave argon, an inert gas that does
not combine with other elements. When rocks first form, they are molten, so any
argon they might contain would simply escape into space. However, once the
rocks solidify, any argon resulting from the radioactive decay of potassiurn-40
remains trapped. Geochemists can analyse the composition of a rock to deter-
mine the ratio of potassium to argon, and hence estimate a rock’s age.

Dating using potassium and other radioactive elements has shown that almost
all known meteorites are@x 10° Ma old, so their formation was contempora-
neous with the formation of the Solar System. The oldest known Moon rozk is
4.48x 10° Ma old.
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It is sometimes reported in the media that something is exhibiting
‘exponential growth In fact, true exponential growth, in which
the quantity being measured is multiplied by a constant factor over 60
a given period of time, is a rather unusual phenomenon although it
does occur. A general equation for exponential growth, analogous 29
to Equation 5.Zor exponential decay, is 2 40
[0}
n=nge (5.3) 2
§30
whereng is the starting value of the quantity,is its value after E
timet anda is a positive constant. Exponential growth is some- < 20
times used as a model by biologists interested in the populations
of organisms. Figure 5.36 illustrates the theoretical increase of 10
yeast cells according to such a model. In practice, the death of
organisms, as well as the influence of factors relating to over- 0 1‘0 2‘0
crowding, will also #fect the population, so that the increase in fime/hours
the number of organisms will not lie on a true exponential growth
curve. Figure 5.36: Model for the growth

of yeast cells. The population con-
sists of just two cells at time= 0,
and it is assumed that once in every
four-hour period each cell divides
into two cells, (i.e. the multiplying
factor is 2).
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5.5 Learning outcomes for Chapter 5

After completing your work on this chapter you should be able to:
5.1 demonstrate understanding of the terms emboldened in the text;

5.2 correctly interpret conventional labelling on graph axes or table columns, so
as to deduce the power of ten and the units associated with a plotted or
tabulated quantity;

5.3 use the processes of interpolation and extrapolation to read values from a
graph;

5.4 calculate the gradient of a straight-line graph;

5.5 deduce the gradient and intercept of a straight-line graph from the equation of
the line, and vice versa,

5.6 draw and interpret sketch graphs;

5.7 given the equation involving quantities raised to a power, decide what variable
should be plotted in order to obtain a straight-line graph.
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Angles and trigonometry

It is relatively easy to measure the distance along
the ground from an observer to an object such as
a tree, but measuring the height of the tree itself is
rather less straightforward. Similarly, it is possi-
ble to find the distance from the Earth to the Moon
by measuring the time taken for a laser beam to
travel to the Moon and back, but this method can-
not be used to find the Moon’s diameter. Fortu-
nately help is at hand in both cases; we can mea-
sure angles and use these to calculate the values
we require. In the case of the tree, the angle used
is the angle between the ground (assumed to be
horizontal) and a straight line drawn to the top of Figure 6.1: Chapter 6 will show how to use angles to
the tree; this angle is marked(the Greek letter find the height of a tree

theta) in Figure 6.1.

Remember that a list of Greek letters and their pronunciation is givéabite 3.1
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Figure 6.2: Chapter 6 will show how to use angles to find the diameter of the Moon

In the case of the Moon the angle is the subtendedi.e. swept out) as a straight
line drawn from an observer on the Earth moves from one side of the Moon to the
other; this angle is labellegl (the Greek letter phi) in Figure 6.2.

Section 6.1 describes twoftBrent systems used for measuring angles and, after a
brief look at some of the properties of triangles, the rest of the chapter shows how
angles can be used in scientific calculation to determine things such as the height of
a tree and the diameter of the Moon.
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6.1 Measuring angles: degrees and radians

You are probably familiar with the use of a protractor to measure angles shown on
diagrams; this gives a resultdegreegrepresented by the symbigland sometimes
known as ‘degrees of arc’ to make it clear that the degrees used to measure angles
have nothing whatsoever to do with the degrees used when measuring temperature
on the Celsius scale). Figure 6.3 shows that afigtem Figure 6.1 is about 36°5

Figure 6.3: Measuring an angle with a protractor.

Back <« > 296



Contents

If you stand facing in a particular
direction then turn through a com-
plete revolution, you will have gone
through 360. The use of 360to rep-
resent a complete turn is believed to
date back to the ancient Babylonian
civilization; 360 subdivisions were
used because 360 is close to 365, the
number of days in a year. Figure 6.4
illustrates various angles encountered
in turning through a circle. Note in
particular that aight angle(the angle
between two directions that are per-
pendicular to each other) measures
oC.

Box 6.1 on the next page describes
the use of angles to define lines of
longitudeand latitude on the Earth’s
surface, and hence to specify posi-
tions on the surface of the Earth.

direction

1350 of rotation

90°
180° .
45 starting

position

225°

360°

Figure 6.4: Angles encountered in turning through a circle.
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Box 6.1 Lines of longitude and latitude

The surface of the Earth is conventionally marked with two sets of imaginary
lines, as shown in Figure 6.5. The blue lines running from left to right in I-ig-
ure 6.5 are lines of latitude, the Equator being one such line, and the rec lines
running from one pole to the other are lines of longitude.

North
Pole
lines of latitude lines of longitude

Wi a4y
| [/
[ Lie
|z
e

Figure 6.5: A model of the Earth viewed from above the Equator, showing ines
of latitude and longitude.
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In Figure 6.6, which is the view from above the North Pole, the circles are: the
lines of latitude and the lines radiating out from the pole are lines of longitude.
It is easy to see, from Figure 6.6, how angles of longitude can be labelled using
degrees. A line running through Greenwich in east London, and known s the
Greenwich Meridian, is defined to bé ngitude, and other lines are labelled

by measuring the angles to the east or west of the Greenwich Meridian.

Greenwich
Meridian §
longitude west | longitude east

Figure 6.6: A model of the earth viewed from above the North Pole, showing
lines of latitude and longitude.
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Figure 6.7 shows how angles can be used to label lines of latitude too.

North Pole
90° N

latitude
north

latitude
south

90° S
South Pole

Figure 6.7: Using angles to label lines of latitude.

Figures 6.5, 6,6 and 6.7 show lines of longitude and latitude atrit&rvals only,

but in reality the lines can be drawn as close together as required, and so can be
used to specify a location very precisely. In order to specify a precise location, we
need to subdivide degrees of longitude and latitude in some way. Historically this
was done by dividing each degree intorf@hutes(or ‘minutes of arc’) in the same

way as each hour is divided into 60 minutes (of time). The symbolis used to
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represent minutes of arc. The longitude of Heathrow Airport (approximately 30 km
west of Greenwich) is®@7 W and both Greenwich and Heathrow have a latitude
of about 5228 N.

Minutes of arc are rarely used in modern science; small angles are usually expressed

. . . . L 2
in decimal notation. Since 28s 28 sixtieths of a degree a% = 0.47 to two

significant figures, 528 can be written as 51.47However, astronomers continue

to use a further extension of the ‘degrees and minutes’ notation, simply because
the angles they are measuring are frequently very small (since the objects they are
measuring are such a long way from Earth). In order to measure such small angles,
minutes of arc are further divided into 8@condof arc, orarcsecqin the same

way as minutes of time are subdivided into 60 seconds). So

1 arcsec= i minute of arc= i X i degree= i degree
60 60 < 60 9" 3600 9¢Y

As the Earth orbits the Sun, the next nearest star, Proxima Centauri, appears to
.. 0772

move through an angle of 0.772 arcsecs across the sky; this is aéng%eof a

degree, i.e. 24 x 107* degrees.
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Angles in science are frequently measuredadiansrather

than in degrees and subdivisions of degrees. Consider the X

circle shown in Figure 6.6. A part of the circumference, such

as that between point X and point Y, is known asaagy and

in this case the arc subtends an ar@gl&he length of the arc

between X and Y is and the radius of the circle is The Q s

radian is defined with reference to arc length and radius. /
Y

The size in radians of the anglg, subtended by an arc
is defined to be arc lengtl, divided by radiusr, thus

6 (in radians)= 3 (6.1) Figure 6.8: An arc of lengtls subtended
s by the angl& in a circle of radius.
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Question

What is the size in radians of the angle subtended by an arc of ler@tmBin
a circle of radius D cm?

Answer

FromEquation 6.1he angle is given by:

. ) S
6 in radians= -

3 30cm

~20cm
=15

So the size of the angle is 1.5 radians.

Note that since we have divided a length in centimetres by another length in cen-
timetres, it could be argued that the answer should have no units. However, this
course will adopt the common practice of writing the word ‘radians’ next to an-
gles given in this measuring system, to distinguish them from angles measured in
degrees or in any other system of angular measure.

An angle subtended by a longer arc in a circle of the same radius will be larger, as
expected. In the above example, an arc of lengdhchh would subtend an angle of
5.0cm

— i.e. 2.5 radians.
20cm
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Note, however, that it is thetio of arc length to radius which
is important in the definition of radian. This is illustrated in
Figure 6.9, which shows twooncentriccircles (i.e. two cir-
cles with their centres at the same point).

The smaller circle has radius and an arc of lengtls (sub-
tended by angl®) is shown. In the larger circle, of radius
r’, the same anglé is subtended by an arc of lengsh The
superscript “ ’ is used to indicate that the lengthsands’
(said as r-prime ands-prime’, or ‘r-dash ands-dash’) both
relate to the same circle. The lenggiandr’ are bigger than

.S
the values ofs andr, as you would expect, but the ratler}s

and; areequal and the angle subtended in radians is

s g
0:—_
rr

Figure 6.9: Two concentric circles.
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Let’s now consider two special cases. In the first, the arc length is
exactly equal to the radius, as shown in Figure 6.10a,3.e. r.
This means that

. . s r
6 (in radians)= S=0= 1

i.e. the angle subtended is one radian.

g I
~——— 7

In the second special case, illustrated in Figure 6.10b, the arc length
is a complete circumference. For all circles, the circumfere@ce,

is linked to the radiust, by the formulaC = 27tr (this formula,
given inBox 3.4 follows directly from thedefinition of 7, given in
Section 1.1.1 as circumference divided by diameter). So when the
arc length s, is equal to the whole circumferend®, s = 2rtr so

6 (in radians)= ? =27

©

Thus the angle subtended by a complete revolutiomisa@ians,
I.e. 2t radians= 360°.

Figure 6.10: The angle subtended
when (a) arc length is equal to ra-
dius, and (b) arc length is equal to
circumference.
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This gives us an easy way of converting between degrees and radians.
Since Zr radians= 360,
1 radian= 360
27
_ 180
oom
~ 57.3°
where the symbol¥’ means ‘is approximately equal to’, as in Chapter 3.
Similarly, since 360 = 27t radians,
o 27
360
-
180
~ 0.0175 radians
Note that the numerical conversion factors between radians and degrees are only
approximate (they have been given to three significant figures), so when converting
from radians to degrees or vice versa it is best to go back to first principles in
each case, remembering that a complete revolution can be represented by either
2n radians or 369
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It is also worth remembering that angles in radians are frequently expressed as
multiples or fractions oft so, for example,

. 27 .
45° = 45x% 360 radians

T
= — radians
4
An angle of exactly 45is equal toexactly% radians.

Worked example 6.1

us . .
Express6 radians in degrees.

Answer
27 radians= 360° somt radians= 180C°.

T 180°
— radians= — = 30°.
5 6
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Worked example 6.2

The angle subtended as a straight line drawn from an observer on the Earth
moves from one side of the Moon to the other is 051@This is anglep in
Figure 6.2 but remember that the figure is not drawn to scale). Express this
angle in radians.

Answer

. 27 .
360 = 2nradians so 1= 360 radians

27 )
0.519 = 0.519x 360 radians

= 9.06 x 1073 radians to three significant figures.

Question 6.1

Convert the following from radians to degrees:

(a) 0.123 radians Answer
(b) %ﬂ radians Answer
(©) 377[ radians Answer
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Question 6.2

Convert the following from degrees to radians:

(a) 36.5 (angled in Figure 6.} Answer
(b) 9r Answer
(c) 210 Answer

6.2 A quicklook at triangles

Note the labelling system used for angles in Figure 6.11. Angle

a could also be identified as angle BAZBAC or A, but in this A
course angles will be labelled on tivesidein the way angleg,

B andy have been labelled in Figure 6.11. If you measure the

size of the angles inside the triangle shown in Figure 6.11 with a

protractor, you will find thatr = 80°, 8 = 60° andy = 40°. Thus

a+pB+y=80+60 +40 =180 B C

This result is true for all triangles, i.e.
Figure 6.11: The angles inside a tri-
For all triangles, the internal angles add up to°180 angle.

Back <« > 309



Contents

If you wish, you can check that this result holds for all of the triangles shown in
Figure 6.12irrespective of the shape of the triangtegure 6.12eandFigure 6.12f
illustrate two triangles of a particular type; each has one internal angle equal to
90, i.e. aright angle, so they are known raght-angled trianglesNote that the

right angles have been labelled in the conventional way, with a square corner. In a
right-angled triangle, since the internal angles must totat H8@ one of the three
angles is 90, it follows that the other two angles must add up to a total Gft80.

This result means that if you know that a triangle is right-angled, and you know one
of the other angles, you can find the remaining angle without needing to measure
it. In Figure 6.12¢ea = 30°, soB = 90° — 30° = 60°.

Pythagoras’ Theoremwvhose proof is accredited to the Greek philosopher Pythago-
ras or one of his followers about 2500 years ago, but which was probably known
even earlier, gives us a way of calculating the length of a third side of a right-angled
triangle from a knowledge of the lengths of the other two sides.

The side opposite the right angle in a right-angled triangle is known akythe
potenuseand Pythagoras’ Theorem is commonly stated as

The square of the hypotenuse of a right-angled triangle is equal to the sum of
the squares of the other two sides.
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In the triangle shown in Figure 6.13, the hypotenuse has a ldngtid
the other two sides have lengtasindb. Thus

h? = a? + b? (6.2)
We are only interested in the positive square root, so b

h= vaZ +b?

If a= 3 cmandb =4 cmin aright-angledtriangle, then L

h= va2+Db2 = v(3cmp@ + (4 cm@ = V9 cn? + 16 cn?

_ 25 o = 5 em Figure 6.13: A right-angled

triangle.

If h = 9.1m anda = 5.1 m in a diferent right-angled triangle, then
h? = a? + b can be rearranged to gt = h®> — a so

b= vh2-a2= V(9.1 mpR - (5.1 mpP = V8281 n? — 26.01 n?
= V56.80 n? = 7.5 m to 2 significant figures.
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Question 6.3

The base of ladder of length5D m is placed on level ground at a distance of
1.15 m from a vertical wall, and the top of the ladder leans against the wall. The
angle between the ground and the ladder is found to b€ .76&culate

(a) the height that the ladder reaches up the wall; Answer
(b) the angle between the wall and the top of the ladder. Answer

Hint: you may find it helpful to start by drawing a diagram of the situation.

Pythagoras’ Theorem provides us with a way of finding unknown lengths from
known lengths; the fact that the internal angles in any triangle add up fopt860
vides us with a way of finding unknown angles from known angles. Trigonometry,
discussed in Section 6.3, takes us one stage further by providing a way of finding
unknown lengths from known angles and unknown angles from known lengths.

6.3 Calculating with angles: trigonometry

Trigonometryis the branch of mathematics that deals with the relationships be-
tween the sides and angles of triangles. The Greek astronomer Hipparchus is cred-
ited with its invention, but the principles involved were almost certainly in use even
earlier by the ancient Egyptians surveying the land surrounding the Nile. Despite
its ancient origins, trigonometry plays an important part in modern science.
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Look at the three right-angled triangles showrFigure 6.14 These triangles are
similar, i.e. they have the same shape (although their sizes fiezaiit); note in
particular that the angleis exactly the same in each of the three triangles.

The superscript symbols”*’ and * ” * (‘prime and double-prime’ or ‘dash and
double-dash’) indicate lengths relating to the second and third triangles respectively.

As you look atFigure 6.14from left to right, you will see that the triangles have
sides of increasing length; however the ratio of any one side to each of the other
sides remains constant, thus

b b/ bll
a a a” (6.3)
b b/ b//
h~h” " h~ (6.4)
a a/ all
h™ h”~ h” (6.5)

If the angled and hence the shape of the triangle had befarént, the ratios would

. . . b b
have had dferent values. Thus each anglgives rise to unique values f%', h

a b b a. . ,
and —, and conversely each value fgr, h or m in a triangle leads to a particular

value ford. This result is so important that the ratios are given the special names
tangent sineandcosing usually abbreviated to tan, sin and cos. Tan, sin and cos
are known collectively agigonometric (or trig.) ratios
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The tangent of angléis defined by

_ opposite

tanf = —
adjacent

(6.6)

This is the ratio we have been describingt—)asrvhereb is the sideoppositeangled
anda s the side (other than the hypotenuse) thaidgcen{next to) angle.

The sine of angl® is defined by

sing = M (6.7)
hypotenuse
_ , .. b
This is the ratio we have been descrlblngﬁas
The cosine of anglé is defined by
Ccosf = M (6.8)
hypotenuse

This is the ratio we have been describing%as
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hyp
opp

0 [
adj

oPp. sing = %); cosh = :—%

adj’ hyp
The sides opposite and adjacent to a particular angle in a right-angled triangle are
usually abbreviated to ‘opp’ and ‘adj’ and the hypotenuse is abbreviated to ‘hyp’,
as shown in Figure 6.15.

Figure 6.15: ta@ =

Note that the trigonometric ratios are defined with respect to a particular angle in
a right-angled triangle. If we had considered the other non right-angled angle in
the triangle in Figure 6.15, the ‘opposite’ and ‘adjacent’ sides would have been
different, and so the sine, cosine and tangent would have beredt too.
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The trigonometric ratios were tabulated many years ago and
generations of scientists have used tables and slide rules sim
ilar to those shown in Figure 6.16 to calculate lengths from
angles and angles from lengths. Nowadays, trigonometric ra-
tios are available at the press of a calculator button.

6.3.1 Using a calculator for trigonometry

Make sure that you can use your calculator to find trigopnomet-
ric ratios. The sine, cosine and tangent functions are likely to
be clearly marked as ‘sin’, ‘cos’ and ‘tan’. Remember, from
Section 6.1, that angles can be measured in etthgreeor
radians Your calculator should be able to cope with either Figure 6.16: Tables, slide rules and calcu-
of these (and possibly a third angular measure called ‘grad’ lators can all be used to find trigonometric
too) but you need to ensure that the calculator is in the correctratios.

‘mode’. Anglefin Figure 6.15s 3(°, alternatively written as

T . . .
s radians, so the sine of anglecould be expressed as either

sin30 or sin% (Where% is in radians, though the word ‘ra-

dians’ is usually omitted when finding trigopnometric ratios). Note tha%s(which

is the sine of the angk%t and could be written as s(%t) for clarity) is not the same

[ o1 . , [
as% (which is éth of the sine of the angle and could be written aga(na_n) for
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clarity).
Check that you can use your calculator to give:

sin30 = 0.5; cos 30 = 0.8660; tan30 = 0.5774
and also to give:

sin = 0.5; cos— = 0.8660; tan. = 05774

6 6 6

where the answers are either exact or given to four significant figures.
Note that when using trigonometric ratios you should always work to at least four
significant figures (although you should round your answer to an appropriate num-
ber of significant figures at the end of a calculation).

Question 6.4

Use your calculator to find:

(@) sin49 Answer

(b) cosg (Whereg is in radians) Answer

s T, . .

(c) tanZ (Wherez is in radians). Answer
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You will also need to be able to use your calculator to find the angle which has a
particular sine, cosine or tangent. For example, if you know that taf.75, then
what isé in degrees? What you are looking for is known as theerse tangent

or arctangenaind you need to use a button on your calculator labelled as!'tan
‘arctan’. Check that you can use your calculator to give the correct answer, which
is that tan1(0.75) = 37° = 0.64 radians to two significant figures. Your calculator
should also be able to calculateverse sine(using a button labelled as ‘st

or arcsinand finverse cosine(‘cos™!" or arccod. Note that ‘tan’, ‘sin~'" and
‘cos™1’ are properly referred to as theverse functionsf tan, sin and cos (as they
work in the opposite direction) but care needs to be taken to avoid confusion with
reciprocals:

1
tam !+ —
tan

. 1
Sm_l * —
Sin

41
COS =~ # —
CcOoSs

remembering that means ‘is not equal to'.
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Question 6.5
Use your calculator to find:
(a) Use your calculator to find the angte(in degrees) for which  Answer
cosa = 0.5253.
(b) Use your calculator to find the angte(in radians) for which ~ Answer
tang = 1.5574.
Note that although we have only defined trigonometric ratios for angles in a right-
angled triangle, and most of the angles for which trigonometric ratios are used in
this course aracute(i.e. less than 990, values of sin, cos and tan can be found
for larger angles too. Use your calculator to check thattsia 0, cost = -1
and tant = 0 (wherem is an angle in radians, equal to £80Box 6.2 considers
the sines and cosines of angles greater thanelightly more detail, and it also
introduces you tmegativeangles and their trigonometric ratios.
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Box 6.2 Using trigopnometric ratios to describe waves

It is possible to assign values for simnd co9 for all an-
gles, however large they are. Table 6.1 gives values fat sin

6 in radians Sirg cosd
0 0 1

and co9 for selected values @fup to the arbitrarily chosen e e Disian
value of 3t (540°). The angles are like those encountered e Eigislsl) b2
in Figure 6.4in turning through a complete circle, except 2 L g
that there is no need to stop at 368nd the angles are now 23 LEEIED 0L
measured in radians. e &3 ~OiEEst
i 0 -1
Two results have been omitted from Table 6.1. 77/6 -05 -0.8660
. 47t/3 -0.8660 -0.5
Question 5 3/2 0
Use your calculator to find the sine eg radians (270) 5m/3 -0.8660 05
_ 3T 117t/6 -0.5 0.8660
and the cosine oa% radians (390) and add these values ot 0 1
to Table 6.1. 13rt/6 05
7mt/3 0.8660 05
Answer 571/2 1 0
ain " = _1 8/3 0.8660 -05
2 177/6 0.5 -0.8660
3n 0 -1

13n I :
cos? = 0.8660 to four significant figures.

Table 6.1: Values of siéand co% for 6
from 0 to 3=
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If instead of turning in an anticlockwise direction in the way 4 in radians
used to define angles up to 3@Md beyondKigure 6.4, we

had turned in a clockwise direction, the angles would have 0
been measured in the opposite direction. Angles such as —71/6

, : 3
these are defined to be negative &%, —, —771. Values

for sing and co® can also be assigned for negative values _or/3

of 8, as shown in Table 6.2.

Inspection ofTable 6.1and Table 6.2 shows that girand
cosd each vary betweenl and+1 across the whole range
of values for9. The form of the variation is made clearer by
the graphs shown iRigure 6.17

The graphs may remind you of the sort of wave pattern ob- _11,/6

served when you take an instantaneous sideways look at _ox

waves on a pond. In fact, sine and cosine functions, of the _137/6
formy = asind andy = acosf (wherea is a constant) are

extensively used in describing the motion of waves of all _5/2
types. The detail is beyond the scope of this course, butitis _gr/3

another application of maths in science!

sig cosf
0 1
-05 0.8660
-71/3 -0.8660 05
—71/2 -1 0
-0.8660 -05
-5m1/6 -05 -0.8660
—Tt 0 -1
~77/6 05 -0.8660
—47t/3 0.8660 -0.5
-3m/2 1 0
-5mr/3 0.8660 05
0.5 0.8660
0 1
-05 0.8660
~7mt/3 -0.8660 05
-1 0
-0.8660 -05
~177/6 -05 -0.8660
-3m 0 -1

Table 6.2: Values of sié and co® for 6

from 0 to—-3m
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6.3.2 Using trigonometry in science

We are now in a position to be able to find
the height of the tree mentioned at the be-
ginning of the chapter. This is shown His

in Figure 6.18. We know that = 36.5° and
suppose we have measur@dthe distance
to the tree from the point at which the angle
6 was measured, to be Z83m. How tall is
the tree?

We can say that

tang - PP
3 ) Figure 6.18: Using trigonometry to find the height of a tree.
= 5 in this case. # = 36.5° andD = 286 m.

We need to rearrange this equation to mekine subject; we can do this in exactly
the same way as we did in Chapter 4, by reversing the equation and then multiplying
both sides of the equation Iiy. This gives

H = D tang@

SoH =286 mxtan365° = 21.2 m to 3 significant figures.

Back <« > 322



Contents O

It was clearly stated at the beginning of the
chapter that? was the angle between the
groundand a straight line drawn to the top
of the tree, but in reality you're more likely
to have taken readings at eye level, per-
haps using an instrument such as a ‘gun cli-
nometer’, whose use is illustrated in Figure
6.19. The gun clinometer measures the an-
gle shown ag in Figure 6.19b, and Worked
example 6.3 shows how this can be used to
find the height of a tree.

Figure 6.19: (a) Using a gun clinometer to find the height
of a tree; (b) the gun clinometer gives angle
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Question

When used by a man of heigh8lm and in the way illustrated iRigure 6.19a
gun clinometer records an angieof 39° at a distanceD, of 18 m from a tree.
What is the height of the tree?

Answer

tana = g wherea = 39° andD = 18 m, so

H = Dtana
=18 mx tan 39
=146 m

On this occasion, however, the reading was taken at eye levél,ismot the
height of the tree. Assuming that it is7im from the ground to the man’s eyes
and that the ground is horizontal, the height of the tree’#sri more tharH,
i.e. the height of the tree is 16 m to two significant figures.

Question 6.7 asks you to use trigonometry in solving another simulated ‘real world’
problem, but Question 6.6 is given first to enable you to practise the underlying
trigonometric and algebraic skills.
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Question 6.6
(a) Find lengthhin Figure 6.20a. Answer
(b) Find lengthain Figure 6.20b. Answer

(c) Find angled in Figure 6.20c, giving your answer in degrees.  Answer

10m

9
1.0m
3 \

(b) (c)

Figure 6.20: Right-angled triangles for use in Question 6dd rawn to scalg
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Question 6.7 Answer

A theodolite of height 5 m is positioned with its base at sea-level somewt ere
in the Cambridgeshire Fens, and indicates that the top of Ely Cathedral’'s West
Tower is at an inclination of 2.27see Figure 6.21). The base of Ely Cathecral

is 15 m above sea-level and the West Tower is 66 m tall. Approximately how
far is the theodolite from Ely Cathedral?

Hint: start by findingH, the vertical distance between the top of the theodolite
and the top of the West Tower.

[

1] i

66m
17—y
theodolite 000000000000 |00 | | O0vaonn

1.5 T

lm 0 . 15\k
7! A l

T - D

Figure 6.21: Using trigonometry to find distangmt to scale)o = 2.27°.
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In addition to providing a way of finding unknown lengths and angles, trigonomet-
ric ratios appear from time to time in scientific equations. You are not expected to
remember these equations or to understand the background science; brief explana-
tions are provided in Boxes 6.3—6.6 for interest only.

Box 6.3 Angle of dip and true thickness of strata

Folding and tilting of layers of rocks, caused by pressures within the Earth,
have resulted in many layers lying at an angle to the Earth’s surface. This angle
is called the angle of dip and is illustratedkigure 6.22 The angle of dip car
usually be measured, as can the apparent width of a stratum (layer) at the Izarth’s
surface — its outcrop, but it is theue thickness of the stratum which is of real
interest to geologists.

The vertical thickness of the stratum (figure 6.23 may also be of interesi,
especially when exploring for underground resources (such as oil) by drilling.
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Question

Express si@ in Figure 6.22 in terms of andW. Hence find an equation fcr
the true thicknesdl;, of a stratum in terms of the widtNy, of the outcrop at the:
Earth’s surface, and the angle of dép,

Answer
sing = T
W

SO

T =Wsing (6.9)

ground
w surface

angle
of dip T

Figure 6.22: The relationship between the angle of éipvidth of outcrop,W,
and true thicknesg,, for a tilting stratum of rock (shown in darker brown).
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Question

Express tan in Figure 6.23 in terms o andW. Hence find an equation fcr
the vertical thickness/, of a stratum in terms of the widthy, of the outcrop at
the Earth’s surface, and the angle of dip,

Answer
tang = v
W
SO
V = Wtané (6.10)
ground
w surface
0 [N\

Figure 6.23: The relationship betwe@&n/V, and the vertical thicknes¥, of the
stratum.
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Worked example 6.4

Suppose a stratum of rock, lying at an angle of dip of,2&s an outcrop o°
width of 71 m at the Earth’s surface. What is its true thickness?

Answer
FromEquation 6.9T = Wsind whereW = 71 m and = 28°, so

T =71 mx sin 28 = 33 m to two significant figures.

The true thickness of the layer is 33 metres.

Question 6.8 Answer

What is the vertical thickness of a stratum of rock which has outcrop of width
65 m at the Earth’s surface, and an angle of dip ¢f?36

Hint: you should use an appropriate equation fidaox 6.3
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Box 6.4 Using trigopnometry to determine the radius of ions

The crystal structure of lithium iodide consists of lithium
and iodide ions (ions are atoms with electric charge due

to the loss or gain of electrons), as shown in Figure 6.24. —
Both types of ions can be represented by spheres and, in 45°

one model, the spheres can be considered just to touch each h

other. This enables us to use trigonometry to find the radius J
of the ions.

If the distance between the centre of a lithium ion and the
centre of an iodide ion is known (this is the so-called inter-
nuclear distance, and is labelledrasn Figure 6.24) then
cos45 = a—dJ =L
i Figure 6.24: Using trigonometry
wherer is the radius of a lithium ion. to find the radius of lithium iong
(shown in green). The purplz

Multiplying both sides by gives sphere represents an iodide ion.

r =hcos45 (6.11)

Equation 6.11 can be used to find the radius of a lithium ion.
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Question 6.9 Answer

The internuclear distanch, between the ions shown kigure 6.24s measurec
to be 302 pm (where 1 prm 10712 m, as defined iBox 2.2).

UseEquation 6.1%o find the radius of a lithium ion.
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Box 6.5 Snell's law for seismic waves and light

You may have realized, from the equation for S wave spees, s

P
(much used in Chapters 3 and 4), that waves travelfgrént speeds i

in different substances. When a wave moves from one substance
another in which it travels at a fierent speed, the change in spee(

U4

. : ) . . i boundary : U
will cause the wave to changhrection This behaviour is known as =
refraction and it is illustrated in Figure 6.25. :
Snell’s law of refraction states that |
sini v
= -1 6.12) .
sinr vz Figure 6.25: A wave undergoin)

wherev; is the speed of the wave in the first substangeis the SEUFEOL) O [PEESIG) Treel B

speed of the wave in the second substancej andr are the angles JOUAEERY FERIEED [0 MERIE |

of incidence and refraction respectively, as illustrated in Figure 6.2¥\{h'0h T2 S{EEERE 0! prop_agat_lon,
v1 and vy, are diferent (in this

Refraction occurs for all types of waves, for example, seismic wavesasev, > V»); i is called the an-
passing from one rock type to another in the Earth, or a beam of lighte of incidence and is called
passing from air to glass, and Snell’s Law is true whatever type tiie angle of refraction.

wave motion is being considered. The law is named after the Dutch

scientist Willebrord Snel (1596-1650) but the law was stated very

much earlier, by the mathematician Abu Said al-Ala Ibn Sahl in his

book On the Burning Instrumentsvritten in about 984.
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Worked example 6.5

Calculate the angle of refraction of a seismic wave which has an angle of inci-
dence of 35 on crossing a boundary from rock 1 (with = 6.3x 10° ms™?)
into rock 2 (withvo = 8.2 x 103 ms™).

Answer

We knowv; = 6.3x 10 ms? v, = 82x 10° ms ! andi = 35°, and we want
r. Snell's law states that

sini v

sinr Vo
Multiplying both sides by sin gives

.. V1 .
SNl = — X sInr
V2

Reversing the equation and multiplying both sidespygives
V1 Sinr = vo Sini
Dividing both sides by gives

Vo Sini
Vi

sinr =
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Substituting gives

_ 82x10®ms!xsin35

6.3x103ms?
=0.7466

sinr

So

r = sin"1(0.7446)
= 48’ to 2 significant figures.

Note that in this case the angle of refraction is greater than the angle of inci-
dence. This is because is greater tham;.

Question 6.10 Answer

A beam of light strikes an air—glass interface with an angle of incidence of 45.0
and the angle of refraction (in the glass) is found to be 26I&e speed of light
in air is 300x 10 ms™L. Use Snell’s law to find the speed of light in glass.
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Box 6.6 Using a dffraction grating

A diffraction grating is simply a series of ex- diffraction [ screen ]
tremely narrow, evenly spaced slits through grating [ second order
which light can pass. When a light beam of a

single colour (i.e. a single wavelength) hits the

diffraction grating at an angle of 90as shown

in Figure 6.26, the grating acts in such a way as

to split up the incoming beam, forming what is  light beam
called a dffraction pattern. Some light passes =
straight through the grating; this is called the
zero-order beam. Other beams are produced ¢

angles, 62, etc. from the straight-through po-

sition and are known as the 1st, 2nd, etc. ordel
diffracted beams.

first order

zero order

first order

second order

NN NN ) S}

The angled, of the nth order beam is given by
the equation

sinfy = %/1 (6.13) iI;igure 6.26: The pattern formed by dfdaction grat-

whereA is the wavelength of the light andlis
the grating spacing (i.e. the distance between
two adjacent slits in the grating).
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Worked example 6.6

A beam of light of wavelength.B9 x 10" m passes through afffiaction grat-
ing and the second-orderfffacted beam is at, = 45.9°. Find the grating
spacingd.

Answer

In this casel = 5.89x 10’ m,n = 2, 6, = 45.9°.

Multiplying both sides oEquation 6.13y d gives
dsiné, = ni

Dividing both sides by sif, gives

_m
~ sindy

_ 2x589x107'm
B sin459°
=1.64x10°%m

So the grating spacing isé4 x 10°° m.

Back < >

337



Contents

Question 6.11 Answer

Light of a different colour (i.e. a dierent wavelength) passes through the saime
diffraction grating as in Worked example 6.6 (e 1.64 x 10-° m). The first-
order difracted beam is &, = 24.1°. Find the wavelengthj, of this light.

Appendix A at the back of this book, considers a further application of trigonom-
etry in science; its use when dealing with vector quantities such as velocity and
force. You may find the material useful if you intend to study physics courses in the
future.

6.4 Small angle approximations

When the angle under consideration is small, some useful approximations can be
employed.

Question

Use your calculator to find s#) tand and co® (each to five significant figures)
for 6 = 0.5°.

Answer

sin05° = 8.7265x 1073, tan 05° = 8.7269x 1072 and cos (° = 0.99996.
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Question
Convert 0.8 to radians, again giving your answer to five significant figures.

Answer
360° = 2t
2m
sol = 360 2
7T
0.5° =05x 360

— 8.7266x 1072 radians

Comparing the answers to the above questions shows thatsiand targ ~ 0,
whend is measured in radians, and also that&esl. These results are true for all
small angles, in other words

For all small angles
cosf ~ 1
For small anglestated in radians

sind~ 6@ and tard=6
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These Small angle approximatiohkold within 0.5% accuracy for angles less that
about 0.1 radians (. Remember though that the final two approximations are only
valid for angles measured in radians.

Small angle approximations arise from the fact that, whé&nsmall in a triangle
like the one shown in Figure 6.2f,~ a and also the lengthy, of the straight side
opposite t@ approximates to the length of an arc subtended ioya circle with its

centre at point P and raditsor a. In other words (on Figure 6.27)

b~ s (6.14)
br s (6.15)

arc radius h—>,
arc radius a—\

h e
b1

Figure 6.27: A right-angled triangle with a small angle
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From trigonometry

ing = 2PP_ D _opp_b
Sme_hyp_h and tarﬁ_adj—a

For small angle# we can substitute froequations 6.14&nd6.15to give

Sing ~ & and tard = %
h a
From the definitions of a radiafQuation 6.)
S _ S
_—= — = 9
h a
So

sind~f and tard=éo
Also,
adj a

COSQ:h_yp:E

so wherh ~ a (i.e. for small angles)

cosd ~ 1
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Figure 6.28: Calculating the Moon’s diametanf to scalé.

Small angle approximations are useful in astronomy, because objects at a great
distance subtend a very small angle when observed from the Earth.

An arc drawn from the Earth and encompassing a distant object such as the Moon
(see Figure 6.28) has a very similar curvature to a line drawn from one side of the
Moon to the other (which is the Moon’s diameter) and the distance to the centre
of the Moon is approximately equal to the radius of this arc. This gives us a way
of calculating the Moon’s diameter, the second of the problems raised at the begin-
ning of the chapter. Methodology of the sort illustratedVorked example 6.1
frequently used when the size or distance to a distant object is required.
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Worked example 6.7

The Moon subtends an angl®f 9.06x10-3 radians (fromWorked example 6)2
and the distance to the Moo, is 384 x 108 mm. Find the Moon’s diameter.
Answer

From the definition of the radiarfEquation 6.) and with angles and lengths as
shown inFigure 6.28

¢_s
r

In this cases ~ D andr ~ L so
¢~D
T L

Reversing this equation and multiplying both sided hyives

DxL¢
~3.84x10° mx 9.06x 1073

(remembering fronBection 6.lthat strictly speaking, an angle measured in ra-
dians can be written without units).

This givesD ~ 3.48x 1P m, i.e. the Moon’s diameter is#88x 10° m.
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Question 6.12 Answer

A man standing on a beach observes that a passing car ferry subtends an angle
of 3.5°. The ferry is 86 m long. How far is it from the ferry to the man? Assume
that the ferry is perpendicular to the direction in which it is being observed, as
shown in Figure 6.29.

observer

Figure 6.29: A car ferry observed from a beanbt(to scalé.
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6.5 Learning outcomes for Chapter 6

After completing your work on this chapter you should be able to:
6.1 demonstrate understanding of the terms emboldened in the text;

6.2 use degrees or radians to measure angles, and convert between these two
systems of angular measure;

6.3 find an internal angle in a triangle if you have been told the other two internal
angles;

6.4 calculate the length of any side of a right-angled triangle if you have been told
the lengths of the other two sides;

6.5 use a scientific calculator to find angles from trigonometric ratios (sin, cos and
tan only), and vice versa;

6.6 use trigonometry to find unknown angles and sides in right-angled triangles;
6.7 apply small angle approximations when appropriate;

6.8 apply knowledge gained in this chapter and earlier in the course to scientific
examples involving angles and trigonometry.
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Logarithms

‘Seeing there is nothing (right well-beloved Students of the Mathematics)
that is so troublesome to mathematical practice, nor that doth more molest
and hinder calculators, than the multiplications, divisions, square and cubi-
cal extractions of great numbers, which besides the tedious expense of time
are for the most part subject to many slippery errors, | began therefore to
consider in my mind by what certain and ready art | might remove those
hindrances.

Thus wrote John Napier in the preface to his bddikifici logarithmorum canonis de-
scripioin 1614 (the quote is from the English translation of 1616). Napier (1550-1617)
was a wealthy Scottish landowner and theologian, who claimed to study mathematics
only as a hobby. Despite this, he invented blatharithms(or ‘logs’ for short) and
‘Napier’'s bones’ with the express purpose of making it easier to do multiplications and
divisions. Logarithms were in regular use for this purpose well into the second half of
the twentieth century.

Nowadays we have electronic calculators and computers to help with long multiplica-
tions and divisions, so you may be wondering why this course, written in the twenty-first
century, still includes a chapter on logarithms. Over the years, in addition to being an in-
valuable aid to arithmetic, logarithms have proved themselves to have many applications

Back <« > 346



Contents

and they remain widely used in these applications. For example, the pH-scale (used to
describe acidity) is based on logarithms, and the curved graph representing the variation
of activity with time for a radioactive source (see Chapté&idgure 5.34 can be turned

into a straight line by plotting thvgarithm of activity against time. This chapter will
explain what logarithms are, and demonstrate some of their uses in modern science.

7.1 Logarithms to base 10

Henry Briggs (1561-1630), the first professor of geometry at Gresham College, Lon-
don, visited Napier in the summer of 1615 and, with Napier’s blessing, developed the
type of logarithms known asgarithms to base 1@r ‘common logarithmis

You know, fromSection 1.3.xhat, for example,

10° = 1000 000
10° = 1000
1°=1
1
101=—-=-01
0 5 0
1
10° = — = 0.000 01
100

where 10 is known as the base number.
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The process of obtaining a logarithm to base 10 (usually described as ‘taking the
log to base 10’) is theénverseof raising the base 10 to a power. In each of the
above examples the logarithm to base 10 of the number on the right-hand side of
the equation is simply the power to which the 10 on the left-hand side is raised.
The logarithm to base 10 is abbreviated g this course (you may also see the
abbreviation log, without a subscript, used to describe a logarithm to base 10) so,

for example,

10° = 1000

\

10 raised to the
power 3 equals 1000

10°=1

10 raised to the
power 0 equals 1

1071 = 0.1

10 raised to the
power —1 equals 0.1

SO

SO

SO

logip 1000 =3

so the logarithm to
base 10 of 1000 is 3

logip1=0

so the logarithm to
base 10 of 1is 0

logm 0.1=-1

so the logarithm to
base 10 of 0.1 is -1

Back

348



Contents O

We can say, more generally:

The logarithm to base 10 gf is the power to which 10 must be raised in orcler
to equalp.

i.e. if p=10", thenlogyp = n.

The definition of a logarithm to base 10 applies for fractional valuestob. For

example, you know, from Section 1.3.4 th&fL0 can be written as 6. This
means that

1
3

10¥3 = 3/10 SO log (3/10°) =

10 ralsed to the

so the logarlthm to
power - L equals3/10

base 10 of 3/10 i 1s—

In fact, n could beany number; you may like to start by using your calculator to
check the following to four significant figures (use either tk¥ ‘or ‘' button or,
if your calculator has one, a button marked *1)0

10°1235=1.329

10346 = 2858

1071234 = 0.05834
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From the last of these we can say that

10724 =0.05834  so logio 0.05834 = —1.234

10 raised to the power
—1.234 equals 0.05834

so the logarithm to base
10 of 0.05834 is —1.234

Question 7.1

Without further use of a calculator, write down the values of:

(a) log;( 100 Answer
(b) log;,0.001 Answer
(c) log;p V10 Answer
(d) log;01.329 Answer

Since taking a logarithm to base 10 is the inverse of raising 10 to a power, thg ‘log
or ‘log’ button on a calculator should reverse the operation of th&Qtton. You

can use your calculator to check this for an arbitrarily chosen number, e.g. 4.8; the
10 %’ button should give 63 09334 45 and finding the logarithm to base ten of the

latter number returns the display to 4.8.
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Question 7.2

Use your calculator to find the following to 4 significant figures:

(a) l0g;p2 Answer
(b) log;72000 Answer
Question 7.3

(a) Use your calculator to find 10 to 4 significant figures. Answer
(b) Iflog,op = 1.5, what isp? Answer

It is worth noting that

e it is not possible to obtain the logarithm to base 10 of a negative number, or
of zero: if you try this on your calculator it will produce an error message.

e it is possible to obtain logarithms @ure number®nly; you cannot obtain
the logarithm of a quantity possessing units. Strictly, if a quantity possesses
units, then it should be divided by those units before taking the logarithm.
You will see how this is done in practice in Box 7.1 later in this chapter.
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7.2 Logarithmic scales revisited

Logarithmic scales, such as tliachter scaldfor earthquake magnitude and the
decibel scaldor relative loudness of sounds, were discussed in Chapter 2. The
word ‘logarithmic’ is used to describe such scales simply because they are based on
logarithms; both the decibel and the Richter scales are based on logarithms to base
10. It was stated in Chapter 2 that logarithmic scales are used when the quantities
being measured vary over a wide range (Siegire 2.3; the answer t@Question 7.2
illustrates why logarithms are so useful in this context. The log to base 10 of 2 is
0.3010, but the log to base 10 of 2000, a number a thousand times bigger than 2, is
just 3.3010 and it turns out that the log to base 10 of 2000 000 is only 6.3010. Thus
taking logarithms gives us a way of coping with a scale that covers a huge range of
values.

As a more specific example of this, consider the decibel. This unit was introduced in
Chapter 2but now it can be defined properly. The loudness of a sound in decibels,
relative to a threshold value (a sound which is just audible) is given by:

. . . . H I
relative intensity in decibels 10x log;q (I—)
0

wherely is the intensity of the threshold sound dnid the intensity of the sound in
question. So the sound of a pneumatic drill with an intensify? tithes that of the
threshold has:

relative intensity in decibels 10x Ioglo(lolz) =10x 12=120
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The pH scale, widely used as a measure of acidity, is also based on logarithms to
base 10. The pH scale is discussed further in Box 7.1.

Box 7.1 The pH scale

The pH scale was developed by the Danish biochemist Sgren Sgrenson ir 1909.
‘pH’ is an abbreviation for ‘pondis hydrogenii’ or ‘potential of hydrogen’ and
the scale is based on a measurement of the concentration of hydrogen ions in
the solution in question. Concentration and its units, mottwere introducec

in Box 3.2 and a hydrogen ion is a hydrogen atom which has lost an electron
and so is positively charged. The hydrogen ion concentration of pure water at
25°C is 1x 10~7 mol dnm 3, whilst that of lemon juice (more acidic than pure
water) is about & 10-3 moldn3 and that of household bleach (considerasly
less acidic than pure water) is about 1012 mol dn3. Note that the range of
values is very wide and also that all of the values are quite small, which i akes
them rather tricky to deal with. The definition of pH (which handles both of
these things) is:

hydrogen ion concentration in mol df

H=-lo
. 910( mol dmi3

Since the hydrogen ion concentration is measured in units of mol dmd we
divide by mol dn® before taking the logarithm, we are obtaining the logaritam
of a pure number, as required.
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From the definition of pH, the pH of pure water is:
1x 10~ mol dm‘3) ;
-1 =—10010(10° ") =—-(-7)=7
10( roldm3 910(10°7) = —(-7)
the pH of lemon juice is:
1073 mol dn3
_ |og10(8x 0" mo 3dm ) = —logyo(8x 10°%) = ~(-2.1) = 21
mol dm™
and the pH of household bleach is:
1x1 12 [ =3
o 10( S0 mosdm ) = —log;(10%?) = ~(-12) = 12
mol dni
Thus we have a much more manageable scale. The entire range of values for
hydrogen ion concentration, fromQlmol dn3 down to 1x 104 moldm 3,
is represented by pH values between 0 and 14. A pH of 7 (the value for pure
water) representing a neutral solution, with lower numbers being more ecidic
and higher numbers being less acidic.
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Question 7.4
Calculate, to two significant figures, the pH of the following:
(a) human blood, with a hydrogen ion concentration Answer
of 4.0 x 108 mol dnm3
(b) hair shampoo, with a hydrogen ion concentration Answer
of 3.2 x 10°% mol dm 3.
7.3 Rules of logarithms
Much of the usefulness of logarithms follows from several rules which are summa-
rized below:
log;o10" = n (7.1)
l0g;0 (P x @) = l0g1 P + 10900 (7.2)
|0910(g) = log;9 p - 100309 (7.3)
log;0(p") = nlogop (7.4)
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Equation 7.7is a restatement of the definition of a logarithm to base ten. The other

rules can be derived from the rules for manipulating exponents, given in Chapter 1.

The derivation oEquation 7.4s given in Box 7.2 for your interest (the derivations
of Equations 7.3 and 7.4 are similar).

Box 7.2 Deriving Equation 7.2
From the definition of a logarithm to base 10:

If p=10%then logyp=a (7.5)
If g =10 then logoq=b (7.6)

Multiplying p andq gives:
pxq=10%x 10P = 102*P
from the rules for exponents given 8ection 1.3.2

Taking the logarithm to base 10 of both sides:

log;o(p % @) = 1090 (10a+b)
=a+b (fromEquation 7.}

Buta = log;o p from Equation 7.5 ant = log;q from Equation 7.6 so

log;(p x 0) = l0g;9 p + 109509
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We can verifyEquations 7.27.3and7.4 by substituting numerical values f@
andn.

If p=2andqg= 1000, then fronEquation 7.2
|Oglo(2 X 1000): |Og]_02 + |oglo 1000

= 0.3010+ 3
= 3.3010

To five significant figures, this is the same value as a calculator gives fgy2690
(as obtained in thanswer to Question 7)2s0 Equation 7.2 seems reasonable. Note
that log ;2000 isexactly3 more than log, 2.

Again usingp = 2 andq = 1000, now inEquation 7.3

2
|Oglo (m) = Ioglo 2 - Ioglo 1000

= 0.3010-3
= -2.6990

To five significant figures, this is the same value as a calculator gives f0d§2,
so Equation 7.3 seems reasonable. Note thaf,@002 is exactly3 less than

1091 2.
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If p=2andn= 3, then fromEquation 7.4

=3x0.3010
= 0.9030

A calculator gives logy8 = 0.9031 to four significant figures, almost but not ex-
actly the same as the value obtained for,|¢8%) by using Equation 7.4. directly.
Equation 7.4 seems reasonable. If we had @sedtvalues for logy2 and log, 8

the answers would have been identical, but in working to a limited number of sig-
nificant figures we need to take care with rounding errors.

Worked example 7.1

Use the fact that log, 3 = 0.4771 to obtain a value for Igg3000 without using
a calculator. You should give your answer to four significant figures.

Answer
l0g;03000= log; (3 x 1000)
= 10g;3 + log; 1000 (fromEquation 7.2
= 0.4771+ log;(10°
=04771+3 (fromEquation 7.}

= 3.477 to four significant figures
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Question 7.5

Use the fact that logy3 = 0.4771, andEquations 7.1 to 7.# find the following
withoutusing a calculator. Give your answers to four significant figures.

(a) log;300, Answer
(b) l0g;,0.03, Answer
(c) logyo9. {Hint: remember that & 32.} Answer

These rules for the manipulation of logarithms explain how Napier’s invention was
used to simplify the processes of multiplication and divisigguation 7.2gives

a way of turning multiplication into additiorEquation 7.3gives a way of turning
division into subtraction an&quation 7.4gives a way of calculating powers and
roots. The rules of logarithms have other uses too, as illustrated in Box 7.3 on the
next page.

Back < > 359



Contents O

Box 7.3 k-value analysis

k-value analysis provides a methodology for studying thedent factors tha:
affect the size of a biological population. Consider, for example, a population
of 24 pairs of owls studied by H. N. Southern in Wytham Wood, near Oxford,
in 1952-1953. In order for a pair of owls to have young which themselves
will breed, various things must happen: for example, the parents must kreed;
the eggs must hatch; they must produce fledglings that survive to be owlets; the
owlets must live long enough to form pairs. Things can go wrong at every s:age!
The k-value (which you can think of as the ‘killing factor’) is a measure of :he
killing power of each of the things that can go wrong.

At each stage:
Ng
k=1 —
Oglo(NA)
where Ng is the number of individuals alive before this stage &dis the

number of individuals alive afterwards.

For example, 43 eggs were laiN{in Table 7.} but only 16 eggs hatched\§
in Table 7.) so thek-value for this stage is:
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Question

Use the data ifable 7.1to find kg = Ioglo(%)
5

Answer
Ng
ks = lo -
5 910 ( N5)

= |0910(1—5)
9
=0.2218

k-value analysis gives an easy way of comparing fffiece of diferent killing
factors andkytq), the totalk-value for all stages is

N 72
Kotal = 10930 — | = 10g;0( — | = 0.9031
Ns 9
Question
Use the data given imable 7.1to find ky + ko + k3 + kg + Ks.
Answer

K1 + ko + k3 + kg + ks = 0.1498+ 0.0741+ 0.4293+ 0.0280+ 0.2218
= 0.9030
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Note that, within rounding errors, this is the same as the value calculated for
Ktotal from

No
ktotal = |0910(N_5)

The resultkiotal = k1 + ko + k3 + kg + ks can also be proved from the rules of
logarithms:

ki = lleO(E_(l)) =109;9No — l0og;o N1 (from Equation 7.3

Similarly

N
ko = |0910(N—;) = log;9 N1 — log;o N2

and so on, until

N
k5 = loglO(N_:) = |Oglo N4 - Ioglo N5

So

ki + ko + K3 + kg + ks = (10939 No — 10919 N1) + (10919 N1 — 10g39N2) + ...
+ (10919 Na — 1099 Ns)
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Apart from logo No and logg Ns, all of the logarithms on the right-hand side
are both added and subtracted, so

ki + k2 + k3 + K4 + ks = 10g;9 No — 10919 N5

N
= |0910(N_2)

= ktotal
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7.4 Using logarithms to make curves straight

You were introduced, in Chapter 5, to various graphs of dif-

ferent shapes. For example a graph of the #&ed a circle

against its radius is aparabolg the equation of this graph is A
A = mtr2. Similarly, the graph of the number of radioactive

nucleiN against elapsed timds anexponentiglthe equation

of this graph isN = Nge . Logarithms can be used to turn

these and other curved graphs into straight-line graphs, and a
knowledge of the rules of logarithms (fro&ection 7.3 can be

used to interpret the resulting straight-line graphs and thus to (@) O r
determine physical constants suchiNgsandA.

7.4.1 Log-log graphs

Figure 7.1a shows a graph &f againstr for the equation
A = mr2. One method for turning this curve into a straight
line was introduced irfsection 5.4 Another method is to plot 0 logro
log; oA against log, r; as shown in Figure 7.1b this also gives (b)

a straight line. A graph of this type is known aslag—log

graph. But why should it be a straight line? Figure 7.1: Graphs of (& against
r, and (b) logy A against log,r for

the equatiorA = 7tr 2.

Back <« > 364



Contents O
Taking the log to base 10 of both sides of the equafiearr 2 gives:
logyoA = logyg (71 ?)
= log;gm + log;gr?  (from Equation 7.2
=10gg7t + 210gor (from Equation 7.4
We can reverse the order of the two terms on the right-hand side to give:
log;9A = 210g;gr + l0g g7
This can be compared with the general equation of a straight-line gyapmx+c
(Chapter SEEquation 5.}
loginA = 2 logior + logiom
y = m X + c
/
gradient intercept on
the vertical axis
This comparison implies that a graph of |gé\ against logyr should be a straight
line of gradient 2 and intercept on the vertical axis of;log.
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Figure 7.2 is an accurately plotted graph of
log, o(A/cmP) against log,(r /cm) for the data in

Table 7.2.

Question 7.6 Answer

Find the gradient and intercept on the vertit
axis of the straight line shown in Figure 7.2.

r/cm A/cm?  logy(r/cm) logq (A/cmz)
1 T 0 0.497
2 47t 0.301 1.099
3 o 0.477 1.451
4 16 0.602 1.701
5 251 0.699 1.895

Table 7.2: The radius and area of various circle - %4[

and corresponding logarithms to base 10

;a

2.6

2.4

2.2

2.0

1.8

1.6

(Alcm?)

1.4
>
o112
1.0
0.8

0.6

0.2

0

0.1 02 03 04 05 06 0.7 08 09 1.0
log,(r/cm)

Figure 7.2: A graph of log,(A/cn?) against logy(r /cm).
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Worked example 7.2

If a graph is plotted of log,y against logg X for the equatiory = 3x~2, what
will be the gradient and the intercept on the vertical axis?

Answer

Taking the log to base 10 of both sides of the equaier3x? gives

log,oYy = 10950 (3X_2)
=10g;93 + 10939 X2 (from Equation 7.2
=10g193 — 2100 X (from Equation 7.4

We can reverse the order of the two terms on the right-hand side to give

log;oy = —2log;o X + 10903

Comparison with the general equation of a straight-line grgphk, mx + c,
reveals thatn = -2 andc = log, 3, so the gradient of the graph will b& and
the intercept on the vertical axis will be IQg.

Figure 7.3shows graphs of againstx and logqy against log, x for the equa-
tiony = 3x~2, but note that it is possible to answer Worked example 7.2 without
plotting either of these graphs.

Back <« > 367



Contents

Question 7.7 Answer

If a graph is plotted of log,y against log, x for the equatiory = 2x%, what will
be the gradient and the intercept on the vertical axis?

Plotting graphs of the logarithm of one quantity against the logarithm of another
guantity can be used to solve scientific mysteries, as is illustrated in Box 7.4.

Box 7.4 Kepler’s third law

The Danish astronomer Tycho Brahe (1546-1601) was a meticulous observer
and recorder of data. He developed accurate sighting devices and kepl a de-
tailed record of the positions of the planets at regular intervals for more than 20
years. Tycho Brahe’s tables provided the data which enabled Johannes <epler
(1571-1630) to work out mathematical relationships describing the motion of
the planets.

Plotting the timeT it takes for a planet to orbit the Sun (known as its orb tal
period) against its average distanagfrom the Sun gives a graph of the shape
shown inFigure 7.4

There is clearly a relationship betwe&nanda but what is it? It took Kepler

a long time to work this out, but we can use logarithms to help. Let's start
by assuming that the relationship is of the folim= ka" wherek andn are
constants. The problem now is to find the value.of
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Taking the log to base 10 of both sides of the equaficaka” gives:

logyo T = logye (ka)
= log;gk + log;pa”  (from Equation 7.2
=log;pok + nlog;pa (from Equation 7.4

We can reverse the order of the two terms on the right-hand side to give:

Comparison with the general equation of a straight-line graphmx+c, shows
that a graph of logy T against logya will be a straight line with gradient and
intercept logg k.

Figure 7.5shows the same data &gyure 7.4 but now thelogarithmsof the
variables have been plotted.

Question

What is the gradient of the line fRigure 7.%
Answer

15-00
1.0-00
This means thal = kal®, i.e. T = ka®2. Squaring both sides givds = k?a®,

so the square of the time it takes for a planet to orbit the Sun is proportional to

the cube of its average distance from the Sun, Té.« a3. This is Kepler's
third law.

gradient= 15
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7.4.2 Log-linear graphs
We can turn graphs of equations suci\as Noe~! into straight-line graphs using
a similar methodology to the one employed in Section 7.4.1, but now we plot the
logarithm of one variable against the other variable itself (not its logarithm). The
resultant graph is known as bg-linear graph Figure 7.6 shows graphs o
against and logy N against for the equatiorN = Noe™. Note that the graph of
N against is a curve, but that the log—linear graph of {g&}l against is a straight
line.

N logig N

t

0 t 0
(a) (b)
Figure 7.6: Graphs of (aN againstt and (b) logyN againstt for the equation
N = Noe™ .
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To show why the graph of lggN againstt is a straight line we need to start by
taking the log to base 10 of both sides of the equaioa Noe~'. This gives:

l0g1oN = log;o (Noe™)
= log;oNo + logyge™  (from Equation 7.2
=1log;gNo — 1logipe  (fromEquation 7.4

We can reverse the order of the two terms on the right-hand side to give:

log;gN = —Atlog;ge+ 10919 No
= (-1logype) t + log o No

This can be compared with the general equation of a straight-line graphmx+c

logioN = —Mogloe t + logio No
y = m_ x + ©
gradient interéept on

the vertical axis

So a graph of logy N againstt will be a straight line with a gradient ef1log,ye
and an intercept on the vertical axis of JgéNo. Note that the gradient dfigure
7.6bis negative, as expected.
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Question 7.8 Answer

If a graph is plotted of log,n againstt for the equatiom = nge® (Chapter 5
Equation 5.3note thaihg anda are positive constants), what will be the gradient
and intercept on the vertical axis?

Graphs of logyy against logyx and log,y againstx are plotted so frequently
(though perhaps rather less frequently now than they were in the past, because of
computer graph-plotting programs) that special graph paper is available for the pur-
pose. ‘Log-linear’ (or ‘semi-log’) graph paper has divisions corresponding tg log

on the vertical axis only, so is useful for plotting graphs of;lpgagainstx.

Figure 7.7llustrates the use of log—linear graph paper in investigating the variation
of log;o N with t for real experimental data, in this case in an experiment to find the
half-life of the excited state of barium-137.

‘Log—log graph paper’ has divisions corresponding to;}pgn both axes, so is
useful for plotting graphs of logy against logg X.
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7.5 Logarithms to base e

The previous sections of this chapter have considered logarithms based on powers
of 10. Itis possible to use numbers other than 10 as the base for logarithms and the
other base which is widely used in science is ‘e’, the ‘special number’ introduced
in Chapter 5

In much the same way as taking the logarithm to base 10 is the inverse of raising
10 to a power, so takinglagarithm to base éabbreviated In or log is the inverse
of raising e to a power.

The logarithm to base e gf is the power to which e must be raised in order to
equalp,

i.e. ifp=e9theninp=aq.

A logarithm to base e is often referred to asiatural logarithrhand the ‘n’ in the
abbreviation ‘In’ can be thought of as a reminder of this.

Check that you can use your calculator to raise e to various powers. You are likely

to be using a button labelled*&in order to do this; the ‘EXP’ button has a totally @
different use. There is a need to take particular care over the meaning of ‘e’, ‘EXP’

and ‘exp’ since ‘exp’ is sometimes used to mean ‘e to the power\ so Nge ™!t

is sometimes written all = Ngexp(At) andn = nge® is sometimes written as
n = np exp@t).
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Check that you can get the following results (to four significant figures):

e3 =2009
e0.6931 = 2.000
e1-03679

Then we can say:

e3=20.09 S0 In 20.09 =3

e raised to the
power 3 equals 20.09

so the logarithm to
base e of 20.09 is 3

0.6931 _ 5 s0 In 2 = 0.6931

e raised to the
power 0.6931 equals 2

so the logarithm to
base e of 2 is 0.6931

el =0.3679 S0 In 0.3679 = -1

e raised to the
power —1 equals 0.3679

so the logarithm to
base e of 0.3679 is -1
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Since taking a logarithm to base e is the inverse of raising e to a power, the ‘In’ or
‘log,’ button on a calculator should reverse the operation of thebatton. You

can use your calculator to check this for an arbitrarily chosen number, e.g. 1.4; the
‘e* button should give £55199967 and finding the logarithm to base e of the
latter number returns the display to 1.4.

Question 7.9

Use your calculator to find the following to four significant figures:

(@) In4, Answer
(b) the number whose natural logarithm is 4. Answer

Note that the rules of logarithms, discussedection 7.3 apply to logarithms in
anybase, not just those to base 10. In particular, they apply to logs to base e too,
so:

Ine" =n (7.7)
In(pxqg)=Inp+Ing (7.8)
In (g) =Ilnp-Inq (7.9)
In(p") =nlnp (7.10)
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You may be wondering why logs to base e are useful; why don't we always use logs
to base 10? One reason why logs to base e are important stems from the fact that
taking a logarithm to base e is the inverse of raising e to a power. This means that
equations such a¥ = Noe~ can be turned intsimplerstraight-line equations by
taking logarithms to base e than is possible by taking logarithms to base 10.

Taking the log to base e of both sides of the equalioa Nge ™! gives:

INN =N = Noe™
=InNg + Ine™ (from Equation 7.3
=InNp — At (from Equation 7.7

We can reverse the order of the two terms on the right-hand side to give:
INN = —At + In Ng

This can be compared with the general equation of a straight-line grapmx+c

InN = At + InNy
y = m x 4+ c
gradient imercépl on

the vertical axis
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So a graph of IlN againstt (see Figure 7.8)
will be a straight line with a gradient 6f1
and an intercept on the vertical axis oiNp.

InN
Question intercept on the

A graph plotted of IlN against timet UEnE S EIG
for the decay of barium-137 is a straignt

line of gradient-4.4 x 1073 s™1. What is
the decay constant (the constanin the
equationN = Nge~)?

Answer

The gradient of the graph is 0 ¢
~-4.4% 103 51 so the decay constant

is44x103s™t,

Box 7.5 investigates the relationship be-
tween decay constamt and half-life, ty,.
The half-life of a radioactive decay process
(first introduced inChapter % is the time
taken for the number of radioactive nuclei, Figure 7.8: A graph of ItN againstt for the equation
and hence the activity, to fall by half. N = Noe .
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Box 7.5 The relationship between decay constant and half-life
The equatiorN = Ng e~ can be written as:

1 e 1
N:No@ (smcee :@)

Rearranging gives:

N
ot = No
N

Att =152, N=Ngx > (from the definition of half-life inSection 5.4i.e.

No

—~ =2

N
Soetl2 =2

Taking the log to base e of both sides of this equation gives:
In (e“l/Z) =In2
l.e. Aty2 = In2 (from Equation 7.§

1 In2 or : In2
= 1/2 = ——
t12 / A

Thus a decay constant ofdx 10-3 s1 (for barium-137) corresponds to a ha f-
life of In—2 = 1.6 x 107 s to two significant figures.
44x103s1
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Question 7.10 Answer

If a graph is plotted of Im against for the equatiom = ng e, what will be the
gradient and intercept on the vertical axis? (Note that this is the same equation
as used irQuestion 7.8but now you are asked to consider a graph ofdgainst

t rather than a graph of Iggn against.)

Box 7.6 The Arrhenius equation

The Arrhenius equation, named after the Swedish chemist Svante Arrhenius
(1859-1927), is one of the most important equations in chemistry. It links the
rate of a chemical reaction to the temperature at which the reaction takes place.
The equation is given by:

kg = Ae("Ea/RT) (7.11)
wherekg is the ‘rate constant’ at a particular temperatiireA is the Arrhe-

nius A-factor (orA-factor), E, is the Arrhenius activation energy (or activation
energy) andRis the ‘gas constant’.

Taking the log to base e of both sides of Equation 7.11 gives:
Inkg = In (Ae(‘Ea/RT))

=InA+IneCE/RD  (from Equation 7.3

=InA- %_ (from Equation 7.y
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We can reverse the order of the two terms on
the right-hand side to give:

Inkg
Ea !
Inkg = ——= +InA -« intercept on the
ET 1 vertical axis at InA
—Ea
=——=+InA
R T

This can be compared with the general equa-
tion of a straight-line graply, = mx+ c

gradient of —E,
R

_ EB1
Inkr = R T t In A .
y = m x + c 1
/ | T
gradient intercept on

the vertical axis

Figure 7.9: A graph of Ikg against XT for the equa-
tion kg = A e(-Fa/RT),

So if bothA andE, are constants, independent of temperature (a reasonable

assumption for most reactions when studied over a limited range of temper-

ature), a graph of lkg against ¥T will be a straight line of gradientEg/R

and intercept on the vertical axisAn A graph of Inkgr against 1T (as shown

in Figure 7.9) is referred to as an Arrhenius plot.
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The Arrhenius equation accounts
remarkably well for the tempera-
ture behaviour of the vast major-
ity of chemical reactions, including
those which occur in nature. For
many living organisms, the temper-
ature of their environment is hugely
important, and biological processes
are frequently temperature depen-
dent. Biological processes gener-
ally involve complex sequences of
chemical steps, yet in common with
many other composite reactions,
they often exhibit an Arrhenius-
type behaviour. Figure 7.10 shows 10
an Arrhenius plot for the heartbeat
of a diamond-backed terrapin. At
lower temperatures, the plot departs 0 : ‘ ‘

. . . . 3.3x 1073 3.4x1073 3.5x 1072
from linear behaviour, indicating a 1K
different control mechanism.

5.0

4.0

w
o

In (heart rate)

n
o

Figure 7.10: An Arrhenius plot of its heartbeat (rate) in the
temperature range I'& to 34°C.
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7.6 Learning outcomes for Chapter 7

After completing your work on this chapter you should be able to:
7.1 demonstrate understanding of the terms emboldened in the text;

7.2 use a calculator to find the logarithm (to base 10 or base e) of a positive
number;

7.3 demonstrate understanding of the relationship between powers of 10 and
logarithms to base 10;

7.4 demonstrate understanding of the relationship between powers of e and
logarithms to base €;

7.5 use the rules governing the logarithms of products, fractions and powers;
7.6 interpret a graph of logyy against logg x for a function of the typg = a xP:
7.7 interpret a graph of logy againstx for a function of the type = C e¥;

7.8 interpret a graph of Iy againstx for a function of the typg = C ek*.
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Probability and descriptive statistics

Statistical information is a familiar aspect of modern life, which features routinely
in, for example, news reports, sports commentaries and advertising. Scientists who
have collected large amounts of data by either counting or measuring quantities also
rely on statistical techniques to help them make sense of the data. Suppose you had
information collected from, say, three thousand patients, all with the same medical
condition but undergoing a variety of treatments. First you would need techniques
for organizing and describing the data, so that you could present a summary by
giving just a few numbers. This is the function of ‘descriptive statistics’, covered
in this chapter. Then you might want to analyse the data in some way, perhaps to
decide whether it supports the suggestion that treatment with one particular drug
is more dfective than other forms of medication. Chapter 9 will look at some of
the statistical tests that may be applied to raw data in order to come to objective
conclusions about what it really shows.

Statistical techniquesfier ways of dealing with variability, and natural variability

is something that scientists meet all the time. Each time an experiment or a mea-
surement is repeated, a slightlyffdrent result may be obtained; in any group of
people there will be a variation in height; the count of background radiation at any

Back <« >

383



Contents O

individual location fluctuates randomly from moment to moment. It is therefore
very important to be able to decide with some measure of certainty whether a par-
ticular result could have been obtained simply by chance or whether it has some real
significance, and the mathematics of chance and probability underpin all aspects of
statistics.

8.1 Chance and probability

Probability is expectation founded upon partial knowledge. A perfect
acquaintance witlll the circumstancedi@cting the occurrence of an
event would change expectation into certainty, and leave neither room
nor demand for a theory of probabilities.’

(George Boole, 1815-1864)

In many branches of science it is not possible to predict with any certainty what
the outcome of a particular event will be. There may be several possible outcomes
and all the scientist canfier in the way of quantitative prediction is an assessment

of the relative likelihood of each of these outcomes. For example, if a man and a
woman both carry the cystic fibrosis gene without showing symptoms of the dis-
ease, the chances are 1 in 4 that their first child willesu'rom the condition. Such
assessments of probability are a routine part of genetics, nuclear physics, quantum
physics and many other scientific disciplines.

In seeking to understand the nature and rules of probability it is often best to focus
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initially on everyday examples that are easily visualized. So Sections 8.1.1t08.1.4
feature many examples of tossed coins and rolled dice. However, you will also
get the opportunity to see how these ideas are applied to some genuine scientific
problems: for example, what is the probability that two people planning to have a
child will both turn out to be carriers of the cystic fibrosis gene?

8.1.1 Calculating probability

If a process is repeated in identical fashion a very large number of timestdhe
ability of a given outcome is defined as the fraction of the results corresponding to
that particular outcome.

number of times that outcome occurs

robability of a given outcome
P y 9 total number of outcomes

(8.1)

The nature of the fraction in Equation 8.1 shows that the probability of any given
outcome cannot be smaller than O or larger than 1. A probability of O represents
impossibility, while a probability of 1 represents inevitability. The closer the prob-
ability of a given outcome is to 1, the more likely that outcome is to occur. This is
illustrated diagrammatically ifigure 8.1

When a coin is tossed fairly, the likelihood of it landing on heads is equal to the
likelihood of it landing on tails. If it is tossed repeatedly a great many times, it will
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in theory come up heads half the time: the probability of tossing hea%lsTshe
theoretical probability of tossing tails is, of course, a%oThe sum of these two

probabilities is% + % = 1;i.e. it is certain that when the coin is tossed it will land
either on heads or on tails. This is an example of a general rule:

The sum of the probabilities of all possible outcomes is equal to 1.

A probability of 1 represents certainty.

Dice games involve rolling six-sided dice. Each face of a dice is marked with a
different score: one, two three, four, five or six. If the dice is not loaded and the
rolling is done fairly, then all outcomes are equally likely, so the probability of any
one of the six possible outcomes (for example scoring a thr%e)Again, the sum

of the probabilities of all the possible outcomesgis ¢ + ¢ + g+ + & = 1.

So on one roll of the dice the probability of scoring a threé and the probability

of notscoring a three i%. Another way of expressing this is to say that on a single
roll of the dice there is only one way of scoring a three, but there are 5 wayst of
scoring a three. Clearly, it is more likely than not that a number other than three
will be scored. This is just one illustration of another general rule:

The most likely outcome is the one that can occur in the greatest numter of
ways.
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Provided nothing biases the result to make one outcome inherently more likely
than others, the definition given ligquation 8.1can be rewritten to encompass the
number of ways in which a particular outcome may come about:

The probability of a given outcome

number of ways to get that particular outcome
total number of possible outcomes

(8.2)

Question
What would be the probability of throwing an odd number on one roll of a d ce?

Answer

There are three possible ways of getting an odd number (1, 3 or 5) and si:¢ pos-
sible outcomes in total, so Equation 8.2 shows that the probability of throwing
an odd number i%, which can be simplified to the equivalent fracti%»n

An alternative way of arriving at this conclusion is to say that as three o’ the
possible outcomes are even and three are odd, the chances of one throw re:sulting
in an odd number are the same as of it resulting in an even number. Henze the
probability of an odd number i.
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Question 8.1

What is the probability of one card drawn at random from affdbd pack of
playing cards being:

(a) a heatrt, Answer
(b) red, Answer
(c) an ace, Answer
(d) a picture card? Answer

Note: if you are unfamiliar with playing cards, you need the following infor-
mation. There are 52 cards in a pack, divided into four suits: hearts (r2d),
diamonds (red), spades (black) and clubs (black). Each suit contains 13 cards,
made up of one ace, nine ‘number’ cards (from 2 to 10 inclusive) and three
picture cards (Jack, Queen, King).

8.1.2 Probability and common sense

The concept of probability is a purely theoretical one. Strictly speaking, no ex-

periment measures a probability: all that we can measure is the fraction of times
a particular outcome occurs in a finite number of attempts. Inrtheitely long

run this fraction is expected to approach the theoretical probability, but in practice
we may never attain this limit. You could easily toss a fair coin four times and get

Back <« > 388



Contents

four heads. You could even toss it 20 times and still get heads on every single toss,

though that would be fairly unlikely. But the more tosses you made the more nearly

number of heads

the fraction would approach its theoretical value %)f
total number of tosses

A failure to appreciate the fact that the number of attempts needs éathEmely

large before the probability of a particular outcome will reliably approach the theo-
retical value is at the root of many popular misconceptions about probabilities. One
commonly held fallacy about coin tossing is that if the first ten tosses of a coin have
produced several more heads than tails, then the eleventh toss is more likely than
not to come up tails. This is not true. Although in the extremely long run the im-
balance between heads and tails is expected to be negligible, on any one toss heads
and tails are equally likely, irrespective of previous history. Coins have no memory!

Question 8.2

(a) You toss a single coin three times. It comes down heads on th&nswer
first two occasions. What is the probability that you will get
heads on the third throw?

(b) If you toss two coins simultaneously and they both come downAnswer
heads, what is the probability that when you then toss a third
coin it will also come down heads?
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8.1.3 Expressing probability

According toEquation 8.1 probability is defined as a fraction. However, as you
know from Chapter 1, a fraction such ésmay also be expressed as a decimal
number or as a percentage:

1
v 0.25=25%

The following statements:
o the probability of event A ig,
e the probability of A occurring is 0.25,
e there is a 25% probability of the outcome being A,
are therefore all equivalent.
In addition, particularly in spoken language, it is common to say,
e thereis a 1 in 4 probability of the outcome being A
and that too is equivalent to the other three statements.

For the rest of this chapter, probabilities will usually be expressed as fractions, but
you will meet the other notations in Chapter 9.
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8.1.4 Combining probabilities

The probabilities described in Sections 8.1.1 and 8.1.2 related to the

outcomes of a single process, such as repeatedly tossing one coin. Nowl H H H
suppose you were to toss three separate coins simultaneously. What i2 HH T
the probability that all three will show heads? One way of tackling this 3 H T H
problem is to write all the possible combinations of results. There are 4 H T T
in fact eight possible outcomes, all of which are equally likely: S T H H
Of the eight combinations, only one — shown in red — represents the g $ I.T. L
desired outcome of three heads. On the basisgpfation 8.2the prob- 3 T T T

ability of all three coins coming up heads is therefére

The same result can be obtained using theltiplication rule for probabilitie’s

the probability that the first coin will show heads%sand the same is true for the
second and third coins. The probability that all three will show heajig}sc3 = 1.

Notice carefully how this situation fiers from the one featured Question 8.2

both the scenarios described in Question 8.2 correspond to having a choice only
between outcomes 1 and 2 in the list above (because the outcome of the first two
tosses is already known as being two heads). The multiplication rule is expressed
in its most general form by saying that

If a number of outcomes occur independently of one another, the probability of
them all happeningpgetheris found by multiplying their individual probabili-
ties.
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An example of how this rule applies in a common genetic disease is given in Box
8.1.

Box 8.1 Probability and cystic fibrosis

Cystic fibrosis is the most common genetic disease in white European and Amer-
ican populations. It results from one of a number of mutations (errors) in € sin-
gle gene that codes for a protein involved in the transport of salts in the cells
of the body. A person with cystic fibrosis has numerous symptoms including
sticky mucus in the lungs which makes them prone to infections, abnorrnally
salty sweat and problems with the digestion of food. The cystic fibrosis 'CF)
gene is described as recessive, which means that individuals with only one: copy
of the gene, so-called ‘carriers’, show no symptoms of the disease and may be
unaware that they carry the gene. Individuals with two copies of the faulty CF
gene will show the symptoms of the condition.

Among white Europeans, the probability of being a carriejgls

For a child whose parents are both carriers, the probability of inheriting a copy
of the CF gene from both parents%js This is therefore the probability that the
child of such parents will have symptoms of the disease.

Question

Assuming that the gene is equally likely to be carried by men and women, what
is the probability that any two people planning to have a child together would
both be carriers?
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Answer
The probability of both partners being carriersiisx< 2 = sz
Question
What is the probability of a child born to white European parents having cy/stic
fibrosis?
Answer
The probability that both parents are carrier%%, and the probability tha:
a child whose parents are both carriers will have the disea%e IS0 the
probability of a child born to white European parents having cystic fibrosis is
1 ,1_"1
625 4 = 2500
(In fact the figure quoted for babies born with cystic fibrosis in the UK is about
1 in 2000, somewhat higher than this calculation would suggest.)
Question 8.3
(a) If you toss two coins at the same time, what is the probability Answer
of getting two tails?
(b) If you throw a pair of dice, what is the probability of getting a Answer
pair of sixes?
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Question 8.4

Under identical conditions, a seed of each of thréBedent species of plant A,
B, and C, has a germination probability §f1 and %, respectively. If we have
one of each type of seed, what is the probability that:

(a) the seed of A and the seed of B will both germinate? Answer
(b) one seed of each of the three species will germinate? Answer

(c) no seed of any of the species will germinatein§: first work Answer
out the probability of non-germination for each type of seed
individually.)

Another situation in which you might need to combine probabilities occurs when
outcomes are mutually exclusive (i.e. cannot occur together). For example, what is
the probability of gettingithera threeor a five on a single roll of a die? One way of
working this out is to say that there are six possible outcomes altogether and two of
them correspond to the desired outcome. So fExquation 8.2the probability of

the desired outcome éz 1 The same result can be obtained using tulition

rule for probabilities The probability of throwing a three ié and the probability

of throwing a five is alsc%, so the probability of throwingithera threeor a five is

1,1_2_1 : : : :
5+ 5= § = 3. Again, this example illustrates a general rule:
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If several possible outcomes are mutually exclusive, the probabilignefor
other of these outcomes occurring is found by adding their individual probabil-
ities.

Worked example 8.1

One card is drawn from a shled pack of 52. What is the probability of tre
card being either a heart or a diamond? (For a description of a standard pack of
cards, see the comment wiffuestion 8.J)

The card cannot be both a heart and a diamond: these outcomes are mutually
exclusive.

The probability of the card being a heartis
The probability of the card being a diamondjis

So the probability of the card being either a heart or a diamond is:

1 1 2 1
2727372
{Note: Since both diamonds and hearts are red suits, the question is equivalent
to asking ‘what is the probability of a single card drawn from the pack being
red?’ This was posed as Question 8.1b and answered then [fgeedi route,
though of course theesultwas the same!}
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Question 8.5 Answer

If you were to draw one playing card from a pack of 52, what would be the
probability of that card being either the Jack, Queen or King of diamonds?

There are also cases in whibtleth the addition and multiplication rules operate.
For example:

Question
What is the chance that in a family of three children only one will be a boy”

Answer

Assuming that the sex of a child is independent of the sexes of its siblings, the
probability that the first child is a boy |§ the probability that the second is a
girl is % and the probability that the third is also a girI%s So the probability
of this particular combination (boy—girl—girl) is

D

2 2 2 8
But in a family with just one boy and two girls, the boy may be the eldest, the
middle or the youngest child, and these possibilities are mutually exclusive. So
the probability of the family consisting of a boy and two girls (born in any orcler)
is

+

ool W

ol
+
ol
ol =
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(Note that in fact the assumption that a baby is just as likely to be a boy as a girl
is not quite true. UK statistics show that for every 100 girls born, 106 boys are

born.)

As with the coin-tossing example earlier, you may find that a table of the possi-
bilities helps in visualizing the situation. Of the eight possible combinatiors of
three children, only three — shown in red — comprise one boy and two gitls.

First child Second child Third child

Boy
Boy
Boy
Boy
Girl
Girl
Girl
Girl

Boy
Boy
Girl
Girl
Boy
Boy
Girl
Girl

Boy
Girl
Boy
Girl
Boy
Girl
Boy
Girl

Question 8.6

Boys Girls
3 0
2 1
2 1
1 2
2 1
1 2
1 2
0 3
Answer

If you toss two coins simultaneously, what is the probability of getting one head

and one tail?
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8.1.5 Probability ratios

Probability calculations are important in many branches of science, but nowhere more
so than in genetics. Box 8.2 describes early work in the field and provides some
illustrative data, based on plant-breeding experiments.

Box 8.2 Mendel’s peas

Gregor Mendel (1822—-1884) was an Austrian monk whose experiments in breeding

the garden pea laid the foundations of the science we now call genetics. Vendel

did not know about genes in the way that they are understood today, still less about
chromosomes and DNA. The rules of inheritance he developed were based o1 what
he observed of the external characteristics of his plants, and the probabilities of

plants with particular characteristics arising from specific breeding crosses carried

out in the following way:

1. Mendel used pollen from a plant to fertilize the flowers of the same flant
(so called ‘self-pollination’) for several generations until he was sure he had
‘pure breeding’ plants, i.e. plants that always producédpoing identical
in appearance to themselves. He called these pure-breeding plants the P-
generation (‘P’ for parental).

2. He then took pollen from one P-generation plant and used it to fertilize an-
other P-generation plant with affrent characteristic. By this process of
‘cross-pollination’ a pure-breeding purple-flowered variety could be crossed
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with, for example, a pure-breeding white-flowered one. Mendel callec the
offspring of this cross thesHfirst filial) generation.

3. Finally members of the fgeneration were self-pollinated and thi#&spring
of this process were called the second filial) generation.

Mendel investigated seven pairs of contrasting characteristics of his pea plants.
His results relating to three of these pairs of characteristics — flower colour, seed
shape and stem length, are shown below. Mendel found these characteristics to be
independent: the fact that a particular plant had white flowers had no beariag on
whether its seeds were round or wrinkled or on what height the plant was.

Flower colour: P (purple) crossed with P (white)
F; all purple-flowered
F> 705 purple- and 224 white-flowered

Seed shape: P (round) crossed with P (wrinkled)
F, all seeds round
F> 651 seeds round and 207 seeds wrinkled

Stem length: P (tall) crossed with P (short)
F1 all plants tall
F» 787 tall plants and 277 short plants

Note that in the case of Mendel’s peas, the heights of the plants were not distr buted
across a continuous range: there was ribadilty in deciding whether a particule.r
plant was ‘tall’ or ‘short’.
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Before working with this data, it is important to understand how the results have
been presented. Raw data from breeding experiments come in terms of descrip-
tions and numbers, as with the examples given in Box 8.2, but results are often
reported by expressing the numbers in the form o&@0. For example, in the
F>-generation, Mendel obtained 705 plants with purple flowers and 224 with white
flowers. Another way of expressing this is to say that purple- and white-flowered
plants appeared in the ratio 705 : 224 (said as ‘705 to 224").

We can think of ratios as simply another way of writing fractions. If, for instance,
we discovered from a paint chart that a green paint had been mixed from yellow
paint and blue paint in the ratio 3 : 2, we would understand that the green paint
was made up of three parts yellow paint and two parts blue paint. In other v%ords,
of the mixture was yellow ané was blue. Adding both sides of the ratio together
has given us the denominator of the fractions. Knowing the denominator, it is then
easy to express the ratio in terms of percentaées:% S0 60% of the mixture is
yellow and 40% is blue. A 60 : 40 ratio is exactly the same as a 3: 2 ratio — it is
just a matter of multiplying or dividing both sides of the ratio by 20. Sometimes it
is convenient to simplify even further, in this case by dividing both sides by two to
express the 3 : 2 ratio in the equivalent form of 1.5 : 1. Note that, like fractions,
ratios do not have units attached to them.
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Ratios are quoted in many applications. For example, fertiliz- N P K _Others
ers are characterized on their labelling by the ratio of two or
three major ingredients, each indicated by a letter. These let- bone meal 1 5 0 19
ters are N (for nitrogen, which is required for leaf growth), lawn tonic 4 1 0 5

P (for phosphorus, which in the form of phosphates is re- tomato food 6 5 9 80
quired for root development) and K (for potassium, which in
the form of potash is required for flowers and fruit). Typical
ratios for three common types of fertilizer are shown in Table
8.1.

Table 8.1: Ratios of ingredients in
common fertilizers expressed as ratios
N:P:K:others

Question

What is the fraction of P in bone meal?

Answer

The fraction of P in the whole i 2 = E = }
145+10 25 5

Question
What is the percentage of N in lawn tonic?

Answer

) . ) 4 4 40
The fraction of N in the whole |§1T+5 = 16" 100

So lawn tonic contains 40% N.
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Question
What is the percentage of K in tomato food?
Answer

9 9
+5+9+80 100

The fraction of K in the whole i%

So tomato food contains 9% K.

As already noted for the paint example, it is quite common for ratios to be expressed
in a form such that one of the parts is 1, even if this means that the other part is a
decimal number. Question 8.7 gives an illustration of a ratio expressed in such a
way.

Question 8.7 Answer

In the atmosphere, the ratio of the volume of oxygen to the volume of other
gases is 0.26 : 1. What percentage of the atmosphere is oxygen?

The ratio of 705 : 224 that Mendel obtained for purple- to white-flowered plants
(seeBox 8.2 can be simplified by dividing both sides of the ratio by 224 to obtain
the equivalent ratio of 3.15 : 1. Notice that one side of this ratio is e%is

exactlyequal to 1. However, the other side is not exact and a choice has to be
made about how many significant figures to quote; 2 or 3 significant figures are

usually sdficient in this context. His data relating to the other independent pairs of
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characteristics involving seeds and stem lengths can be simplified in a similar way
by dividing the larger number by the smaller, to obtain:

flowers purple :white = 705:224 = 3.15:1
seeds round : wrinkled= 651:207 = 3.14:1
stems tall : short = 787:277 = 284:1

In each case the ratio is close to 3 : 1. In other words, the character from the P-
generation that was present in all members of thgé&neration is present in only
about;31 of the F-generation. By the same token, the character that completely
vanished in the fgeneration reappears in abo}mf the K-generation. In fact,
modern understanding of genetics leads to the theoretical prediction of a 3 : 1 ratio;
the slight deviations observed in experiments like Mendel’s are the same as those
observed when tossing a coin. The more tosses of the coin, the more nearly the
ratio of heads : tails approaches 1 : 1. Similarly, the more pea plants included in the
experiments, the more nearly the ratios would be expected to approach 3 : 1.

The examples of Mendel's experiments on peas concerned the inheritance of just
a single pair of alternative characteristics: flowers were either purple or they were

white; seeds were either round or they were wrinkled; stems were either tall or they

were short. When there are more than two options for particular characteristics, the
calculations become a little more complicated, but the principles remain exactly the

same, as demonstrated by the following worked example.
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Question

On a maize cob, four types of grain can be distinguished: dark smooth ones,
dark wrinkled ones, pale smooth ones and pale wrinkled ones. The agg egate
results of counting numbers of the four types on 20 cobs all from the same plant
were:

dark smooth dark wrinkled pale smooth pale wrinkled
4791 1587 1617 531

Assuming that the theoretical ratios for these characteristics are whole nurabers,
what would be the theoretical probability that a single grain chosen at random
from a large number of cobs would be a pale smooth one?

Answer

Dividing through by the smallest number in the sample, which in this case is
531, gives:

dark smooth dark wrinkled pale smooth pale wrinkled
9.02 2.97 3.05 1

If it is assumed that the theoretical ratios are whole numbers, these data st-ongly
suggest that the ratios would be:

dark smooth dark wrinkled pale smooth pale wrinkled
9 3 3 1
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The theoretical fraction of grains that are pale and smooth is therefore

3 _3
9+3+3+1 16

This is also the probability of one grain selected at random being pale and
smooth. This probability could be expressed as a frac(q%)] a decimal num-
ber (0.1875) or a percentage (18.75%).

8.2 Descriptive statistics

Scientists collect many fierent types of information, but sets of data may be very
loosely classified into two étierent types. In the first type, so-called ‘repeated mea-
surement’, an individual quantity is measured a number of times. An astronomer
wanting to determine the light output of a star would take many measurements on a
number of diferent nights to even out théects of the various possible fluctuations

in the atmosphere that are a cause of stars ‘twinkling’. In the second type of inves-
tigation, so-called ‘sampling’, a proportion of the members of a large group are
measured or counted. A botanist interested in the average size of Primrose plants
in a wood would try to choose representative samples of plants frifareit parts

of the wood and measure those.
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8.2.1 Repeated measurements

Scientists are always concerned with the reliability and precision of
their data, and this is the prime reason for them to repeat measur
ments many times. Consider the photograph in Figure 8.2, which
was produced by a firaction grating illuminated with red light (see
Box 6.6. To determine the wavelength of the light it would be _.

0x 6.9 | wav g gnt 1t wou @I ure 8.2: The pattern formed by a

necessary to measure the distances between the lines. Because t % . i
lines are rather fuzzy each measurement would need to be repeate raction grating

a number of times.

Generally the process of repeating measurements of a particular quantity would
lead to a number of slightly @ferent results being obtained. Measured values of
one quantity that are scattered over a limited range like this are said to be subject
to ‘random uncertainty Measurements for which the random uncertainty is small
(i.e. for which the range over which the measurements are scattered is small) are
described aprecise The ‘best’ estimate scientists could make of the distance be-
tween each line in Figure 8.2 would be some sort of average of the measured values.

The scatter inevitably associated with raw data begs various questions. For instance,

¢ how close to the ‘true’ value is this calculated average value?

¢ how close to the ‘true’ value is one typical measurement likely to be?

e conversely, how probable is it than any given measurement will be close to
the average value?
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Matters will be further complicated if there is some inherent error or bias in the mea-
suring instrument, such that all the readings are, say, too large by a fixed amount.
Such measurements are said to haveyatematic uncertainty Note that unless
measuring instruments can be constantly checked against one another, it is easy for
quite large systematic uncertainties to creep unnoticed into measurements. Mea-
surements for which the systematic uncertainty is small are descritertasate

Of course to get anywhere near to the ‘true’ value of a quantity, measurements have
to be both accurate and precise!

8.2.2 The distribution of repeated measurements ~ Measurement  Cell constgnin

1 2.458
As noted in the previous section, if the same quantity is mea- 2 2.452
sured repeatedly, the results will generally be scattered across a 3 2.454
range of values. This is perhaps best illustrated using a real ex- 4 2.452
ample. Table 8.2 shows 10 measurements of a quantity called the 5 2.459
‘unit cell constant’ for an industrial catalyst used in the refining 6 2.455
of petrol; this is an important quantity which determines how well 7 2.464
the catalyst works, and can be measured by X-réyadition tech- 8 2.453
niques. Notice that the cell constant is very small and is measured 9 2.449
in nanometres. 10 2.448

Table 8.2: Repeated measurements
of the unit cell constant for a batch
of industrial catalyst
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L NN »

2.44 2.45 2.46 2.47
cell constant/nm

Figure 8.3: Histogram of data from Table 8.2.
When the number of measurements is in-

creased, the variation in the height of the bars
gradually becomes smoother, as illustrated in
Figure 8.4.

It is always dificult to see patterns in lists or ta-
bles of numbers. If the data is put into the form
of a histogram, as has been done in Figure 8.3,
the task becomes much easier. The histogram
provides a visual representation of the way in
which the measurements are distributed across
a range of values. In fact the pattern on Figure
8.3 is not particularly obvious, because the data
set is quite small, consisting of only ten mea-
surements.

number of measurements
N
|

25
20 —
15
10

> FF
0 — ! —

2.44 2.45 2.46 2.47
cell constant/nm

Figure 8.4: Distribution of a larger number of

repeated measurements.

number of measurements
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When substantially more measurements have ¢

been accumulated, the size of the intervals can é 300 | B

be reduced while still having a reasonable num- £ 200 - 1 7

ber of measurements within each interval. This §

again tends to produce a smoother distribution, € |

as shown in Figure 8.5. Note the changes of © 100 -

vertical scale between Figure 8.3, 8.4 and 8.5. é 1

With an extremely large number of measure- = 02_44 2_‘45 2_‘46 5 47
mentsandvery small intervals on the horizontal cell constant/nm

axis, the ‘envelope’ of the distribution will tend  Figyre 8.5: The distribution becomes smoother as the

in Figure 8.6.

These distributions all give some impression of £

the spread of the measurements, and the way the 2

results cluster at the peak of the distribution in =

Figure 8.6 suggests that this peak might repre- &

sent the average or ‘best estimate’ value. How- £

ever, a scientist would want a more quantitative ©

and succinct way to describe such results and to &

communicate them to other people working on 5 ' '

similar problems. The mean and standard de- 2.44 2.45 2.46 2.47
viation are the measures most commonly used cell constant/nm

to summarize large sets of data with just a few Figure 8.6: The distribution for an extremely large
numbers. number of measurements.
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8.2.3 Mean and standard deviation for repeated measurements

In everyday terms, everybody is familiar with the word ‘average’, but in science
and statistics there are actually severdlaient kinds of average used foifférent
purposes. In the kind of situation exemplified Bgble 8.2 the sort to use is the
mean(or more strictly the arithmetic meai) For a set of measurements, this is
defined as the sum of all the measurements divided by the total number of measure-
ments made.

Question
What is the mean of the resultsTable 8.2

Answer

The sum of all the measurements isB nm. There are 10 results, so the

. 24544 nm - , !
mean value is————, or 24544 nm to 5 significant figures. (The reason ‘or

giving the result to this number of significant figures will be discussed shortly,
but for the moment let us proceed without worrying too much about this aspect
of the calculation.)

To turn this description of how to calculate a mean into a formula, each element
has be allocated a symbol. So let us say that we have mausasurements of a
quantityx. Then we can call the individual measuremexts<, X3, ... Xy (where

x1 is properly said either as ‘x subscript one’ or as ‘x sub one’, but also sometimes
as ‘x one’ provided the meaning remains clear). The mean value of any quantity is
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usually denoted by writing a bar over the quantity so the meani®fvritten asx
(and said ‘x bar’). Possible (and correct) formulae are therefore:

X1+ Xo+X3+...+ Xp
n

X

or
_ 1
x:ﬁ(x1+x2+x3+.‘.+xn)

However, the sum is tedious to write out, so a special ‘summation’ sigfthe
Greek capital letter sigma), is used to denote the adding up process, and the mean
of n measurements can be neatly written as:

" (8.3)
1

X =

Sl

n

Thei = 1 below the summation sign indicates that the first valueifor the sum is

X1, and then above it indicates that the last value in the sum,isin other words,

all integer values off (x1, X2, X3, etc.) are to be included up t@. (The summation
sign with the information attached to it is usually said as ‘sum of x sub i from one
ton’.)

We now want a quantitative way of describing the spread of measurements, i.e.
the extent to which the measurements ‘deviate’ from the mean. There are 5 steps
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required to do this, which are laid out below, ahable 8.3shows the results of
following this ‘recipe’ for the data ifable 8.2

Step 1

Calculate the deviation of each measurement. The devidtiohany individual
measurement is defined as thf@lience between that measurement and the mean
of the set of measurements:

d=x-X (8.4)

Notice that the value af; may be positive or negative depending on whether a par-
ticular measurement is larger or smaller than the mean of the set of measurements.
At this stage the deviations have been expressed as decimal numbers.

Step 2
Calculate the squares of each of the deviations (f@ These will, of course, all
have positive values.

By this stage the values have become very small so the column has been headed in
such way that the numbers entered in the column represent the vedﬁedbvﬁded

by 10°°.
Step 3

n
Add together all the squares of the deviations (E.diz).
i=1
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Step 4
Divide by the total number of measurements (ngto obtain the mean of all the Table 8.3
square deviations. This may be written as:
— 1 n
2
d2 = - Z d (8.5)
i=1
Step 5
Take the square root of this mean to obtain the ‘root mean square devigtidt’
is this quantitys, that is known as thetandard deviatiarStep 5 may be written as:
or, substituting fox? from Equation 8.5, as:
l n
_ 2
i=1
Sinced; was defined ifcquation 8.4as(x; — X), one final substitution into Equation
8.6 givess, in its most frequently used format:
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The standard deviatios, for n repeated measurements of the same quart ty
is given by

n

& = J%Z (6~ %)? (8.7)

i=1

At the end of this process, we can summarize all the data in Table 8.2 just by
saying that the ten measurements had a meammé#2 nm and standard deviation
0.0046 nm. The calculation of standard deviation is givefahle 8.3

There are several things worth noting about this result and the data in Table 8.3.

First, all the quantities have units associated with them. The valueswére
measured in nanometres, so deviations will also be in nanometres and the squares
of the deviations in nf as shown in the column headings in the table.

A second useful feature to notice is that the sum of all the deviations is equal to
zero.

idi =0
i=1

If you are interested in knowing why this is always true, there is an explanation in
Box 8.4 (though you do not need to work through the full explanation in order to
make use of the result). At the end of Step 1 it is well worth adding up all the values
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you have calculated for the deviations to ensure that they do indeed total zero. If
they don’t, you have made an arithmetic slip somewhere which needs to be put right
before you proceed to Step 2.

Box 8.4 The sum of the deviations is always equal to zero

It is quite easy to work out from first principles the reason for the sum of the
deviations being zero in the special case in which the set consists of just two
measurements; andx,. The mean would then be:

X1 + X
% = 12 2
and dp = xp—-X = X2_X1'2"X2 _ Xz—%—g
Therefore
:(Xl—%—%)+(X2—§—%) (rearranging the terms)
=0

This argument can be extended to any number of values @ an exercise in
algebra you might like to try it for three measurements. However many values
of x are chosen, it is always the case that the sum of the deviations is zera.
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Looking now at the details of the calculation, the original measurements of length

were made to the nearest picometre (i.e00Q nm), represented by 3 places of

decimals (i.e. 3 digits after the decimal point). More digits were carried in the

calculations to avoid rounding errors. However, what is the appropriate number of

digits to quote in the final answer? Well, when we added up all the 10 results in
n

Table 8.3 we obtainedz X = 24544 nm (i.e. 5 digits in total). We divided this

sum by an exact numlbér (10) so we are entitled to retain 5 digits in the result of
this division, givingx as 24544 nm. It is therefore valid to retain one more decimal
place in the mean value than we had in each of the measurements individually.
After all the whole point of repeating the measurement many times and averaging
is to improve our confidence in our final result! Having quoted the mean-as
2.4544 nm, it then makes sense to quote the standard deviatiodC50m.

The fact that here the standard deviation is quite small in comparison to the mean
shows why;, in this context, it is more sensible to think in terms of places of decimals
rather than significant figures. Because leading zeroes do not count as significant,
the standard deviation is actually only given to 2 significant figures, whereas the
mean is given to 5. In such circumstances it is easier to think of the mean and
the standard deviation as being expressed to the same number of decimal places
(always assuming of course that they are given the same units).

In summary, it is often reasonable to give the mean to one more decimal place (or
one more significant figure) than was used for each of the individual measurements,
and then to quote the standard deviation to the same number of decimal places as
the mean.
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8.2.4 Using a calculator for statistical calculations

Table 8.3shows all the values for each step in the process of calculating a standard
deviation, so that you can see what the operations encapsulatéduagion 8.7
actually entail, but you will probably be relieved to hear that it is not usually neces-
sary to carry out such detailed calculations. Scientific and graphics calculators (or

computer spreadsheets) can do most of the drudgery for you.
You will need to consult the instructions for your own calculator in order to find out
how to do this, but usually the process involves the following steps.

Step 1
Put the calculator into statistical mode.

Step 2

You should then be able to input all the data; sometimes the data is stored via a
memory button, in other cases it can be entered and displayed as a list. Try this out
with the following set of numbers:

8,6,9,12, 10

Step 3

Having input the data, you can then get most calculators to tell you the number of
items of data. If your calculator can do this, it should return the answer ‘5’ here. It
doesn’t matter if your calculator doesn’t have this function, but if it does it's well
worth using this checking device. If you have to input a long string of data values,
it's quite easy to miss one out inadvertently!
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Step 4

When you know you have the data correctly stored, find out how to display the

mean; you should get the answer ‘9’ here.

Step 5

Now find out how to display the standard deviation. Many calculators use the sym-

bol o, for standard deviation, rather thap (o is the lower case version of the

Greek letter sigma). Do be careful with this step: your calculator may also have a

button labelledrn_1 or s,-1. Don’t use it by mistake! You should get the answer

‘2’ here.

Once you are sure you know how to use your calculator to perform calculations

of mean and standard deviation, apply this skill to Question 8.8. To answer such

guestions, you could choose to work out a full table similafable 8.3 but that

it is a very time-consuming process, so it is worth becoming confident in using the

statistics buttons on your calculator.
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Question 8.8 Answer Measurement Diamef@nm

A sample of a particular manufacturer’s ‘coarse 1 1.09
round wire’ was measured at ten points along 2 1.00
its length. The data is given in Table 8.4. 3 1.25
Calculate the mean and standard deviation of 4 1.24
these measurements. 5 1.29
6 0.89
7 1.09
8 1.14
9 1.22
10 1.01

Table 8.4. Repeated measurements
of the diameter of a wire.

8.2.5 How likely are particular results?

In real experiments, as opposed to hypothetical ones, it is very rare that scientists
make a sfiiciently large number of measurements to obtain a smooth continuous
distribution like that shown ifrigure 8.6 However, it often convenient to assume a
particular mathematical form for typically distributed measurements, and the form
that is usually assumed is thermal distributionso-called because it is very com-
mon in nature. The normal distribution corresponds to a bell-shaped curve which
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is symmetric about its peak, as illustratedRigure 8.6 Repeated independent
measurements of the same quantity (such as the breadth of an object, or its mass)
approximate to a normal distribution. The more data is collected, the closer it will
come to describing a normal distribution curve.

The peak of the normal distribution curve
corresponds to the mean value of the distri- mean value
bution, as shown in Figure 8.7. This figure

also illustrates how the standard deviation
of a set of measurements is related to the
spread. Although it is beyond the scope of

this course to prove this, the area under a ~Sp
portion of a distribution curve within a cer- .
tain range represents the number of mea- £8n

surements that lie within that range, as a

proportion of the whole set. For a normal  Figure 8.7: The shaded area under this normal distributior

distribution, it tumns out that 68% of the  cyrve represents the measurements that lie within one star
measurements lie within one standard de- 4ard deviation of the mean.

viation (i.e. within+s,) of the mean value.

Conversely, 32% of the measurements will lie outside this range. If you make a
single additional measurement, it is therefore just over twice as probable that this
one measurement will fall within one standard deviation of the mean than that it
will fall outside this range. For a normal distribution, it also turns out that 95%
of measurements are likely to fall within two standard deviations of the mean and
99.7% within three standard deviations of the mean.
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Remembering that precise mea-
surements were defined 8ec-
tion 8.2.1 as those for which
the scatter was small, you will
appreciate that the more pre-
cise a repeated set of the same
number of measurements of a
particular quantity, the more
highly peaked the distribution

W w v y z z
curve and the smaller the stan-
dard deviation will be. A very ?recisiog of measuremerét increasin)g
P : i.e. random uncertainty decreasing);
broad distribution on the other e e lay i ey

hand, corresponds to measure-

ments with considerable scatter

and the standard deviation will  Figure 8.8: Normal distribution curves for three independent sets o

be large. These trends are illus- measurements, with the same number of measurements in each set.

trated in Figure 8.8. measurements of quantity are subject to large random uncertainties,
while those of quantity are more precise and thoseznore precise
still.
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8.2.6 Dfferent types of ‘average’

Figure 8.7showed that if the data has a normal distribution the mean value corre-
sponds to the peak of the distribution. Normal distributions of data are very com-
mon in science, but by no means universal. Figure 8.9 shows some other possible
distributions, three of which are symmetric and one of whickkewed(i.e. not
symmetric).

Figure 8.9: Types of
mean distribution. (a) is the
normal distribution: a

i i symmetric bell shaped
/:—\ | curve. (b) is also
! ! symmetric, but the

@ (b) shape of the curve
does not approximate
mean to the normal

distribution. (c) is a
skewed distribution.
(d) is symmetric, but
displays two equal

© @ maxima.
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In many cases, especially if the distribution is skewed, the mean is not the best way
of representing an average or typical value. Imagine for example a small company
with a single owner who pays himself £900000 a year and 10 employees who
are each paid £10000. The statement that the mean annual income of these 11
workers is more than £90 000 (i.e. £1000 000 divided by 11) — although true —
is somewhat misleading! In such cases, two other quantities, the mode and the
median, may represent the data more fairly.

The modeis the most frequently occurring value in the set of data. If the data is
plotted on a histogram or a bar chart, the mode will be the value corresponding to
the tallest bar.

Question
What is the mode of the earnings in the company described above?

Answer

The mode is £10000. This is certainly more representative of the typical 2arn-
ings than the mean would be!

Note that in some cases there may be more than one value for the mode; for exam-
ple, that would be the case for the distribution showFRigure 8.9d
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The medianis the middle value in a series when the values are arranged in order
of size. This means that half the measurements have values that are bigger than the
median and half have values that are smaller than the median. If there are an odd
number of measurements, the median is the middle measurement; if there are an
even number of measurements it is the mean of the middle two values.

To see how this works, consider the following example. Ten plants of a particu-
lar species were chosen at random and the number of flowers on each plant were
counted. The results were:

8:7:4:8;10;7;9:7:8; 7;
Question

What is the mode for this data?

Answer

The best way of answering this is to compile a table showing the numbzr of
plants with particular numbers of flowers:

number of flowers 4 7 8 9 10
number of plants 1 4 3 1 1

The mode is 7 flowers. There are more plants with 7 flowers than with any other
number of flowers.
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Question
What is the median for this data?

Answer

To answer this, we have to order the data. In increasing numbers of flowets, the
results obtained were:

4:7:7:7:7:8:;8;8;9; 10.

With a sample of 10 plants the median is the mean number of flowers off'the 5
and 6" plants (counted in either ascending or descending order). In ascending
order, the 8 plant has 7 flowers and th&'éas 8, so the median %—8 =7.5.

Question 8.9

The heights of nine dlierent specimens of the same type of plant were measured
in centimetres, and the results in descending order were:

8.6;8.3;8.2;7.9,78,7.8;7.4;7.3;,7.1
(a) What is the median of this data? Answer

(b) What is the mean of this data? Answer

Box 8.5 illustrates a case in which the mode and median give a more representative
summary of the data than the mean.
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Box 8.5 Seabird migration
In a study of Storm Petrels (small seabirds), sev-

eral thousand birds were marked with identifying Recovery place Distangen Number
rings when they were at their nests on a Shet- of birds
land island. After nesting, the birds dispersed. Shetland (Lerwick) 49 8
Twenty-eight of the birds were subsequently re- Shetland (Foula) 77 5
ported as having been recovered in other areas afair Isle 114 5
shown in Table 8.5. Orkney 157 2
Taking all 28 observations into account, the mean gzlr?w?;?:ges 23232 31
distance from their nest site at which the birds .
have been recovered is 554«m. However, this SIes S Z

’ Cape Clear 1114 1

is not a very useful way in which to summarize
the data, because in fact 13 out of the 28 birds

(i.e. nearly half) moved less than 100 km, andrppe g 5: The recovery location of Storm Petrazls

only two moved further than the mean distancej,gq j at their nests on one of the Shetland islands
The median distance is 114 km and this is a more

typical value.

South Africa (Durban) 10568 1

This example shows how the mean can be highly dependent on a small number of measurem2nts th
are a long way from the mode. In this case, the single recovery from South Africa has an enormou
influence on the mean. The median is ‘resistant’ to extreme values. Even if the bird recovered in Soutt
Africa had stopped in Morocco, or alternatively if it had gone to New Zealand, the median value would
have remained 114 km.
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8.2.7 Samples and populations

It is no accident that the examples used in Sections 8.2.3 and 8.2.4 to illustrate
the statistics for repeated measurements of individual quantities were drawn from
chemistry and physics. Experiments involving repeated measurements of some
quantity are typical of the physical sciences. There are, however, many other types
of scientific work in which a typical procedure is to collect data by measuring or
counting the members of a sub-set of things which form part of a larger group,
and Section 8.2.6 contained several examples. In this type of work, the sub-set of
members that are measured or counted is calleddh®leand the larger group is
called apopulation Although often employed in the context of biology to describe

a group of organisms that might breed with one another, the term ‘population’ is
used much more widely in statistics to mean a collection of things or events. Ex-
amples of statistical populations could include all the sand grains on a beach, all
the leaves on a tree, all the people in England with blood group AB, or all the visits
made to the Science Museum in March.

It is generally the case that the members of any one population display some vari-
ability; for instance, not all the leaves on an oak tree will be exactly the same size.
Furthermore, dferent populations often overlap with respect to whatever we might
be measuring or counting. But despite this variability and overlap, what scientists
often want to know is whether there seem to be systemdfierdnces between the
populations. Indeed, only if there do seem to be suéfedinces do they accept
that they really are dealing with more than one population. Failure to find evidence
of systematic dierences between the leaves of oak trees growing on sandy soil and
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those of oak trees growing on clay soils would suggest that the leaves (and trees)
were members of the same population, or in other words that soil conditions have
no overall éfect on the leaves of oak trees. The statistical techniques used in look-
ing for systematic dferences between populations are the subject of Chapter 9, but
in order to make use of these techniques it is necessary to be able to summarize
the data that has been collected. You savéattion 8.2.3hat for repeated mea-
surements data sets could be summarized by quoting just two quantities: the mean
and the standard deviation. This is also true for samples drawn from populations,
but the mean and the standard deviation take on slighifgrént meanings in this
context.

It is normally the case that data cannot be collected on all members of a population.
It would indeed be impractical to attempt to measure every leaf on an oak tree! By
the same token, itis usually impossible to knowtitue mean of some quantity for a
whole population. Thisttue meah(also known as the ‘population mean’) is given

the symbolu (the Greek letter ‘mew’), with the understanding that this quantity

is generally not only unknown but unknowable. What wan easily calculate,
however, is the mean of the quantity as measured for a sample drawn from the
population. This is given the symbgland calculated usingquation 8.3 exactly

as we did in Section 8.2.3. Provided the sample is unbiasexthe best estimate

of u that we can obtain.

As with the mean, the true standard deviation of a population can usually never
be known with certainty. Again, the best estimate we can obtain must come from
the distribution of values in a sample drawn from the population. However, this
time it isn’t appropriate to use the formula for the standard deviation of repeated
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measurements of one quantity which was:

1< N
Sn = Jﬁ;o«—x)z (8.7)

Instead a slightly dferent formula is used, namely:

1 < _
Sn = Jm;(m—x)z (8.8)

sh-1 is often called thesample standard deviatidpecause it is calculated fror
data taken for a sample of the population.

The value determined fag,-1 provides the best estimate of the standard deviation
of the population. It will not have escaped your notice that the orffgdince be-
tween the two formulae is that in Equation 8.8 we are dividingrby (), whereas

in Equation 8.7 we were dividing by. This means tha$,_1 must always be larger
thans, (because we are dividing by a smaller number). This allows for the possi-
bility that within the whole population there may be a few extremely high or low
values of the measured quantity which will not necessarily be picked up in a sample
drawn from that population.
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Sh—1 is also often called theestimated standard deviation of a populatioe-
cause, provided the sample is chosen without bias, it is the best estimate that can
be made of the true standard deviation of the population.

You should now check that you can use your calculator to determine the sample
standard deviatios,_1 for a set of data. For this purpose, try taking the same set
of numbers you used in Section 8.2.4 to check how to calcglat€éhese numbers
were:

8,6,9, 12, 10.
The first four steps are the same as before, only Step 5 willfBerelit.
Step 1
Put the calculator into statistical mode.
Step 2
Input all the data.
Step 3

If your calculator can tell you the number of items of data, check that it gives the
answer ‘5’ here.

Step 4

When you know you have the data correctly stored, display the mean; you should
get the answer ‘9’ here.
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Step 5

Now find out how to display the sample standard deviation. The appropriate button
will probably be markedr,,_1 or s,—1. You should get the answer ‘2.2’ here (to one
decimal place). Don’t use the, or s, button by mistake!

While this example is useful to familiarize yourself with the process, it doesn't rep-

resent a realistic scenario, not least because the hypothetical data set is so small.

Because the aim is to estimate the mean and standard deviation for a whole popu-
lation by carrying out measurements just on a sample, it is important to ensure that
the sample is representative of the population as a whole and that usually requires
it not only to be chosen without bias, but also to be reasonably large. In Question

8.10, the sample consists of 20 plants.

Question 8.10 Answer

Suppose that the number of flowers were counted on 20 orchid plants in a calony,
and that the results were:

8:8:4:8:8:7:9:7:7:5:9:10:6;9; 7: 4: 8;5; 11; 5.

From this data, estimate to 3 significant figures the mean numpef flowers

per plant in the colony and the standard deviation of the population. You may
if you wish construct a table similar téable 8.3 but it will be much quicker
simply to use your calculator.
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8.3 Learning outcomes for Chapter 8

After completing your work on this chapter you should be able to:
8.1 demonstrate understanding of the terms emboldened in the text;

8.2 calculate the probability of a particular outcome from information about
possible outcomes;

8.3 express a probability as a fraction, a decimal number or a percentage;

8.4 combine probabilities appropriately from information about possible
outcomes;

8.5 interpret data in which the relative values of quantities are expressed as ratios;
8.6 calculate the mean, mode and median for a set of data;

8.7 calculate the standard deviatignfor a set of repeated measurements of a
particular quantity;

8.8 calculate the estimated standard deviation of a populasion, from a set of
measurements made on a sample drawn from the population.
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Statistical hypothesis testing

Samples and populations can be described in terms of their actual or estimated
means and standard deviations, as discussed in Chapter 8. However, the ultimate
aim of collecting data is usually not simply to describe, but also to answer sci-
entific questions as objectively as possible. An extensive collection of statistical
techniques has been developed over many years to provide answers to some such
questions, bearing in mind that most data are intrinsically variable. In this chapter,
you will be introduced to the general principles that underpin almost all of these
techniques and then shown how to perform three particular statistical tests com-
monly used to answer fllerent sorts of question. In order to illustrate these ideas
and to provide some of the data with which you can practice, this chapter is partly
based on a small ecological study. The study is described in Box 9.1.
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Box 9.1 Green-winged Orchids and ridge-and-furrow topography

A conspicuous feature of parts of the English Midlands is ridge-and-furrow topography. Some of this
is medieval and some is much later in age. It has been known for some time that Bulbous Buttercuy
(Ranunculus bulbosyisends to occupy the drier ridges and Creeping Butter€updpengthe wetter
furrows. Also found in the same area is Green-winged OrdDrdlfis morig, a rare plantin England. A
study was undertaken to find out whether the distribution@mnekrformance of Green-winged Orchid
might also be influenced by ridge-and-furrow topography.

Various measurements were made
on a sample of plants growing in a _
local nature reserve. Figure 9.1 il-
lustrates some of the measurements
taken. These included the horizon-
tal and vertical distances of each | plantheight
plant from the nearest ridge crest,
the height of the plant, the number
of leaves and the number of flowers.
Whether a plant was growing on the ‘
north-west or the south-east slope
of the ridge was also recorded, since
the two slopes might éier with re-

Spect to mean temperature, mois- g re 9.1: Measurement of horizontal and vertical distar ces
ture availability, etc. of a plant from the nearest ridge crest and plant height.

position of
ridge crest

|

[ vertical distance

horizontal distance
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9.1 The principles of hypothesis testing

Many of the questions that arise out of scientific investigations are driveryby
pothesestentative explanations of observations that may be tested by experiment
or by making further observations. Taking the study briefly describégbi 9.1

as an example, it might be proposed that Green-winged Orchid (like Bulbous But-
tercup) occurs more frequently — gondgrows better — nearer the drier crests of
ridges than the wetter furrows. Alternatively, it might be that Green-winged Orchid
(like Creeping Buttercup) ‘prefers’ the wetter furrows to the drier ridges. Notice
that these tentative ideas contain the unproven assumption that ridges are indeed
drier than furrows. Statistical hypothesis testing provides a universally agreed set
of procedures for answering questions such as ‘Do Green-winged Orchids tend to
occur nearer to ridge crests than expected by chance?’, ‘Does the amount of water
in soil increase with distance from the nearest ridge crest?’, ‘Do the Green-winged
Orchids growing nearer ridge crests tend to be taller or have more leavgs and
flowers than those growing further away?’.

There are two major branches of statistical hypothesis-testiesgts‘of association
(e.g. ‘Are Green-winged Orchids found in association with ridge crests significantly
more frequently than would be expected by chance?’) seuds of diferencé(e.g.

‘Is there a significant dierence between the mean height of plants growing on the
north-west rather than the south-east slopes of ridges?’).
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Question

Would an investigation into whether there is a significant increase in the vater
content of soil with increasing distance from the nearest ridge crest be a test of
association or a test offtierence?

Answer

Since we would be looking to see if there is @associatiorbetween soil watel
content and distance from ridge crest, this would be a test of association.

Having ascertained which statistical test is appropriate in any particular circum-
stance, most scientists look up the details of that test and then use it almost as if
it were a ‘black box’ (a piece of equipment that users trust to perform a particular
task reliably without understanding how it actually works). Sometimes, however,

it is helpful to stand back from the details of any particular statistical test and to
consider those features that are common to nearly all such tests. These common
features can best be illustrated by considering in general terms a tefiteoédce
between two means.
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Suppose that a scientist collected measurements
from two samples of plants, one of which had
been exposed to a particular experimental treat-
ment and the other (the so-called control sample)
which had not. Almost certainly, there would be
some variation within each of these two sets of
measurements and this would be reflected in their
standard deviations. Moreover, even if th&eh-
ence between the means of the experimental and
control plants was relatively large, it would not
be surprising if there was some overlap between
the two sets of measurements, as shown in Figure
9.2.

number of measurements

Now it might suit the scientist's favoured theory  Figure 9.2: Diagram summarizing a possible result
to convince others that the treatmedit have of an experiment in which a sample exposed to ex-
a statistically significantféect on the measured  perimental treatment (shown with blue shading) was
character. On the other hand, it might be in the compared to a control (pink shading). Note the over-
scientist’s interests to show that the treatndidt lap between the two distributions. Eaxiis the mean
not have a statistically significantfect. Either  of a sample (and estimates the mean of the population
way, the scientist is required by the procedures of ;) and eacts._1 is the sample standard deviation (es-
statistical hypothesis testing to put forward a so- timated standard deviation of the population).
callednull hypothesisn the first instance. Asthe  Note: The diagram shows the two distributions over-

name suggests, a null hypothesis is one of ‘no dif- |apping at exactlys,_1 from the mean. This would
ference’. In this case the null hypothesis would be not normally be the case.
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that there is no dierence between the population mean of the treated plagts (
and the population mean of the control planis)( Expressing this statement math-
ematically, the null hypothesis would be that
M1 = H2
or, equivalently, thati; — up = 0.
At the same time, the scientist has to put forwardernative hypothestbat is the
logical ‘mirror image’ of the null hypothesis. In this case the alternative hypothesis
would be that therés a difference between the means of the treated and control
plants. Expressing this statement mathematically, the alternative hypothesis would
be that
M1 F 2
oruy —u2 # 0.
Question
Is it possible for both the null and alternative hypotheses to be false?
Answer
No. If either is false, then the other must be true.
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If the null hypothesis is true, then the alternative hypothesistbe false and
vice versa.

Once statements of the null and alternative hypotheses have been made, a quantity
called thetest statistids calculated. The test statistic is a number, on the basis of
which a decision can be made to accept or reject the null hypothesis. The value
of the test statistic depends on the characteristics of the samples being compared,
and in most cases it is calculated using one or more equations. Things are often so
arranged that the value of the test statistic comes out to be zero if the null hypothesis
is true (for instance, by including the terixy & X2) in the numerator of the equation,
whereXx; andXp, the means of the two samples, are the best available estimates of
the unknowable values gfi andu»). However, because of the vagaries of sampling,

it would be extremely unlikely for the means of two samples drawn from even the
same population to be identical (for instance, two samples of control plants are very
unlikely to have exactly the same mean). So, the question is ‘How large does the
test statistic have to be before one can be reasonably confident that the samples
were drawn from dferent populations (and therefore conclude, in this example,
that the experimental treatment probably did have a signifid@at®?’ In fact, it

is impossible to give a definitive answer to this question; it can be answered only in
terms of probabilities.

Ideally, the precise probability that the calculated value of the test statistic could
have arisen by chance if the null hypothesis were true would be determined. In a
particular instance, this might turn out to be something like 1 in 63,g'§e.which

is 0.015 87 to four significant figures. In practice, the value of the test statistic is
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usually compared to lists afritical valuescalculated for a few pre-determined-
nificance levelexpressed in terms of probabilities. In this context, the probabilities
are usually abbreviated 8 and expressed in decimal notation, e.g. 0.1, 0.05 and
0.01. For any particular significance level, the critical value is the most extreme
(usually largest) value that the test statistic could be expected to have if the null
hypothesis were true. Of course, if the null hypothésigue then any deviation

from the test statistic’s expected value (which, as noted above, is usually zero) must
have arisen purely by chance. If the significance level corresponding to the value of
the test statistic turns out to be quite low (usually because the test statistic is rather
high), then it must be accepted that the null hypothesis is unlikely to be true. If the
null hypothesis is false, then the alternative hypothesistbe true. Only at this
stage can the scientist conclude:

e either that the treatment did have a significafieet (because the null hy-
pothesis was probably false and therefore the alternative hypothesis probably
true)

e or that the treatment did not have a significafieet (because the null hy-
pothesis is likely to have been true).

It is extremely important to realize that the particular significance level at which a
null hypothesis is rejected — and hence the alternative hypothesis is accepted — is
a matter of convention. The usual convention in science is to reject a null hypothesis
if the probabilityP is less than the 0.05 significance level, i.eP ik 0.05. However,

in employing this convention, it is also important to realize that you could either be
rejecting a true null hypothesis or accepting a false one. Indeed, you are explicitly
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accepting that on average, if you were to carry out 100 statistical tests, you would
reach the wrong conclusion for 5 of these tests (although you would not know
which ones). If the work you are engagedr@ally matters, for example, medical
research in which human lives might be at stake, then you would probably employ
more exacting criteria (such as rejecting null hypotheses oriy<f 0.01 or even

P < 0.001). Onthe other hand, insisting on the use of such rigorous criteria for even
routine scientific work would mean that many null hypotheses that really are false
would have to be accepted, and this would undoubtedly hinder scientific progress.

The important features of statistical hypothesis testing are summarized below:

1. A null hypothesis (e.gu1 = u2) and an alternative hypothesis (e g.
U1 # u2) are proposed.

2. The value of a test statistic is calculated.

3. Ifthe probability of this value arising by chance if the null hypothesis
were true is low — conventionally, less than 0.05 — then the null hy-
pothesis is rejected and the alternative hypothesis accepted. (There
is alwaysthe possibility of either rejecting a true null hypothesis or
of accepting a false one.)

When null hypotheses are rejected, the results are described asshaistically
significantor sometimes just as ‘significant’. A consequence of this is often a feel-
ing that ‘non-significant’ results are of less value than ‘significant’ ones. Indeed,
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there is probably a ‘reporting bias’ whereby significarfietiences are more likely

to be published in scientific papers than non-significant ones. This undervaluing of
non-significant derences is unfortunate because the whole point of the exercise is
to try to find out what is happening in the real world. It may be just as important to
know that an &ect isnot produced by one experimental treatment as to know that
another treatment does produce tfte&.

Question 9.1

Should the null hypothesis be accepted or rejected if the result of a statistical
hypothesis test turned out to be:

(a) P<0.01, Answer
(b) P> 0.05, Answer
(c) P>0.017 Answer
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9.2 Deciding which testto use; levels of measurement

The expressionlévels of measureméntefers to important distinctions between
different sorts of data that might be collected during the course of a scientific inves-
tigation.

An example of data collected at thategorical leveis the sex of animals. In most
cases, an animal is unambiguously either ‘male’ or ‘female’. Furthermore, there is
no logical way in which the category ‘male’ can be ranked as ‘higher’ or ‘better’
than the category ‘female’ or vice versa. All that can be said is that these two
categories are fferent. Of course, a data set may include more than two categories.

It is possible to rankrdinal leveldata in a sensible way. For instance, plants may
be listed in order of their heights or grouped by the approximate number of leaves
they possess without knowing the actual heights or the actual numbers of leaves. If
the actual heights or numbers of leaves are known, then these data areterifz

level.

Data collected at the interval level can, if necessary, be analysed at the ordinal
level. For instance, you might know that Plant A has 8 leaves and that Plant B has 5
leaves (interval level data). Nevertheless, you could choose to ignore some of this
information and simply treat Plant A as having more leaves than Plant B (ordinal
level data). Of course, if all you knew was that Plant A has more leaves than Plant
B, then you could not convert this information into interval level data for analysis.

Categorical level data cannot usually be treated as if they were at interval or ordinal
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level (although you might argue that, for instance, red-flowered plants have more of
a particular pigment than pink-flowered plants of the same species). However, by
applying arbitrary criteria, interval or ordinal level data can sometimes be converted
into categorical data for analysis. For instance, one of the seven pairs of contrasting
characters used by Mendel in his pioneering research on the genetics of garden
peas (seBox 8.2 was ‘tall’ versus ‘short’. This categorical distinction made sense
only because, in this particular case, there was no overlap between ‘tall’ and ‘short’
plants.

The reason for distinguishing between thé&etent levels of measurement is that
different statistical tests must be used to analyse categorical, ordinal and interval
level data. Sometimes, when analysis of data at the interval level fails to reveal sta-
tistically significant diferences, such fierences may be shown up when the data
are re-analysed at the ordinal level. However, because some information about the
samples hasfiectively been ‘thrown away’ in the process, any statements eventu-
ally made about the populations from which the samples were drawn are necessarily
less complete than they might have been.
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Question 9.2

In each of the following cases, explain briefly whether the data should be tr2ated
as being at the categorical, the ordinal or the interval level.

(a) A countis made of the number of parasites on each member oAnswer
a sample of sheep.

(b) A sample of sheep are counted as either ‘parasitized’ (i.e. carAnswer
rying one or more parasites) or ‘unparasitized’ (i.e. carrying
no parasites).

(c) A sample of sheep are counted as ‘unparasitized’ (i.e. carryAnswer
ing no parasites), ‘lightly parasitized’ (i.e. carrying 1-5 par-
asites), ‘moderately parasitized’ (i.e. carrying 6—10 parasites)
or ‘heavily parasitized (i.e. carrying more than 10 parasites).
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9.3 They?-test

They?-test(wherey is the Greek letter ‘chi’, said to rhyme with ‘sky’) is very com-
monly employed when scientists wish to test whether data on a satggorical
variable match a particular theoretical pattern. Since ‘presence’ versus ‘absence’
is a categorical variable, the*-test is often used to compare the numbers of in-
dividuals present in dlierent areas with the numbers expected on the basis of an
appropriate null hypothesis. This is more precisely calledythgoodness-of-fit

test. (There are othgr-tests, e.g. for possible associations between two categori-
cal variables.)

In the Green-winged Orchid study, describediox 9.1, horizontal distance from

the nearest ridge crest (as showrfigure 9.3 was recorded for 210 plants grow-

ing on several ridges. Because the ridge crest-to-furrow distance varied slightly
between ridges, each of these distances was divided into five equal categories (cat-
egory 1 being 0.00-19.9% of the distance from the crest, category 2 being 20.0—
39.9% of the distance, category 3 being 40.0-59.9% of the distance, etc.) so that
the data from dterent ridges could be pooled for analysis. This procedure enables
us to treat interval level data (the horizontal distance of each plant from the nearest
ridge crest) as categorical level data (the distance category into which each plant
falls). If the 210 plants were distributed uniformly with respect to the ridge crest,
then a fifth of them (i.e. 42) would be expected to occur within each distance cate-
gory. A reasonable null hypothesis would be that, if it were possible to collect data
on the entire population of Green-winged Orchids growing in fields with ridge-
and-furrow topography, then there would be nfietience between the number of
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plants observed in each distance category and the number that would be expected
on the assumption that the plants were distributed uniformly. The alternative hy-
pothesis would be that the number of plants observed in each distance category was
not equal to the number of plants expected. Accepting this alternative hypothesis
implies accepting that the plants were distributed non-uniformly.

In fact, of the sample of 210 plants, 105 occurred in the first distance category, 74
in the second, 28 in the third, 3 in the fourth and none in the fifth. It certaply
pearsthat the plants were not uniformly distributed. Tifetest allows a definitive
statement to be made on the probability that the population of plants from which
the sample was drawoould have been distributed uniformly despite the appar-
ently non-uniform distribution observed in the sample. Only if this probability is
suficiently low (conventionally ifP < 0.05) can the null hypothesis be rejected
and the alternative hypothesis (with its implication that the plants were distributed
non-uniformly) accepted.
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The first stage in performing g2-test is

usually to draw up a table to compare ob Distance category Observed Expected

served and expected numbers iffefient _ number 0) _number &)
categories. The table for the sample of 1 (néaresttoridge) 105 42

210 orchid plants is given in Table 9.1, and 74 42
compares the number of individual®;, 28 42

that were observed in each distance cate- _ 3 42

gory, with the numbeE; expected on the > (furthestfrom ridge) 0 42

basis of the null hypothesis. As a check, total 210 210

the total number in th®; column should

equal the total number in thi column. Table 9.1: Table comparing the observed distribution of a

The trickiest part of most?-tests is decid- ~ sample of Green-winged Orchids across 5 categories of dis
ing the ‘expected’ numbers. In this case, if tance from the nearest ridge crest with the distribution ex-
the null hypothesis were true, a fifth of the pected if the plants were distributed uniformly

plants (i.e. 42) would be expected to fall

into each distance category.
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The test statistic ig? and this is found in the following way.
1. For each distance category, the ‘expected’ number is subtracted from the ‘ob-
served’ number.
This gives O; — Ej).
2. Each result from step 1 is squared.
This gives(O; — E;).
3. Each result from step 2 is divided by the appropriate ‘expected’ number.

B2
This givesu.

|
4. The results from step 3 are totalled.
n 2
I (Gi - E)
Th —_
is glvesz 3

i=1

which is the test statistig?.

In summary,

n . _E.\2
ng% ©.1)
i=1 !
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The easiest way to calculaié is to (O - Ej)?
extendTable 9.1to include columns Distance O E (Oi-E) (O -E)? 'T'
for each of these steps. This has been  category !
done in Table 9.2, ang? is the to- 1 105 42 63 3969 94.500
tal of the values in the right-hand col- 2 74 42 32 1024 24.381
umn. Notice that, as a further check, 3 28 42 14 196 4.667
the total of the Q; — E;) column must 4 3 42 -39 1521 36.214
be zero, since the total number of in- 5 0 42 _42 1764 42.000
dividuals observed is equal to the to-
tal number of individuals expected. total 210 210 0 201.762
As an example of the way in which Table 9.2: Extension of Table 9.1 to calculgfe
each value is calculated, consider the
first distance categoryO; = 105 and
Ei =42 so
_E)2
G -E)* _ (105-42¢ 63 _ 3969 _ 94500

E; 42 42 42

This value, and all the other values in the right-hand column of Table 9.2 have been
calculated to three places of decimals. This is normal practice when finding
because this is how values are generally stated in tables of critical valugs for
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The next stage is to compare the value of the test stagi$t{evhich, in this case,
is 201.762) with the critical values listed fable 9.3 The sizes of the critical
values in such a table depend on both the significance IBveld.1, P = 0.05 and
P = 0.01, given across the top of the table) and the numbelegfees of freedom
(given down the left-hand side of the table).
The number of degrees of freedom can be found by counting the number of ‘cells’
in the table that contain observed counts (i.e. ignoring expected counts, totals etc.).

For they?-test, the number of degrees of freedom is given by

number of cells- 1

In this case, Table 9.1 has five cells, so

number of degrees of freedomb — 1

=4

Box 9.2 gives a brief explanation of why it is reasonable for the number of degrees
of freedom to be four in this case.
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Box 9.2 Degrees of freedom

Why should the number of degrees of freedom be four for the data given in
Table 9. The total numbers of both ‘observed’ and ‘expected’ plants became
fixed (in this case, at 210) the moment data collection ceased. The numer of
expected plants in each of the distance categories (42) is fixed by a combination
of the null hypothesis being tested (i.e. that equal numbers of plants wotld be
expected in each distance category) and the sample size (i.e. 210). In ccntrast,
the number of plants that could have been observed in each of any four >f the
distance categories is completely free to vary, although the number of planis that
could have been observed in the final categornoisree to vary in this way —

it must be such that the total of the numbers in the observed column equéls the
sample size (i.e. 210). In this case, there are therefore four degrees of frecdom.

Similar arguments to the above underpin the concept of degrees of freedom in
other statistical tests.

Back < > 452



Contents

O

The parts offable 9.3that are relevant to our example Degreesof P=01 P=005 P=001

are reproduced in Table 9.4. Reading across the row

. freedom
for 4 degrees of freedom, it can be seen that yhe
: : 1 2.706 3.841 6.635
value of 201.762 is greater than 7.779 (corresponding
N 2 4.605 5.991 9.210
to a significance level of 0.1), greater than 9.488 (cor-
. o 3 6.251 7.815 11.341
responding to a significance level of 0.05) and greater
. o 4 7.779 9.488 13.277
than 13.277 (corresponding to a significance level of
S : ) 5 9.236 11.070 15.086
0.01). In fact, the significance level is considerably less
than 0.01 (because 201.76msichlarger than 13.277). Table 9.4 Part of Table 9.3
Thus, the probability that the plants in the population
from which the sample was drawn were distributed uni-
formly is muchless than 0.01 (i.eP <« 0.01). There can be little doubt that the
plants were not distributed uniformly with respect to distance from the ridge crest.
The null hypothesis can therefore be rejected — and the alternative hypothesis ac-
cepted — with a great deal of confidence. In reporting such aresult, itis often stated
that the null hypothesis is rejected at the= 0.01 significance level or (probably
more commonly) at the 1% significance level.
Although statistics shows that the plants were distributed non-uniformly, it does
not reveal thenature of the non-uniform distribution. The data should now be
re-inspected to confirm that the plants did indeed octoserto the ridge crests
than expected by chance — rather than nearer to the furrows or clustered halfway
between the ridges and furrows. The conclusion that can be drawn from this in-
vestigation is that Green-winged Orchids tend to occur significantly closer to ridge
crests than to furrows.
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Precautions for the y2-test

You will not be expected, in this course, to decide which statistical test to use in any
given situation. However, in general, before performingdest you should check
that:

¢ the data are at the categorical level;
e the ‘observed’ numbers are actual coumtstproportions or percentages);
e none of the ‘expected’ numbers is less than 5 (a design feature of the test).

Worked example 9.1 shows the use of4test in investigating whether or not an
observed distribution of organisms is consistent with a particular theoredioal
Questions of this type are quite common, and the first step is always to work out
the numberof organisms expected in each category if the null hypothesis — that
the theoretical ratio holds — is true. The worked example also illustrates that,
while observed numbers of organisms must always be whole numbers, the numbers
expected on the basis of theory or prediction often come out to be fractions.

Worked example 9.1

A biologist makes the prediction that flies of type A, type B and type C will
occur in the ratio 0.16 : 0.48 : 0.36 in a wild populati@nthis population is in
so-called Hardy—Weinberg equilibrium. A representative sample drawn from a
population was found to contain 28 type A flies, 134 type B flies and 78 type C
flies. Was this population in Hardy—Weinberg equilibrium?
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Answer

The total number of flies in the sample was2834+ 78 = 240. If the ratio

in the sample was 0.16 type A flies : 0.48 type B flies : 0.36 type C flies, then
there would be

0.16 x 240= 384 type A flies
0.48x 240= 1152 type B flies
0.36x 240= 864 type C flies

These are therefore the ‘expected’ numbers.

. 2 (Oi - Ei)2
Atable, extended to give values f@di(- E;), (O; - Ej)* and————

is given
in Table 9.5. !

Flytype O E (O-E) (Oi-E)’ w

Ei
A 28 384 -104 108.16 2.817
B 134 1152 18.8 353.44 3.068
C 78 864 -84 70.56 0.817
total 240 240 0 6.702

Table 9.5: An extended table for Worked example 9.1
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The number of degrees of freedom is given by

number of cells containing 4
observed numbers

=3-1
=2

Reading across the row for 2 degrees of freedoifainle 9.3 it can be seen that
the 2 value of 6.702 corresponds to a significance level of less than 0.05 but
more than 0.01 (i.e..05> P > 0.01).

The probability that the ratio of ffierent types of fly in the entire populaticn
from which the sample of 240 was drawn is 0.16 type A : 0.48 type B : .36
type C is less than 0.05. This means that the null hypothesis (that the popt lation
is in Hardy—Weinberg equilibrium) must be rejected at the 5% significance |2vel.
On the basis of this investigation, it must be concluded that the populatan s

in Hardy—Weinberg equilibrium.
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Question 9.3 Answer

The prediction is made on the basis of theory that, if a particular genetic :ross
were to be performed, the ratio of plants in the next generation should be 1
red-flowered : 2 pink-flowered : 1 white-flowered.

The next generation of a sample comprised 185 red-flowered plants, 305 pink-
flowered plants and 146 white-flowered plants. Is this data compatible with the
1:2: 1ratio predicted?

9.4 The Spearman rank correlation cofficient

In the study described iBox 9.1, soil samples were taken right across a ridge

at different horizontal distances from the crest, in order to test whether the water
content of the soil varies significantly from ridge crests to furrows. Both the original
mass of each sample and its mass after drying in an oven were measured using
a scientific balance. The water content of each sample was then expressed as a
percentage of its dry mass. For example, since the original mass of one sample was
22.85 g and its dry mass was BP g, its water content was

(2285 g—11.32 q)
11329

(This percentage is greater than 100% because there was slightly more water than
soil in the sample.)

x 100%= 102%
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In fact, several soil samples (known as ‘replicate’ samples) were taken at each hori-
zontal distance, and their mean water content was calculated and used for the rest of
the investigation. Figure 9.3 shows how the mean water content of the soil samples
taken on the north-west slope of the ridge varied with horizontal distance from the
nearest ridge crest.
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horizontal distance from ridge crest/cm

Figure 9.3: Mean water content (as a percentage of dry mass) of soil samples plotted
against horizontal distance from ridge crest.
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There certainly seems to be a trend of water content increasing with increasing horizontal
distance from ridge crest. But is this trend, or apparemtelationbetween these two
variables, statistically significant? The strength of a possible correlation between two
variables is summarized in the value ofarrelation coéficient (). The value ofr can

range from+1 (i.e. a perfect positive correlation, in which the two variables increase or
decrease precisely in step with one another; Figure 9.4altf.e. a perfect negative
correlation, in which one variable increases as the other decreases and vice versa; Figure
9.4b). Where there is no correlation between two variables, the valus akro (Figure

9.4c). Figure 9.3suggests that, for mean soil water content and horizontal distance from
nearest ridge crest,lies somewhere between 0 andl. However, we need to determine

the actual value of and hence determine the probability that — for the population of all

possible soil water contents — the null hypothesis (that there is no correlation between
water content and horizontal distance from ridge crest) is true.

L] L ]
L] L]
L] L]
o . o ® o
o L] @ . §) . . . o &
g ° g 04 g L . o o N
< . = . = .
> . g . g
L] L]
L] L]
(a) variable 1 (b) variable 1 (c) variable 1

Figure 9.4: (a) A perfect positive correlation between two variablesr(ke+1).
(b) A perfect negative correlation (i.e.= —1). (c) No correlation (i.er = 0). A graph
with points scattered over it in a random way also represents zero correlation.
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Several diferent sorts of correlation cficient have been devised. In this case it is
appropriate to calculate tl&pearman rank correlation d@eient (s). This, as the

term ‘rank’ suggests, is based on ordinal level data. The null hypothesis is that there
is no correlation between soil water content and horizontal distance from ridge crest

(i.e. rs = 0) and the alternative hypothesis that the two variables are correlated (i.e.
rs # 0).

The measurements of mean soil water content for the north-west slope of the ridge
are summarized in Table 9.6.

Horizontal distangem Mean water contef§t dry mass

0 76
50 83
100 93
150 80
200 102
250 95
300 120
350 130

Table 9.6: Mean soil water content (as percentage of dry mass) for samples taken

at various horizontal distances from the nearest ridge crest on the north-west slope
of aridge

Before the test statistic can be calculated, the following steps should be completed:
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1. Work out the rank (order) of each of the 8 horizontal distandgg); (which
will range between 1 and 8).

2. Work out the rank of each matching value for mean water cont&af); (
(which will also range between 1 and 8).

3. Calculate each éierenceD; = (Ra)i — (Rg);i.

4. Square each fference, to giveDi2.

n
2 : 2
5. Total all the values foD;” from Step 4 to glvez Dy
i=1
As an example of Steps 1 to 4, consider the horizontal distance 150 cm, which has

(Ra)i = 4 and Rg)i = 2 (since its distance is fourth from the crest while its water
content is second lowest).

ThereforeD; = (Ra)i — (Rg)i =4-2=2.

SoD? = 22 = 4.

The other values foD2 are shown inTabIe 9.7 and the total of the numbers in
the right-hand column of this table glvcg D2 Notice thatz D; (the sum of the

differences of the ranks) should always be zero, WhICh prowdes a check that the
ranks have been worked out correctly.
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Horizontal Rank Meanwater Rank Dj=(Ra)i — (Rs)i D2
distancecm  (Ra)i content% (Re)i

0 1 76 1 0 0
50 2 83 3 -1 1
100 3 93 4 -1 1
150 4 80 2 2 4
200 5 102 6 -1 1
250 6 95 5 1 1
300 7 120 7 0 0
350 8 130 8 0 0

iDi =0
i=1

Zszs

1

In the case of the data in Table 9.7, it was possible to assign a unique rank to each
value for horizontal distance and mean water content, but sometimes quantities ‘tie’
(i.e. have the same rank). Worked example 9.2, at the end of this section, illustrates

Table 9.7: Extension of Table 9.6 to include ranks

what to do when this is the case.

Back

462



Contents O

The test statistic, the Spearman rank correlationffment, isrs and this is
calculated using Equation 9.2:

6zn: D?
i=1

1- o (9.2)

rs:

n
whereZ D? is the sum of the squares of theffdrences of the ranks amds

i=1
the number opairs of measurements.

n
Substitutingz Di2 = 8 (from Table 9.7 andn = 8 into Equation 9.2 gives
i=1

re=1-—2%8 __(g05

8x(82-1)

The final stage is to compare the value of the test statigtf0.905 in this case)
with the critical values listed iffable 9.8 The critical values are again given to
three places of decimals and the size of the critical values depends on both the
significance levelR = 0.1, P = 0.05 andP = 0.01, given across the top of the
table) and the number giairs of measurements (given down the left-hand side of
the table). In this case the number of pairs of measurements is 8, and looking across
the appropriate row it can be seen that the calculatealue of 0.905 is greater than
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0.881, corresponding to a significance level of 0.01. Thus the probalfilityyat

there is no correlation between water content and horizontal distance from the ridge
crest is less than 0.01; the null hypothesis must be rejected at the 1% significance
level, and the alternative hypothesis accepted. There is a statistically significant
(positive) correlation between mean soil water content and horizontal distance from
ridge crest.

Itis extremely important to appreciate that even a statistically significant correlation
between two variables do@®t prove that changes in one varialda@usechanges
in the other variable.

Correlation does not imply causality.

A time-honoured, but probably apocryphal, example often cited to illustrate this
point is the statistically significant positive correlation reported for the late nine-
teenth century between the number of clergymen in England and the consumption
of alcoholic spirits. Both the increased number of clergymen and the increased
consumption of spirits can presumably be attributed to population growth (which is
therefore regarded as a ‘confounding variable’) rather than the increase in the num-
ber of clergymen being theauseof the increased consumption of spirits or vice
versal
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Precautions for the Spearman rank correlation test
Before calculating a Spearman rank correlatig)i€ is necessary to check that:

¢ the data was collected at, or can be converted into, ordinal level (i.e. ranks);

e there are 7 to 30 pairs of measurements (though the test can be performed
with more than 30 pairs if you have access to a more extensive table of critical
values);

e these measurements are reasonably scattered.

Worked example 9.#lustrates how to rank data when two or more measurements
are identical. They must be given the same mean rank, and then account must be
taken of all the identical measurements before the rank of the next, non-identical,
value is decided. So, if two measurements tie for first place, they are each given a

rank of(l%z) = 1.5, and the next available rank is 3.

Back <« >

465



Contents

Worked example 9.2

The number of Stonefly nymphs counted in standard YVater speefin st Number of nymphs

samples taken at 13 stations along a stream, together 0.8
with the water speed measured at these stations, is 1.1

presented in Table 9.9. Calculate the Spearman ran

k 0.5

correlation co#ficient () for this data and use this to 0.7
determine whether there is a statistically significant 0.2
correlation between water speed and the number of 0.4
Stonefly nymphs present. 0.5
Answer ég
Table 9.10s an extension of Table 9.9, to include val- 1'7
n .

ues for Ra)i, (Re)i, Di, D? andz D? for the data in 0.2

i=1 0.1
this worked example. 0.7

Note, for example, that the water speed was mea
sured to be @ ms! at two sampling stations, so

these stations ‘tie’ for second place in the ranking of
water speed (after the station with a water speed o

0.1 ms1). Each is given a rank f%s =25, and

the next available rank (for the station with a water
speed of &% ms?)is 4.

35
28
11
12
7
5
6
21
23
43
10
6
19

Table 9.9: Number of Stonefly nymphs in re:-
lation to the speed of water flow at 13 sam-

Pling stations in a stream
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n
Substitutingz Di2 = 475 (fromTable 9.10 andn = 13 intoEquation 9.2
i=1

o1 6x475
ST 13x (12 -1)

Reading across the row for 12 pairs of measurements (in the absence of a row for
13 pairs) inTable 9.8 it can be seen th&® < 0.01. The null hypothesis must
therefore be rejected at the 1% significance level and the alternative hypothesis
accepted. There is a statistically significant positive correlation between water
speed and number of Stonefly nymphs.

= 0.870
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Question 9.4 Answer

Returning to the study described Box 9.1, Figure 9.5 shows how the mean water contznt
of the soil samples taken from the north-west slope of the ridge varies weittical distance

from ridge crest. Use the data given in Table 9.11 to determine whether there is a statis-
tically significant correlation between soil water content and vertical distance from ridge crest.

140 Vertical Mean water content
I * distancgcm % dry mass
21201 .
£ 0 76
1007 . . 4 83
% 80 * . 7 93
% g 9 80
o 60r 7 102
g Ll 11 95
§ 10 120
E 20 13 130
o 2 4 6 8 10 12 14 Table 9.11: Vertical distances from the
vertical distance from ridge crest/cm nearest ridge crest and mean soil water

content (as a percentage of dry mass) for
samples taken at various horizontal d s-

Figure 9.5: Mean water content (as a percentage of drytances from the nearest ridge crest on the
mass) of soil samples plotted against vertical distancenorth-west slope of a ridge

from ridnao ~ract
O rag e o
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9.5 Thet-test for unmatched samples

Severalt-testsare widely used to test whether the means of two samples fie su
ciently different to conclude that the samples were probably drawn fréi@reint
populations. Such a conclusion might allow an experimenter to conclude further
that, for example, an experimental treatment did produce a statistically significant
effect compared to the experimental conti®&¢tion 9.). t-tests are often referred

to as ‘Student'd-tests’. This is not because people such as yourself use them a
lot — although this is true! ‘Student’ was the pseudonym used by W. S. Gossett
when he published the first version of the test in 1907. His employer, a well-known
brewing company based in Dublin, would not allow him to publish under his own
name.

Question
State the null and alternative hypotheses that would be appropriaté-fest

Answer

Since a-test would be concerned with thefldirence between thmeansof two
populations(1 and 2), the appropriate null hypothesis would be eithee u»

or its equivalenju; — u2 = 0 and the appropriate alternative hypothesis either
u1 # p2 or ug — up # 0 (seeSection 9.1

As indicated by the section heading, thest introduced here is specifically fon-
matchedsamples. It is therefore necessary to discuss what is meant when samples
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are said to be either ‘matched’ or ‘unmatched’.

The soil samples (and hence their mean water content) discusSedtion 9.4vere
uniquely matched to particular horizontal distances from the nearest ridge crest. If
data was collected fronmdividual patients before and after they were given either
an experimental medicine or a placebo (i.e. a ‘dummy’ medicine), this data would
also be matched. Another examplern&tched samplewould be the test scores
achieved by individual employees before and after a training event.

A typical situation in which at-test for un-
matched samplewould be used is if the heights
of two samples of Green-winged Orchids were

North-west slope South-east slope
(i,e. Sample 1) (i.e. Sample 2)

measured, one sample growing on the north-west x/cm 18.6 21.1
slope of a ridge and the other sample growing S-1/CM 5.5 3.9
on the south-east slope (Table 9.12). Since there " 14 16

is no logical connection between any one plant
growing on the north-west slope and any one
plant growing on the south-east slope, these two
samples are unmatched.

Table 9.12: Mean plant heighk), estimated popu-
lation standard deviation (sample standard deviation)
of plant height §,-1) and sample sizen] for a sample

of plants growing on the north-west slope of a ridge
(Sample 1) and another sample growing on the south:
east slope (Sample 2).
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Question 9.5

In each of the following cases, explain whether the samples are matched or
unmatched.

(@) A comparison is made between the heights of a sample ofAnswer
Green-winged Orchids growing in one nature reserve and those
of a sample growing in another nature reserve.

(b) The numbers of nymphs of two species of Stonefly are countedAnswer
in each of 10 samples taken atffdrent positions along a
stream.

In order to calculate the test statistic in this particutégst it is necessary to solve
three equations one after another. The test statistic itseHnsl this is calculated
using Equation 9.3, in whick; andX; are the means of the two samples, 1 and 2,
that may, or may not, have been drawn frorfietient populations.

X1 =X
t= SE,

Notice that, ifX; = X2 (which would mean thak; — X, = 0), thent = 0. So,
if the null hypothesis were true, then it would be expected that0. The term

Sk represents the ‘standard error of théeliences in the sample meanSk, is
calculated using Equation 9.4, in whiop andn; are the two sample sizes.

(So)® , (So)?
Ny 1))

(9.3)

SE = (9.4)
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The term(Sc)? (which appears twice iEquation 9.3 represents the ‘common pop-
ulation variance’.(Sc)? is calculated using Equation 9.5, in whish and s, are

the two estimated population standard deviations (also known as sample standard
deviations, as discussed$®ection 8.2.). In fact, each of; ands, should really be
written ass,_1, but if this were done the subscripts would be getting out of hand!

(N — 1)(s1)? + (N2 — 1)()?
(m-1)+(z-1)

(Se)* = (9.5)
Inspection ofEquation 9.3shows that, other things being equal, the greater the
difference betweer; andXp, the larger the value df In addition, if the sample
means are well separated, it seems reasonable to expect that there is likely to be a
statistically significant dference between the true means of the populations from
which the samples were drawn. Similar arguments can be used to link small values
of s; ands, and large values ai; andn; to both high values of and an increased
likelihood of a statistically significant ffierence between the means from which

the samples were drawn. In general, high values are associated with greater
statistical significance.

Returning to the data summarized Table 9.12 notice that the mean height of
the sample 2 (21 cm) is greater than that of sample 1 @8m). What needs
to be established is whether or not th&elience observed &cm) is statistically
significant.
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Substituting the relevant values irEguation 9.5

<2 _ (14— 1)(55 cmy + (16— 1)(3.9 cmy
€ (14-1)+(16-1)
_ (13x30.25 cn?) + (15x 1521 cntf)
B 13+ 15
= 22193 cnf

Substituting the relevant values irmuation 9.4

22193 cn? 22193 cn?
Sk = \/ 14 7 16
=1.724 cm

Substituting the relevant values irfEmuation 9.3

3 186 cm—-211 cm

1.724 cm
= -1.450

What does a value df = —1.450 mean? Did the populations of plants growing
on the north-west and south-east slopes of this ridge redllgrdin mean height or
could the observed filerence in mean height between the two samples (5eci)
have arisen by chance?

The fact that the test statistiturns out to have a negative value can be ignored. If
it happened that the mean height of the sample of plants growing on the north-west
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slope of the ridge had been deducted from that of the sample growing on the south-
east slope, rather than the other way around, tiveould have beer-1.450. Only
theabsolute valuef t (i.e. the number without its sign, in this case 1.450) is of any
consequence.

The critical values of are given inTable 9.13

For thet-test for unmatched samples, the number of degrees of freedom is given
by

(m-1)+(n2-1)

Since in this case; is 14 andny is 16, the number of degrees of freedom is

(14-1)+ (16— 1) = 13+ 15= 28

Reading across the row corresponding to 28 degrees of freedom to find the highest
critical value exceeded by the value of the test statistic (i.e. 1.450), it can be seen
that all that can said is th& > 0.1. SinceP is notless than 0.05, the null hypothesis
(thatu; = wp2) must be accepted and the alternative hypothesis (that u»)
rejected. There is therefore no evidence that the samples were taken fferardi
populations of plants. The plants growing on the north-west and south-east slopes
of this ridge do not dfer statistically significantly from one another in mean height.
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Precautions for the t-test for unmatched samples
Before performing &-test for unmatched samples it is necessary to check that:

the samples are unmatched (if the samples are matched, tharartiver-
sion of thet-test must be used);

population means are to be comparedféient statistical tests must be used
if population modes or medians are to be compared);

the data are at the interval level (agairffelient statistical tests must be used
if the data are at either ordinal or categorical level);

there are fewer than about 25 items of data in each sample (if the samples are
larger than this, then aflierent — more straightforward! — statistical test
known as a-test should be used);

the assumption can be made that the population(s) from which the samples
were drawn have normal distributions and approximately equal standard de-
viations.
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Question 9.6 Answer

Descriptive statistics on the number of flowers per plant for samples of plants
growing on the north-west and south-east slopes of another ridge are given in
Table 9.14. Is there a statistically significanffeience between the slopes in
the mean number of flowers per plant?

North-west slope South-east slope
(i.,e. Sample 1) (i.e. Sample 2)

X 7.7 7.2
Sh-1 2.7 2.1
n 18 15

Table 9.14: Mean number of flowers per plaxjt €stimated population standa d
deviation of number of flowers per plarg,(1) and sample sizen} for a sample

of plants growing on the north-west slope of a ridge (Sample 1) and anbther
sample growing on the south-east slope (Sample 2).

9.6 Other statistical tests

You have been introduced to three particular statistical hypothesis tests in Sections
9.3-9.5. Over the years, many tests have been devised to perform a wide range of
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statistical tasks in the context of science. Some of these tests (for exampleshe
for matchedsamples and thg?-test for association) are similar to those covered
here, but most are designed to answdiedent sorts of scientific questions or to be
used in rather dierent circumstances.

Many excellent books have been written to help you select which particular sta-
tistical test is most appropriate for the task at hand and then guide you through
performing that test. Sectiors1 and 9.2 of this chapter should enable you get

to grips quickly and relatively painlessly with unfamiliar statistical tests when the
time comes for you to branch out.

9.7 Learning outcomes for Chapter 9

After completing your work on this chapter you should be able to:

9.1 demonstrate understanding of the terms emboldened in the text;
9.2 propose null and alternative hypotheses in familiar circumstances;
9.3 perform ay?-test and interpret the results;

9.4 calculate a Spearman rank correlationféoent (s) and then test its
statistical significance;

9.5 perform at-test for unmatched samples and interpret the results.
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Differentiation

In science, and in everyday life, we often want to know how one quantity varies
with respect to another. We may be interested in the actual value of one quantity for
a particular value of the other quantity, but it is often tate at which one quantity
varies with respect to another that is of more importance. Consider, for example,
a small plant. The height of the plant as we look at it is of some interest, but we
also want to know whether the plant is growing, and if so, how fast. Also, is the
plant growing at an ever increasing rate or is its rate of growth slowing down? If
the growth is slowing down the plant may fit in the space we’'ve made for it on the
windowsill; if the rate of growth is increasing we may need to think again!

Chapter 5 introduced the concept of the gradient of a graph as a way of finding rate
of change, whether that be positive (agigure 5.9, negative Figure 5.1 or zero
(Figure 5.16for Object B). However, Chapter 5 considered the gradient of straight-
line graphs only; we need to extend the concept to enable us to find the gradient of
curves.

Section 10.1 discusses a method for finding the gradient of a curve graphically,
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by drawing atangentto the curve at a particular point. Section 10.2 introduces
a method for deriving aequationfor the gradient from the equation of the curve
itself; this method is known adifferentiation Differentiation is one of the branches

of calculus(integration, the other major branch of calculus, is beyond the scope of
this course), where the word calculus comes from the Latin for ‘a stone’ and relates
to the use of stones for counting, or calculating. This chapter is about calculating
rate of change.

10.1 Drawing tangents to curves

For a straight line, the gradient is the same at all points. However, the
gradient of a curve varies from point to point. If you look at Figure 10.1
from left to right, you will see that the slope of the curve is initially gentle;
then it gets steeper; then it reduces again. If this graph represents the way
in which the height of our plant varies with time, this means that growth

is initially slow, before increasing to a more rapid rate and then slowing
again.

height of plant

The straight lines drawn in red at various points on Figure 10.1 each have

a slope that exactly matches the slope of the curve at the point at which time

it is drawn. These lines are called tangents, and the gradient of a curve at

a point is defined to be the gradient of a tangent drawn at that point. The

word tangent comes from the Latin ‘tangere’ which means ‘to touch’, and F'gure 10.1: A curve, repre-

a tangent is a line which touches the curve but doesn't cross it. Note tha$€nting the growth of a hypo-
thetical plant.
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the use of the word ‘tangent’ here iglirent from its use in trigonometrZhapter
6).

Figure 10.2 illustrates the fact that, at each point, there is only one line that touches
a smooth curve without crossing it, so each point on the curve has a unique tangent
and thus a unique gradient. This result is true for all points on all smooth curves.

/ tangent to

line 1,'/ point P

Figure 10.2: The tangent to a curve at a point P. Note that there is only one tangent
at P. Line 1, with a gradient slightly greater than that of the tangent, and line 2, with
a gradient slightly smaller than that of the tangent, both cross the curve.
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A tangent is a straight line, so we can find its gradient using
the method discussed @hapter 5 Figure 10.3 is a graph
of y = x? and tangents have been drawnxat 1 and at
X=3.

Using the triangle drawn on the graph, the gradient of the
tangent ak = 3 is
. rise (150-9.0) 6.0
radient=—=-———-"=—=6.0
gradIent= n = (@0-30) _ 10
Note that, because on this occaswomndy are variables
without units, the gradient also has no units.

The gradient of the curve at a point is the same as that of the
tangent touching the curve at that point, so we can say thai
the gradient of the curve at = 3 is 6.0 to two significant
figures.

y

18

16

14

12

10

tangent
atx=3 T

| tangent
atx=1

1

1 2 3 4 5

Figure 10.3: A graph of = x?
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Question 10.1

(a) Find the gradient of = x? atx = 1 by finding the gradient of ~ Answer
the tangent which has been drawrFigure 10.3atx = 1.

(b) Find the gradient of = x? atx = 2 by drawing an additional ~ Answer
tangent to the curve iRigure 10.3

Box 10.1 Rate of change of concentration in chemical reactions

As a chemical reaction involving substances in solution proceeds, the coricen-
trations of the substances (called ‘reactants’ and ‘products’) vary with time.

Figure 10.4shows the way in which the concentration of one of the prodtcts
of a particular reaction increases with time. The product in this case is called a
hypobromite ion.

To find the rate of change of concentration of hypobromite ions with time at any
instant, we can draw a tangent to the curve and find its gradient. A tangent has
been drawn to the curve Fgure 10.4at 1500 s.

2.40% 103 moldm™ - 1.16 x 10~3 mol dnm3
3000s-0s
=413%x 10" moldm3s?

The gradient of the tangent

So the rate of change of concentration of hypobromite ions with time at 1530 s
is 413x 10~ moldm3s1,
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10.2 An introduction to differentiation

In answeringQuestion 10.ou probably realized that drawing tangents to curves
is not a very accurate way of finding gradients. Using this method, the gradient of
y = x? atx = 2 could reasonably be anything between 3.5 and 4.5, although the
correct answer is exactly 4 (as you will discover in Section 10.2.1). Fortunately,
when the equation of the curve is known (as it is in this caségreintiation gives

us an exact method for finding the gradient, without even having to draw a graph.

10.2.1 The principles of dfferentiation

The reason why drawing a tangent to a curve is tricky is that, by definition, a tangent
only goes through one point on the curve and this makedfitdit to draw a line

with the correct gradient. Drawinganord(a line between two points on the curve)
and finding its gradient is very much easier.

The chord shown joining point P and point Q in Figure 10.5 (next page) has gradient

A . .
A_i’ whereAy is the diference between thevalues of P and Q andx is the

corresponding diierence betweervalues A, the Greek upper case delta, is used
to indicate the change in a quantity, as discusséchapter 3.
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As point Q moves along the curve towards P, passing
through Q, @, and @Q;, two things happen. y

1. The values ofAx and Ay get smaller and
smaller.

2. The gradient of the chord gets closer and
closer in value to the gradient of the tangent
at P.

If we reduceAx all the way to zeroAy will also be

A ,
zero, maklng—y rather dificult to define, but we can

makeAx as small as we like in order to get an accu-
rate measurement of the gradient. This situation is
described as a ‘limit’; aax approaches zero, the ap-

A
prOX|mat|onA—§/( approaches ever closer to the exact

gradient of the curve at the specified point. In this
A d dy

limit, _y is written as—y Where— (said as ‘dee

y by deex) is called thederlvatlve(or strictly, the Figure 10.5: Finding the gradient of a curve at P.

‘first derivative) of y with respect to.

Note thatg—y should be regarded as a single symbol. It doesmean a quantity

dy divided by another quantltyx;i and the ‘d’s are not separate quantities so they

tangent to
point P

cannot be cancelledq— * =,
dx = X
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Differentiation is simply the process of finding a derivative. Box 10.2 shows how
this can be done from first principles for the example we have been considesng,

x2. This box is included for interest only; you do not need to be ableffergintiate

from first principles. All you need to be able to do is to apply some very simple

general rules (the first of which is discussed in Section 10.2.2, immediately after
the box) that enable you to find the derivative directly from the original equation.

: d .
It turns out that foly = x*> we can say straight away th t = 2X%, so the gradient
atx = 1is (2x 1) = 2, the gradient ak = 2 is (2x 2) = 4, and the gradient at
x = 3is (2x 3) = 6; reassuringly these are the same results that we obtained earlier
by drawing tangents to the curve, but now the answers are exact and we have found
them without having to draw a graph.
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Box 10.2 Diferentiating y = x? from first principles

Consider the chord drawn between points P and Q on Figure
10.6. P could be any point on the curve, soxtandy values
are related by the equatign= x°.

The x value at Q is X + Ax) and they value is { + Ay). Since
point Q lies on the curve too, we can say

(y + Ay) = (X + AxX)?

Multiplying out the bracket on the right-hand side, in the way
discussed ilChapter 4 gives

Y+ Ay = X2 + 2XAX + (AX)?

Sincey = x2, we can subtract from the left-hand side ane?
from the right-hand side to give

Ay = 2XAX + (AX)?
Dividing both sides byAx gives

Ay
— = 2X+ AX
AX *

y

Ay

Figure 10.6: Points P and Q on the

curvey = x2.
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In the limit asAx approaches zero, the second term on the right-hand

side will disappear, an% will become equal t%’ SO we can say
dy
& = 2X

10.2.2 Dfferentiation by rule

. o : _d
It was shown, in Box 10.2, that the derivativeyof x? with respect tox is d—i’( = 2X.

By similar methods, it can be shown that:

e the derivative ofy = 2 X with respect to is 3—2/( = 4x;
L 5 . dy .

e the derivative ofy = 3 x© with respect tax is ax 6X;
- 5 . dy

e the derivative ofy = 4 x< with respect tax is ax 8x.

or, more generally, the derivative pf= C x* with respect tax, whereC is a con-
stant, is
dy

2 -Cx2
dx X £ZX
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Similarly, it can be shown that:

e the derivative ofy = C x® with respect tox is g—i = C x 3%
e the derivative ofy = C x* with respect tox is 3—2/( = C x 4%,
e the derivative ofy = C »® with respect tox is :—2/( = C x 5x*%.

These results can be summarized in the general rule
The derivative ofy = C X" with respect ta is

dy -1
d—X—Cn)('

whereC andn are constants.
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Worked example 10.1
If y = x°, what isg—z/( and what is the gradient of a graphyof x° atx = 2?

Answer
In this caseC = 1 andn = 5, sog—y 1 x 5x* = 5x*.

Whenx:z,gi 5x 2% = 5x 16 = 80.

So atx = 2 the gradient of the graph is 80.

Worked example 10.2

dy

If y = 4x3, what i s and what is the gradient of a graphyo 4x° atx = 3?

Answer

In this caseC = 4 andn = 3, sog—z/( 4 x 3x% = 12x2.

Whenx = 3, :§_12x32 12x 9 = 108.

So atx = 3 the gradient of the graph is 108.

Worked example 10.3 considers the application of the rule féermintiation in the
special case whem = 1, and Worked example 10.4 considers what happens when
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n = 0; you may like to think about what you expect the results to be.

Worked example 10.3
. dy
If y = 4x, what is—?
y = 4%, wha ISdX
Answer
In this caseC = 4 andn = 1, sod—y =4 x 1x171 = 4x0 = 4, (sincex? = 1 for all

X
values ofx, as discussed iSection 1.3.L

Note thaty = 4x is a linear equation of the form = kx, so the result of Worked
example 10.3 should not have surprised yoffegéntiating an equation of the form
y = kxwill always result in a derivative which is a constant. This constant is equal

to the gradientk, of a graph ofy againstx (as discussed iBection 5.3.1

Worked example 10.4
_dy
If y =3, what is—?
y =3, whatis
Answer
y = 3 can be written ag = 3x° (sincex’ = 1), soC = 3 andn = 0.

Thusg—i = 3x 0x x~ ! = 0 (since multiplying anything by 0 gives 0).
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Differentiating a constant always gives zero. This should not surprise you either,
since the graph of = 3 is a horizontal line and the gradient of a horizontal line is
always zero.

Question 10.2

Differentiate the following with respect toand in each case find the gradient
of the graph ofy againstx atx = 4.

Note that the instruction ‘to éfierentiate’ simply requires you to find the deriva-

. dy
tive -
@ y=x! Answer
(b) y=5x Answer
(€) y = 3x2 Answer
(dy=5 Answer

The rule for diterentiation that we have been using applies for negative and frac-
tional values oh too, as illustrated in Worked examples 10.5 and 10.6.
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Worked example 10.5
. . 3 .
Differentiatey = " with respect tox.

Answer

3 : : :
y= ” can be written ag = 3x~! (seeSection 1.3.%or a reminder of the use of
negative exponents), $0= 3 andn = -1.

dy 3
Thus—=2 =3x (-1)x 1= _3x2=_-=
ax = % 1) X2
Worked example 10.6
Differentiatey = /X with respect to.
Answer
_ ; _ y1/2 - _ _1
y = /X can be written ag = x/? (seeSection 1.3.% soC = 1 andn = 5
dy 1 l_l 1 -1 1 1
Thus== = =x27t=Zx12= _—_ = _—|
dx 2 2 2xY2 24/x

Back <« > 492



Contents O

Question 10.3

Differentiate the following with respect toand in each case find the gradient
of the graph ofy againstx atx = 4.

1
a)y=— Answer
@y N>
b) v = 2
(b) y= @ Answer

10.2.3 Using diferent symbols and dfferent notation

So far we have found derivatives only gfwith respect tox. For example we

differentiatedy = x? and found thatg—i = 2x. Note thaty andj—i’( are bothfunctions
: d T

of x; this means that the valuesy)a?md—y depend on the value of A derivative is

X
sometimes called akrived functiohbecause it is a function that has been derived
from another function.

Functions in science are often expressed in terms of variables othex tuaahy.
For example, we may know that as tintechanges, the distancs, of an object
from a certain position varies according to the equaien5t?. The graph of this
function is illustrated irFigure 10.7
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The speed at which the object is moving is given by

the rate of change of distance with time, so to find s
the object’s speed we need to find the gradient of the
graph shown in Figure 10.7, i.e. tofldirentiates 120 -
with respect td.
ds i
— =5x2t>1 =10t 1
dt
Similarly, we know fromChapter &hat the volume, 80 -
V, of a gas at constant temperature is inversely pro-
portional to its pressure, 60 |
1 k 1
VxEorV—I—D—kP ol
wherek is a constant.
Differentiatingv with respect td® gives 20 -
dV — —1—1 _— —2 — k | | | | |
gp = KX DR = kP = -0 0 1 2 3 4 5t

This expression gives the gradient of the graph

shown inFigure 5.29
Figure 10.7: A graph o$ = 5t?
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Question 10.4

(a) Differentiatex = t’ with respect td. Answer
C . dE
(b) If E= " whereC is constant, what ISdT? Answer

An entirely diferent notation, called function or prime notation, is sometimes used
for derivatives. This notation makes it very clear that both the expression being
differentiated and its derivative are functions, and it identifies the variable on which
the functions depend. In this notation, the function showhigure 10.7Avould be
written asf(t) = 5t% and its first derivative would be written d<(t) = 10t. The

term f(t), usually said asf of t’, does not mearf timest, but simply implies that

f is a function oft. The termf ’(t) (said as f prime oft’) is the first derivative of

f with respect td.

d . . . _
Unfortunately bothf ’(x) and %{ notation are in common use, as is a variation
. . d o .
of the latter which writes (5t2) = 10t for the derivative of & with respect to

time. This course uses on% notation as discussed in the preceding sections, but
you should be aware that other notations are also widely u$é(k) notation is

. d . . : L
relatively modern butd—y notation was invented by Gottfried Leibniz, one of the

X . o )
founders of calculus, and is known as Leibniz notation.
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Yet another notation, less commonly used in modern times, wsifes the first
derivative ofs = 5t% with respect tat. This notation was first used by Newton,
and the fact that we are left with such a plethora of notations fberdintiation is

a lasting reminder of the bitter dispute between Newton and Leibniz over which of
them invented calculus (see Box 10.3).

Box 10.3 Newton and Leibniz: a story of reluctant publishers and letters
‘lost in the post’

Sir Isaac Newton (1642-1727) and the German mathematician and philoso-
pher Gottfried Wilhelm Leibniz (sometimes spelt Leibnitz) (1646—-1716) koth
claimed to have invented calculus. It is probable that they developed the ideas
independently; they certainly described their work in vefjiedient ways. New-

ton thought in terms of ‘fluxions’ whilst Leibniz used f&éérences’ (hence th2

. i d . -
word ‘differentiation’) and developed t% notation still in use today.

Leibniz published a paper abouti@rentiation in 1684 and another about in‘e-
gration in 1686. Newton had problems getting his mathematical work into grint;
the publisher of his colleague Isaac Barrow’s work had gone bankrupt and pub-
lishers were wary of mathematical works after this. Works written by Nevston
in 1669 and 1671 were not published until 1711 and 1736 respectively.
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Another source of the controversy seems to have been the length of time it took
for a letter to get from Newton in Cambridge to Leibniz in Paris. Newton'’s letter
listed many of his results, and when Leibniz’s reply took a long time to arrive,
Newton assumed that Leibniz had spent six weeks refining his own work i1 the
light of Newton’s before replying. According to Leibniz the original letter rad
spent these six weeks on its way from Cambridge to Paris, and he had rzplied
immediately he had received it.

It is beyond doubt that Newton accused Leibniz of plagiarism and that, despite
the fact that both men were well respected within their lifetimes and famous
afterwards, they ended their lives in acrimonious dispute with each other.
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10.2.4 Dfferentiating sums

Suppose we need toftérentiatey = x% — 4x + 3, the function
shown in Figure 10.8, with respect xo

It is possible to do this dlierentiation from first principles,

as shown inBox 10.4 Once again, this box is included for
interest only, as it turns out that it is possible téfelientiate

y = X% — 4x + 3 by the application of the rule already intro-
duced, and another simple rule which is stated after the box.
It would be possible to dierentiate all functions from first
principles, but it is a lot quicker simply to apply the rules!

N
T

=
T

It is shown inBox 10.4that if

0 ! !
y=x>—4x+3 (10.2) 1\\2/3 Hr
then 4l

dy
o 2X — 4 (10.2)

We could writey = x2 — 4x+ 3 asy = u+Vv+wwhereu = X2,
v = —4x andw = 3. We know (from the rule introduced in  Figure 10.8: A graph oy = X2 — 4x + 3.
Section 10.2.2) that ifi = x2, then
du _
dx
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if v=—4x, then
dv B
dx
and ifw = 3, then

dw _
dx

_a (10.4)

0. (10.5)

Comparingequation 10.2vith Equations 10.3, 10.4 and 10.5 shows that
dy du dv dw

dx ~ dx " dx  dx

This rule is a general one, in other words:

The derivative of the sum of a number of functions is equal to the sum of the
derivatives of these functions. If

y=U+V+W

then
dy du dv dw

dx ~ dx " dx  dx
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Worked example 10.7
Differentiatex = t° + 6t2 with respect td.

Answer
Differentiating each of the terms separately gives

%zﬂx&&5+®x$$5

= 5t% 4+ 18t2

Question 10.5 Answer

Differentiatez = 4y? + y with respect toy.

10.2.5 Second derivatives
3—2/( gives the gradient of a graph gfagainstx. It is often also useful to know

the rate of change of thgradientwith respect tax, i.e. to dtferentiate again with
respect tax to find the derivative of the derivative. Such a quantity is referred to as

2
(said as ‘dee-3+

the second derivativef y with respect tox and it is Writtend y
by deex-squared’) orf”’(X) (said as f double prime of’) in function notation.

dx
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Consider again the example usedsiection 10.2.4

We had
y= X% — 4x + 3
and
3—2/( =2X—-4
g—zl( is itself a function ofx and diferentiating again gives
oy _
dx2
The graphs ofy againstx, g—i againstx and %2/ againstx for this example are

dy
fix

2
graph ofy againstx varies withx, and the graph oﬁ%’ againstx shows how the

shown inFigure 10.10 The graph of— againstx shows how theyradientof the

gradient of the graph og% againsix varies withx. In this particular case, the graph

of y againstx (Figure 10.10gis a parabola (as discussed3action 5.4. Note that
this graph is horizontal at = 2; at this point its gradient is zero. It should not
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. d . . d
surprise you, therefore, that the graph%( againstx (Figure 10.10p hasd—zl( =0
atx = 2. Similarly, the graph o%( againstx is a straight line of gradient 2, so the

d? . .
fact thatd—xg has a constant value of 2 (ségure 10.10rshould not surprise you.
Question 10.6
Find the first and second derivatives of:
(@) x = 2t3 + 4t2 — 2t + 3 with respect td; Answer
2 .
(b) z= )—/ with respect toy. Answer

Box 10.5 considers an application off@drentiation to science, in this case the mo-
tion of an object falling because of the action of gravity. Note that the variables are
now real physical quantities, so they have units attached to them.

Box 10.5 Objects falling under gravity

Suppose that an object is dropped from the Clifton Suspension Bridge, which
crosses the River Avon as it flows through a gorge near Bristol. The bridje is
75 m above the river, as illustratedfingure 10.11
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If we assume that the object starts from rest (i.e. it is dropped not thrown from
the bridge) then the distancg,that it has travelled downwards from the bridye
in a timet is given by the equation

s= %gtz (10.7)

whereg is the magnitude of the acceleration due to gravity, which we can take
to be 981 ms?2.

We can diferentiate Equation 10.7 twice in order to find out more about the way
the object’s speed changes as it falls. However, first let’s find the time take n for
the object to reach the river. Rearranging Equation 10.7 to rifatkes subject
gives
2= 28
g

Taking the square root of both sides (recognizing thst period of time so we:
are only interested in the positive square root) gives

2_s
g
Thus, whens= 75 m,

t=

2x7 o .
t= ) 8X1 > m = V1529 £ = 3.91 s= 3.9 s to two significant figures.
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So the object takes 3.9 seconds to hit the water.

The object starts from rest, but will be travelling quite fast when it hits the water.
How fast? To find speed we need to find the rate of change of distance, i.e. to
differentiateEquation 10.7%vith respect td.

The speed is then

v—d—s—} x 2t = gt
“a - 29 =9

This implies that speed is proportional to time; the speed is zero as the ob ect is
dropped but then it increases in a linear way as time increases.

Since it takes ® s for the object to hit the water (or@ s, working to three
significant figures to avoid rounding errors), its speed as it hits the water is

v=9.81 ms?x3.91s= 38 ms* to two significant figures.

DifferentiatingEquation 10.7or a second time tells us the rate at which the
object'sspeeds changing. This is the object’s acceleratian,

o _ds

=5 =g=981ms?

Thus the object is accelerating aB® m s2 (the acceleration due to gravity) as
you might have expected. The fact that the final answer is reasonable provides
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a useful check oEquation 10.{which wasassumedo be the correct equation
from which to start). Note that the acceleration is constant all the time the abject
is falling, and the fact that acceleration is positive is consistent with the observed
fact that speed increases as the object falls.

Figure 10.1&hows the variation of the object’s distarsfeom the bridge, speed
v, and acceleration in a downwards directmrwith increasing time. Note thet
the gradient of the first grapls &gainst) leads to the second graphdgainst)
and that the gradient of the second graphdainst) leads to the final grapta(
against).

10.3 D#fferentiating exponential functions

Chapter 5 introduced graphs of exponential growth, suah-asg e (seeFigure

5.36 and graphs of exponential decay, suchNas= Noe ! (seeFigure 5.35,
where e is the number whose value is 2.718 to four significant figures. In general
a function of the typey = Cek*, wherex andy are variables an@ andk are
constants, is called aexponential function Finding the gradient of exponential
functions reveals another reason why e is such a special number.

Figure 10.13s a graph of the simplest imaginable exponential function; in this case
C =1andk = 1, soy = e*. Tangents have been drawn to the curvEigure 10.13
aty=1,y=5andy = 10.
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Question

Use the tangents that have been drawkigiire 10.130 find the gradient of the:
graph ofy = e*aty = 1,y = 5 andy = 10. You should work to two significart
figures in each case.

Answer
The gradient of the tangent drawnyat 1 is

(20-00) 20

(10-@1@)‘26‘10

gradient=

The gradient of the tangent drawnyat 5 is

(92-42)_50 .

gradient= > =—75 = 10

The gradient of the tangent drawnyat 10 is

(170-7.0) 100 _

= =10
(30-20) 10

gradient=

In each case, to two significant figures, the gradient of the tangent (and thus of
the graph itself) is equal to the value pfat the point where the tangent was

drawn.
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Question
Predict the gradient of a tangent drawn to the curvéigure 10.13aty = 2.

Answer

It seems likely that a tangent drawnyat= 2 will have a gradient of 2 too. I:
turns out that this is indeed the case.

The rule that has emerged from this sequence is generally true; the gradient of a
graph ofy = e* at a particular point is equal to the valueyodit that point, i.e. for
y = eX, the derivative ofy with respect tax is equal toy itself:

dy

_ aX - _
fy=e thendx y

or, put another way, ¥ = e* theng—i =eX.

dy . . . . :
ax is only equalto y for this one specific exponential function. However, more

generally,

If y = CekX whereC andk are constants, thegnyx = Ckek*,

Sincey = C eX* this means thaad—i = kyi.e. g—i is proportionalto y.
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This rule is the final rule for dierentiation given in this course, and its use is illus-
trated in Worked examples 10.8 and 10.9. The factgiais proportional toy for

all functions of the formy = C e also explains the shape of graphs of exponential
growth and decay, and is the reason why e is such a special number.

Worked example 10.8

If y = e3* what isg—i? Express your answer (a) in termsx@{b) in terms ofy.

Answer

(@) C =1 andk = 3 in this case, s% =1x3e¥=3e¥
. . dy

(b) Alternatively, we could wrlted—X = 3y.

Worked example 10.9
Find the first and second derivativeszof 3 e 2 with respect td.

Answer

C = 3 andk = -2 in this case, s%—f =3x -2 = _pgeg?,

This could also be written a%t% = -2z
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Differentiating again gives

ok —6x-2e6d=-12¢2

. . d?z
This could also be written agtE = 4z.

Question 10.7
(a) Differentiatey = 2 € with respect tox. Answer

(b) Differentiatez = e/? with respect td. Answer

. dy. . . :
Slnce—y is proportional toy for all exponential functions we can use exponen-

tial functions to describe situations in which the rate of change of some quantity
at an instant is proportional to the actual value of that quantity at the samne in-
stant.

Radioactive decay, first described in Chapter 5 and further discussed in Box 10.6,
is an example of a situation like this and this is why it can be described by an
exponential function.
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Box 10.6 Radioactive decay revisited

As previously discussed, radioactive decay is an inherently ~
random process; we can never know when a particular nucleu: No
is going to decay. However, if the sample contains a large num-
ber of radioactive nuclei, thaveragerate at which the nuclei
decay will be proportional to the number of radioactive nuclei
remaining. It is this proportionality which leads to the process
being an exponential one, in this case an exponedéiedhy

As discussed ilChapter SandChapter 7we can describe the t
process by the equatioti = No et wherel is a positive con- ~ Figure 10.14: Radioactive decey
stant called the decay constaNy is the initial number of ra- ~ ¢an be describgﬂl by the equation
dioactive nuclei andN is the number remaining after tinte N = Npet, so— = —AN. Tan-
The constant is related to the half-lifet;,» by the equation gents to the curv% are shown in red.

In2 . .
tyo = - (see Box 7.5). DferentiatingN = Nge ! with
respect td gives

dN

< = ~Not e = AN (sinceN = Nge™).

In this case the gradient is negative as you would expect, since
the number of radioactive nuclei remaining is reducing with

increasing time. The larger the value Mf the faster the rate
of decay, as shown in Figure 10.14.
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10.4 Learning outcomes for Chapter 10

After completing your work on this chapter you should be able to:
10.1 demonstrate understanding of the terms emboldened in the text;

10.2 find the gradient of a curve at a particular point by means of drawing a
tangent to the curve at that point;

10.3 demonstrate understanding of the fact that the derivative of a function gives
the gradient of the corresponding graph;

10.4 demonstrate understanding of the fact that the second derivative of a function
is obtained by dterentiating twice;

10.5 differentiate functions of the forjm= C x";
10.6 differentiate simple sums of functions;
10.7 differentiate exponential functions of the foyme: C e*;

10.8 demonstrate understanding of the fact that, for exponential func%]is,
proportional toy.
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Resolving vectors

The letterv has been used throughout the course to represent speed; butathgr
thans? The letteiv reminds us of the word ‘velocity’ which, in everyday speech,

is used interchangeably with speed. However, in science the two words have subtly
different meanings. Velocity is an example ofegctor, a quantity that has direction

as well as magnitude (size). In contrast, speedsisadarquantity; it has magnitude

only.

Question

In terms of a strict interpretation of vector and scalar quantities, what is wrong
with the statement ‘the car has a velocity of 50 km hé@ar

Answer

No direction has been given, so this is a scalar quantity, i.e. the speed of the car.
To turn it into a vector we would need to say, for example, that ‘the car Fas a
velocity of 50 km hout! due north’.
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Another example of the fference between speed and velocity comes when con-
sidering an object orbiting another object at constant speed. Consider, for example,
the Earth orbiting the Sun at about 30 km éas discussed iBox 3.1). The Earth’s
speed relative to the Sun is approximately constant, but its direction of movement
is constantly changing, so its velocity is constantly changing too.

The quantities considered elsewhere in this course have been almost exclusively
scalars (mass, temperature, energy, magnitude of acceleration) but velocity is not
the only scientific quantity to be a vector, by a very long way. Other such quantities
include, force, weight and acceleration.

A vector may be represented diagrammatically by an arrow, the length of which
specifies the vector’'s magnitude, and the direction of which is the same as the vec-
tor’'s. By convention, vectors are printed as bold symbols, &.ghile the magni-

tude of the vector is written normally, e.g. Handwritten vector symbols should

be written with a wavy underline, as shown in Figure A.1.

v v

(a) (b)

Figure A.1: Representing a vector: (a) in printed text; (b) by hand.
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To specify a vector fully, both its magnitude (which is always positive) and its
direction must be stated, e.gF ‘is a force of 10 N acting vertically downwards’.
The magnitude oF may be written as

F=|F|=10N

The vertical lines drawn either side of tRgorovide an alternative way of indicating
themodulus(magnitude) of the vector.

Adding vector quantities together is not as straightforward as adding scalar quanti-
ties, since both magnitude and direction need to be taken into account. Fortunately
the trigonometry from Chapter 6 comes to our aid.

Imagine an object being acted on by the two forces shown in Figure A.2.
You want to know the overallfiect; what is the total force acting on
the object as a result af andb? It is not immediately obvious how to
proceed since the two forces havéfelient sizeandare acting in dterent
directions.

Figure A.2: Two forcesa and
b acting on an object.
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One way forward is to resolve each vector imtompo-
nents any two dimensional vector (such as one drawn
on the page of a book, as here) can be characterized by
its components along two perpendicular axes. Figure A.3
shows the components of the vecsmlong two axes and

y. Note that the componends anday are scalar quantities.

We can use trigonometry to fira anday.

Since co¥ = a—dj
hyp

ay
we can say that cas= P thusay = acosé.

. . opp
Similarly sing = —,
Y hyp

. .
So we can say that sth= gy, thusay = asiné.

If a has magnituda = 6.0 N and acts at 60to the x-axis,
we can say

ay = 6.0 N x cos 60 ay = 6.0 Nx sin60
=30N =52N

Figure A.3: Thex- andy-components o&.
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Similarly, if b has magnitudé = 2.8 N and acts at 25to the x-axis, we can say
by = 2.8 Nx cos 25 by = 2.8 Nxsin25
=25N =12N

We can find thex-component of the resultant forag by
addingthe x-components o& andb: y

Cx=ax+by=30N+25N=55N

Similarly, they-component ot is given by A=~~~ """ |

cy=ay+by=52N+12N=64N

|

|

|

|

y c |

The resultant force is shown in Figure A.4. :

We can use Pythagoras’ Theorem to find the magnitide o !
o) \ . 5
< Cy > X

?=ct+C
c= 2+ 032, Figure A.4: Findingc from its x- and y-

components.

= (55 NP2+ (6.4 Ny
_84N

Back <« > 516



Contents

opp _ G

And since ta = = — we can find the angle betweerand thex-axis, which

adj o
gives us the direction in which the force acts:
6.4 N
tan¢ = m =1.1636

Thus¢ = tarr1(1.1636)= 49 to two significant figures.

So the resultant force has a magnitude of.8 N and acts at an angle of 4 the
horizontal axis.
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Question A.1 Answer

Find the x- andy-components of the vector ¥ A
shown in Figure A.5. The vector has a magni-
tude of 86 ms* and acts at an angle, of 42°

to thex-axis.

<

o

Xy

<—UX

Figure A.5
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Question A.2 Answer

Find the magnitude and direction of the vector ¥ A
F shown in Figure A.6.

Fx=4.0N andFy = 3.0 N.

| '
|
|
F, |
F |
|
|
[r o
- F, » X
Figure A.6
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Glossary

absolute-value The absolute value of a number is the number given without its
or — sign.

accurate Description of a set of measurements for whichgkistematic
uncertaintyis small. Compare witlprecise

acute-angle An angle of less than 90

addition rule for probabilities A rule stating that if several possible outcomes
are mutually exclusive, the probability of one or other of these outcomes
occurring is found by adding their individual probabilities.

adjacent (trigonometry) The side other than the hypotenuse which is next to a
particular angle in aight-angled triangle

algebra The process of using symbols, usually letters, to represent quantities and
the relationships between them.

alternative hypothesis The logical ‘mirror image’ of theaull hypothesis
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proposed at the start of a statistical hypothesis test (e.g. that the means of
two populations are not identicaly # uz ).

arc A portion of a curve, particularly a portion of the circumference of a circle.
arccosine Seeinverse cosine

arcsec An abbreviation for ‘second of arc’. A 60th part oh@nuteof arci.e. a
3600th part of alegregof arc).

arcsine Seeinverse sine
arctangent Seeinverse tangent

arithmetic mean Measure of the average of a set of numbers. For a set of
measurements of a quantitythe arithmetic meakw (often abbreviated to
‘the mean) is defined as the sum of all the measurements divided by the
total number of measurements:

See also th&rue mean

arithmetic operations The operations of addition, subtraction, multiplication and
division.

axis (of a graph) A horizontal or vertical reference line which carries a set of
divisions. In the case oflaar charthe divisions may be a list of categories.
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In the case of graphthe divisions indicate Anearor logarithmic scaleand
are used to locate points on the graph.

bar chart A diagrammatic method of presenting data grouped into discrete

categories. The categories are listed along one axis (usually the horizontal
axis), and each category is represented by a bar (usually vertical). The bars

are separated by gaps, and their height (or lengttiyéstly proportionato
the number or percentage of things or events in each category. Compare
with histogram

base number When usingexponentsthe quantity that is raised to a power, e.g. 5
is the base in the statemenk® x 5 = 5° anda is the base in the statement
a®xa*t=a’.

best-fit line A line (usually a straight line) drawn ongaaphand chosen to be the
best representation of the data as a whole. A best-fit line need not
necessarily go through any of the data points (although it will typically go
through some of them), and should be drawn in such a way that there are
approximately the same number of data points above and below the line.

calculus The branch of mathematics which includéferentiationand
integration.

cancellation The process of dividing both the numerator and denominator of a
fraction by the same quantity. With numbers it may be quicker to use
cancellation than to work out the value of the numerator and denominator
separately, e.g.
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5x13 5
13x8 8
Cancellation is also useful in simplifying algebraic expressions or units, e.g.

¢ _ b

2ad  2d

2
LN _1kgms? o,
1kgx 1m 1kg

categorical level A level of measuremeim which the data comprise distinct
non-overlapping classes that cannot logically be ranked (e.g. presence
versus absence, male versus female). Seecatipal leve| interval level

centi A prefix, used with units, to denote hundredths, and indicated by the symbol
c. Thus one centimetre, denoted 1 cm, is the hundredth part of a metre.
Centi is not one of the recognized submultiples in the syste8i ahits but
is nevertheless in common use, especially in association with units of length
and volume.

Y2 test (chi-squared test) A statistical hypothesis test used to determine whether
there is astatistically significanassociation between twaategorical level
variables.

chord A line drawn between two points on a curve.

common denominator The same number or term occurring as demominator
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of two or more fractions. For example, the numerical fracti§é1and1—76

have the common denominator 16. It is often necessary teqisealent
fractionsin order to find common denominators: for examéle: 1% = %—(2)

) andlﬁ5 (= %—8 ) have common denominators 15 and 30 (as well as many
other numbers). The algebraic fractighand§ have the common

denominatob x d.
common logarithm Seelogarithm to base 10

commutative An operation for which the result is unchanged if the order of terms
is reversed is described as commutative. Only two oftfiametic
operationsare commutative: additiora(+ b = b + a) and multiplication
(axb=bxa).

complex number A number of the forrm + mi, wheren is anyreal numbermis
any non-zero real number, ang v-1.

component (of a vector) The component ofi@ctoralong a chosenxisis
obtained by drawing a line from the head of the arrow representing the
vector onto the axis, such that the line meets the axisigha angle For
example, thex-component of a vecta is ay = acosd wherea is the
magnitude of the vector ardis the angle between theaxis and the
direction of the vector.

concentric Two circles are described as being concentric if they have the same
centre.
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constant of proportionality The constantactorthat is required to turn a
proportionality into arequation Thedirect proportionalityof y o« x can be
written asy = kx, wherek is the constant of proportionality.

conversion factor The number by which one needs to divide or multiply in order
to convert from one unit to another.

correlation Two variables abrdinal levelor interval levelare said to be
correlated if, as the value of one variable increases, the value of the second
variable either increases (i.e. positive correlation) or decreases (i.e. negative
correlation). If the values of the two variables increase precisely in step with
one another, the positive correlation can be described as ‘perfect’. In a
‘perfect’ negative correlation, the value of one variable decreases precisely
as the other increases. Correlations may or may netddestically
significant

correlation codficient The correlation co@cient () of a ‘perfect’ positive
correlationis +1, while that of a ‘perfect’ negative correlation+4.. When
there is complete lack of correlation between two varialylesQ. For a
positive correlation that is less than ‘perfect’>I > 0. For a negative
correlation that is less than ‘perfect’ >0r > —1.

cosine The cosine of an angkin aright-angled trianglés defined by

adjacent

cosf= ———
hypotenuse

where adjaceritis the length of the side adjacentd@and ‘hypotenuskis
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the length of the hypotenuse.

critical value At a particular number oflegrees of freedorfin many statistical
hypothesis tests), the critical value is the most extreme (usually the largest,
but in some statistical tests the smallest) value thatekiestatistiags
expected to have for a particular significance level.

deci Prefix, used with units, to denote tenths, and indicated by the symbol d. Thus
one decibel, denoted 1 dB, is equal to one tenth of a bel. Deci is not one of
the recognized submultiples in the systensotinits but is commonly used
in certain areas: for example the concentration of a chemical dissolved in a
solvent is often expressed in units of moles per decimetre cubed (md).dm

decimal notation Method of representing numbers, according to which the
integraland fractional parts of a number are separated by a decimal point.
The decimal point is written as a full stop, with the integral part of the
number to the left of it. The first digit after the decimal point indicates the
number of tenths, the second indicates the number of hundredths, the third
the number of thousandths, etc.

decimal places Seeplaces of decimals
degree (of arc) A 360th of a complete revolution.

degree-CelsiusAn everyday unit of temperature, given the symt©l Pure
water freezes at O0C and boils at 100C. Temperatures may be converted
from degrees Celsius to tf& unitof temperature, kelvin, using tiveord
equation
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(temperature in kelvin¥ (temperature in degrees Celsius27315

degrees of freedomA device used in many statistical hypothesis tests to allow for
the fact that the more data that are collected, the more scope there is for the
test statistido deviate from the value expected (generally, zero) ifrthié
hypothesisvere true.

denominator The number or term on the bottom of a fraction. For example, in

1 . . . ..mn )
the fractlonzt, the denominator is72 in the fractlonm, the denominator

is pg. See alsonumerator

dependent variable A quantity whose value is determined by the value of one or
more other variables. Ongraph the dependent variable is, by convention,
plotted along the verticalxis Compare withindependent variable

derivative The derivative (or derived function) offanction f(x) with respect tox
is another function ok that is equal to the rate of change k) with

respect ta. Its value at any given value afis equal to the ratieA—X in the
- . . df
limit as Ax becomes very small, and is usually ertten—c?xsor f’(x). The

f . .
value ofd— at each value ok is also equal to the gradient of the graphfof

X
plotted againsk at that value ok. A derivative of the type is sometimes
called the first derivative to distinguish it from the second derivative of the
function.
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derived function Seederivative

differentiation A mathematical process that enablesdkevativeof afunction
to be determined.

directly proportional (quantities) Two quantities andy are said to be directly
proportional to each other if multiplying (or dividing)by a certain amount
automatically results iy being multiplied (or divided) by the same amount.
Direct proportionality betweer andy is indicated by writingy < X. The
direct proportionality can also be written as an equation of fpeakx,
wherek is a constant called theonstant of proportionalityA graphin
whichy is plotted against will be a straight line withgradientequal tok.
See alsonversely proportional

elimination A method of combining two or morequationdy eliminating
variableshat are common to them.

equation An expression containing an equals sign. What is written on one side of
the equation must always be equal to what is written on the other side.

equivalent fractions Fractions that have the same value, &4, 5, 23, etc.

estimated standard deviation of a population The best estimate that can be
made for thestandard deviationf some quantity for a wholpopulation
This estimate is usually set equaldo 1, which is calculated from
measurements of the quantity made on an unbiaaatpledrawn from the
population. If the sample consiststomembers and the quantikyis
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measured once for each member, then
1 n
_ Y
$-1= 457 i§_1(><. X)

whereX is thearithmetic meamf the measurements. The symbg| ; is
also widely used (especially on calculators) as an equivalegt {0

evaluate An instruction to work out the value of an expression.

exponent When raising quantities to powers, the number to which a quantity is
raised, e.g. in the term?2the exponent is 3.

exponential decayDecay in which the time taken for a quantity to fall to half its
original value is always the same; this time is known agthélife. A
guantityN with an initial value ofNg at timet = 0 decays exponentially if
N = Noe~, whereA is a constant known as the decay constant.

exponential function A functionof the typey = Cé* whereC andk are

constants. A function of this type has the property tgéis proportional to
y.

exponential growth Growth in which the quantity being measured increases by a
constant factor in any given time interval. A quantityith a starting value
of ng at timet = 0 grows exponentially i = nge™, wherea is a positive
constant.
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expression A combination of variables (such agt or uy + axt). Unlike an
equation an expression is unlikely to contain an equals sign.

extrapolation The process of extending a graph beyond the highest or lowest data
points in order to find the values of one or both of the plotted quantities
outside the original range within which data were obtained.

factor A termwhich when multiplied to other terms results in the original
expressionso 6 and 4 are factors of 24 aral{ 3) and & + 5) are factors of
a + 2a - 15.

factorize To find thefactorsof anexpression
first derivative Seederivative
formula A rule expressed in algebraic symbols.

fraction A number expressed in the form of omeegerdivided by another, e.qg.

%; g; i—; One algebraitermdivided by another may also be described as a

fraction. See alsamproper fractionmixed numberequivalent fractions
numeratomanddenominatar

function If the value of avariablef depends on the value of another variakle
thenf is said to be a function of and is written ad (x). In general, there is
only one value off (x) for each value ok.

gradient (of a graph) The slope of a line orgaaph The gradient is a measure of
how rapidly the quantity plotted on the verticatischanges in response to a
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change in the quantity plotted on the horizontal axis. If the graph is a
straight line, then the gradient is the same at all points on the line and may
be calculated by dividing the vertical ‘rise’ between any two points on the
line by the horizontal ‘run’ between the same two points. If the graph is a
curved line, the gradient at any point on the curve is defined by the gradient
of thetangento the curve at that point. See alsterivative

graph A method of illustrating the relationship between two variable quantities
by plotting the measured values of one of the quantities uslimgaror
logarithmic scalelong a horizontahxis and the measured values of the
other quantity using a linear or logarithmic scale along a vertical axis. See
also:dependent variabJéndependent variablesketch graph

half-life The time taken for half the nuclei in a radioactive sample to decay. See
alsoexponential decay

histogram A diagrammatic method of presenting data, in which the horizontal
axisis divided into (usually equal) intervals of a continuously variable
guantity. Rectangles of width equal to the interval have a height scaled to
show the value of the quantity plotted on the vertical axis that applies at the
particular interval. For example, the intervals could be the months in the
year and the vertical axis could representitiean(monthly) rainfall in
millimetres. Compare withar chart

hyperbola A curve, part of which may be obtained by plottimyersely
proportionalquantities against each other on a
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hypotenuse The side opposite to théght-anglein aright-angled triangle

hypothesis A plausible idea tentatively put forward to explain an observation.
Traditionally, a hypothesis is tested by making predictions that would follow
if the hypothesis is correct. If these predictions are borne out by experiment
or further observation, then this lends weight to the hypotHasisloes not
prove it to be correctlf the predictions are not borne out, then the
hypothesis is either rejected or modified.

imaginary number A number of the forrmi, wheremis any non-zeroeal
numberandi = v-1.

improper fraction A fraction in which thenumeratoiis greater than the
. 12 . . . .
denominatore.g. - An improper fraction may also be written asnaxed
number

independent variable The quantity in an experiment or mathematical
manipulation whose value(s) can be chosen at will within a given range. On
agraph the independent variable, is by convention, plotted along the
horizontalaxis Compare withdependent variable

index (plural indices) Seexponent
integer A positive or negative whole number (including zero).

integral Pertaining to an integer. For example the statemenitican take
integral values from-2 to +2 means that the possible valueswére-2,
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-1,0,1and 2.

intercept The value on onaxisof agraphat which a plotted straight line crosses
that axis, provided that axis does pass through the zero point on the other
axis. If the plotted line has an equation of foyre mx+ c, the intercept on
they axis is equal ta.

interpolation The process of reading between data points plottedgmajah in
order to find the value of one or both of the plotted quantities at intermediate
positions.

interval level A level of measuremeim which theactualvalues of measurements
or counts are known and used in statistical analysis (e.g. dry mass in grams,
number of flowers per plant). See alsategorical levelordinal level

inverse cosinex is the inverse cosine (arccosine)yaf xis the angle whose
cosineisy. i.e. x = cosly (x = arccosy) if y = cosx.

inverse sine x is the inverse sine (arcsine) pff xis the angle whossineisy. i.e.
x = sin"ty (x = arcsiny) if y = sinx

inverse tangent x is the inverse tangent (arctangent)yof x is the angle whose
tangenisy, i.e. x = tarry (x = arctary) if y = tanx.

inverse trigonometric function If y is atrigonometric raticof the anglex, thenx
is the inverse trigonometric function gf For example, ify = sinx, the
inverse trigonometric function is = sin"ty (or arcsiry) where sinly
(arcsiny) is the angle whose sineys
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inversely proportional (quantities) Two quantities andy are said to be inversely
proportional to each other if an increasexiby a certain factor
automatically results in a decreaseyihy the same factor (e.qg. if the value
of x doubles, then the value gthalves). Inverse proportionality betwern

andy is indicated by writingy « %( A graph in whichy is plotted againsk
will be ahyperbola See alsodirectly proportional

irrational number A number that cannot be obtained by dividing onegerby
another, e.grt, V2 and e. See alsational number

latitude Part of the specification of the position of a point on the Earth’s surface:
the distance north or south of the Equator measureggreesA line of
latitude is an imaginary circle on the surface of the Earth.

level of measurementThe three levels of measurement that data may be known
or analysed at areategorical levelinterval levelor ordinal level

linear scale A scale on which the steps between adjacent divisions correspond to
the addition or subtraction of a fixed quantity.

logarithm The logarithm of a number to a given base is the power to which the
base must be raised in order to produce the number.

logarithm to base 10 The logarithm to base 10 (or ‘common logarithm’, {gpof
p is the power to which 10 must be raised in order to equale. if p = 10",
then logyp =n.
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logarithm to base e The logarithm to base e (or ‘natural logarithm’) pfs the
power to which e must be raised in order to equile. if p = €9, then

Inp=aq.

logarithmic scale Scale on which the steps between adjacent divisions correspond
to multiplication or division by a fixed amount, usually a power of ten.

log-linear graph A graphof thelogarithmof one quantity against the actual
value of another quantity. For axponential functiomf the typey = Ce**,
graphs of loggy againstx and of Iny againstx will both be straight lines.

log-log graph A graphof thelogarithmof one quantity against the logarithm of
another quantity. For functionof the typey = ax° (e.g.y = 2x3) graphs of
log,oY against loggy x and of Iny against Inx will both be straight lines.

longitude Part of the specification of the position of a point on the Earth’s
surface. A line of longitude is an imaginary semicircle that runs from one
pole to the other. The line of zero longitude passes through Greenwich in
London. Other lines of longitude are specified by the angle east or west of
the line of zero longitude.

lowest common denominator The smallestcommon denominatasf two or more
fractions.

magnitude The size of a quantity, also referred to as the ‘modulusttor
guantities have both magnitude and directierglarquantities have only
magnitude.

Back <« > 535



Contents

matched samplesWhen data are collected from tvgamplesuch that each item

of data from one sample can be uniquely matched with just one item of data

from the other sample (e.g. blood glucose levels measured in individuals

before and after they have taken medication), the samples are described as

matched. See alammatched samples
mean Term commonly used as an abbreviationdothmetic mean

median The middle value in a series when the values are arranged in either
increasing or decreasing order. If the series contains an odd number of
items, the median is the value of the middle item; if it contains an even
number of items, the median is taathmetic meamf the values of the
middle two items.

minute (of arc) A 60th part of anlegreg(of arc).

. . . : 1
mixed number A number consisting of a non-zenategerand afraction, e.g. 32
Any improper fractiormay also be written as a mixed number: for example

= =2=.
3 3

mode The most frequently occurring value in a set of data.
modulus Seemagnitude

multiplication rule for probabilities A rule stating that if a number of outcomes
occur independently of one another, flrebability of them all happening
together is found by multiplying the individual probabilities.
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natural logarithm Seelogarithm to base.e

normal distribution Distribution of measurements or characteristics which lie on
a bell-shaped curve that is symmetric about its peak, with the peak
corresponding to theeanvalue. Repeated independent measurements of
the same quantity approximate to a normal distribution, as do quantitative
characters in natural populations (e.g. height in human beings).

null hypothesis A ‘no difference’ hypothesis proposed at the start of a statistical
hypothesis test (e.g. that theeansof two populationsare identical,
u1 = p2). Compare withalternative hypothesis

numerator The number or term on the top of a fraction. For example, in the

.3 . . .a+b )
fraction—, the numerator is 3; in the fractlcmc—, the numerator ia + b.
See alsa@lenominator

opposite (trigopnometry) The side opposite to a particular angle iight-angled
triangle

order of magnitude The approximate value of a quantity, expressed as the nearest
power of ten. If the value of the quantity is expresseddientific notation
asax 10", then the order of magnitude of the quantity i¢' #f0a < 5 and
101 if a> 5. The phrase is also used to compare the sizes of quantities, as
in ‘a metre is three orders of magnitude longer than a millimetre’ or ‘a
picogram is twelve orders of magnitude smaller than a gram’.

ordinal level A level of measuremerih which the data can be logically ranked
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but in which theactualvalues of the measurements or counts are either not
known or not used in statistical analysis (e.g. tallest to shortest, heaviest to
lightest). See alsoategorical levelinterval level

origin (of a graph) The point on a graph at which the quantities plotted on the
horizontalaxisand the vertical axis are both zero.

parabola A curve that may be described by an equation of the form
y = ax? + bx+ ¢, wherex andy are variablesa is a non-zero constant, abd
andc are constants that may take any value.

percentage A way of expressing a fraction with@enominatoof 100. For
example, 12 per cent (also written 12%) is equivalent to twelve parts per

12
hundred orm.

places of decimalsin decimal notationthe number of digits after the decimal
point (including zeroes). Thus ZR7 and 300 are both given to three
places of decimals.

population Statistical term used to describe the complete set of things or events
being studied.

power Seeexponent

powers of ten notation A method of representing a number as a larger or smaller
number multiplied by ten raised to the appropriate power. For example,
2576 can be written in powers of ten notation as7B5 10?7 or 2576x 10°,
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or 0.02576x 10° or 257600x 10°2. See alsacientific notation

precise Description of a set of measurements for which the random uncertainty is
small. Compare witlaccurate

probability If a process is repeated a very large number if times, then the
probability of a particular outcome may be defined in terms of results
obtained as the fraction of results corresponding to that particular outcome.
If the process has n equally likely outcomes and q of those outcomes
correspond to a particular event, then the probability of that event is defined
as gn. There are, for example, 6 equally likely outcomes for the process of
rolling a fair die. Only one of those outcomes corresponds to the event
‘throwing a six’, so the probability of throwing a six @ Five of the
outcomes correspond to the event ‘not throwing a six’, so the probability of
not throwing a six ig.

product The result of a multiplication operation. For example, the product of 3
and 5 is 15.

proportional Seedirectly proportionglinversely proportional

Pythagoras’ Theorem The square of thaypotenusef aright-angled trianglés
equal to the sum of the squares of the other two sides.

quadratic equation An algebraicequatiorfor x of the formax2 + bx+ ¢ = 0,
wherea # 0 andb andc can take any value. For example¢2- x+3=01is
a quadratic equation.
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quadratic equation formula Thesolutionsof a quadratic equatioof the form
ax? + bx+ ¢ = 0 are given by the formula

« = —b+ Vb2 - 4ac
B 2a

radian The anglesubtendedt the centre of a circle by an arc equal in length to
the radius. In general, the anglsubtended by an arc lengghn a circle of

radiusr is given byé (in radians)= FS

random uncertainty Measured values of one quantity that are scattered over a
limited range about eneanvalue are said to be subject to random
uncertainty. The larger the random uncertainty associated with the
measurements, the larger will be the scatter. Seepasoseandsystematic
uncertainty

ratio The relationship between the sizes of two comparable quantities. For
example, if a group of 11 people is made up of 8 women and 3 men, the

ratio of women to men is said as 8 to 3 and written as 8 : 3. Ratios may be

fairly easily converted intéractions In this particular exampI%S— _38
+3 11

of the group are women anlg:rL are men.

. : : a
rational number Any number that can be written in the forﬁj wherea andb

. 7 -6 1 25
areintegersandb # 0, e.g. 7= 1; -6 = T; —5; 3.125= R Every
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terminating orecurring decimais a rational number. See alsgarational
number

real number A number that can be placed on the number line. The set of real
numbers is made up of all thationalandirrational numbers

. . 2. 3 :
reciprocal A termthat is related to another %SIS related toé. The reciprocal of

. X . .
i—/( is —, and vice versa, for any non-zero valuex@ndy. The reciprocal of

N™Mis N~™ and vice versa.

recurring decimal A number in which the pattern of digits after the decimal

point repeats itself indefinitely. Every recurring decimal r@onal number

. . 1
and can therefore be written as a fraction, e.§383... = 3 ;

41 2345
0.123123123.. = 333" 0.234523452345.. = 9999

right angle The angle between two directions that are perpendicular (i.e.°at 90
to each other.

right-angled triangle A triangle where the angle between two of the sides is a
right angle

rounding error An error introduced into a calculation by working to too few
significant figuresTo avoid rounding errors you should work to at least one
more significant figure than is required in the final answer, and just round at
the end of the whole calculation.
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sample Statistical term used to describe an unbiased sub-sepgbalation
sample standard deviation Seeestimated standard deviation of a population
scalar A quantity withmagnitudebut no direction. Compare withector.

scientific notation Method of writing numbers, according to which amational
numbercan be written in the form x 10" wherea is either anintegeror a
number written indecimal notationl < a < 10, andn is aninteger Thus
5870 000 may be written in scientific notation a8%x 10°, and 0003 261
may be written in scientific notation a2B1x 10~3. The terms ‘standard
form’ and ‘standard index form’ are equivalent to the term scientific
notation.

second (of arc) Seearcsec

second derivative A derivativeof a derivative, for example the derlvatlvei

2
with respect tax. A second derivative is usually written as%}é or f”(x).

Sl units An internationally agreed system of units. In this system, there are seven
base units (which include the metre, kilogram and the second) and an
unlimited number of derived units obtained by combining the base units in
various ways. The system recognizes a number of standard abbreviations (of
which SI, standing for Systéme International, is one). The system also uses
certain standard multiples and submultiples, represented by standard
prefixes. See alscentianddeci
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significance level The probability that the value oftast statisticould be as
extreme (usually as large, but in some statistical tests as small) as the value
obtained in a statistical hypothesis test if thél hypothesisvere true.

significant figures The number of digits, excluding leading zeroes, quoted for the
value of a quantity, and defined as the number of digits known with certainty
plus one uncertain digit. Thus if a measured temperature is given 23
(i.e. quoted to three significant figures) this implies that the first two digits
are certain, but there is some uncertainty in the final digit, so the real
temperature might be 28 C or 238°C. The larger the number of significant
figures quoted for a value, the smaller is the uncertainty in that value.
Leading zeroes in decimal numbers do not count as significant figures (e.g.
0.002 45 is expressed to three significant figures). Numbers equal to or
greater than 100 can be unambiguously expressed to two significant figures
only by the use ocientific notatior{e.g. 450 can only be unambiguously
expressed to two significant figures by writing it in the forrd % 107).
Similarly, scientific notation must be used to express numbers equal to or
greater than 1000 unambiguously to 3 significant figures.

similar Two triangles (or other objects) are described as being similar if they have
the same shape butftérent size.

simplify To write anequationor expressionn its simplest form.

simultaneous equationsTwo or moreequationsvhich must hold true
simultaneously.
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sine The sine of an anglgin aright-angled trianglés defined by

opposite

sin@) = hypotenuse

where ‘opposite’ is the length of the sidepositet and ‘hypotenuse’ is the
length of thehypotenuse

sketch graph A graphdrawn to illustrate the nature of the relationship between
quantities, but not involving accurate plotting. On a sketch graplotigen
is usually indicated, but thexesare not scaled.

skewed Description of distributions that are not symmetric about thean
value.

small angle approximation For small angles (less than about 0.1 radian)
cosf ~ 1, and if the angle is stated radians siné ~ 6, tand ~ 6.

solution The answer, especially numerical value or values which satisfy an
algebraicequation

solve To find an answer, usually to find the numerical values which satisfy an
algebraicequation

Spearman rank correlation codficient (rs) A test statisticalculated in a
statisticalhypothesidest used to determine whether or not there is a
statistically significantorrelationbetween twardinal levelvariables.

square root The number or expression that multiplied by itself gitéss called
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the square root dN. The positive square root &f can be written as either
1
VN or Nz,

standard deviation A quantitative measure of the spread of a set of
measurements. Forrepeated measurements of a quantity, with arithmetic
meanx, the standard deviatios, is given by

Sh= %;(Xi - %)?

The symbolr,, is also widely used (especially on calculators) as an
equivalent tos,. See alsosample standard deviatipestimated standard
deviation of a population

standard form Seescientific notation
standard index form Seescientific notation

statistically significant In science, the result of a statistical hypothesis test is
conventionally regarded as statistically significant if giebability of the
value of thetest statistideing as large (or, in some statistical tests, as small)
as the one obtained is less than 0.05.

subject The term written by itself, usually to the left of the equals sign in a
mathematicaéquation

subtend A straight line rotating about a certain point is said to subtend the angle
it passes through.
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sum The result of an addition operation. For example, the sumof 3and 2is 5. A
summation sign may be used as shorthand for more complicated addition
operations, e.g.

n
ZXiZX1+X2+...+Xn.
i=1

systematic uncertainty Measured values of one quantity that are consistently too
large or too small because of bias in the measuring instrument or the
measurement technique are said to be subject to systematic uncertainty. See
alsoaccurategrandom uncertainty

t-test One of a number of statistical tests ofigoothesisised to determine
whether there is atatistically significantlifference between the estimated
population means calculated from twamples Different versions of the test
are available fomatched samplemndunmatched samples

tangent (to a curved graph) The tangent to a curve at a given point P is the
straight line that just touches the curve at P and has the geaxde=ntas the
curve at the point P.

tangent (trigonometry) The tangent of an anglén aright-angled trianglés

defined by
tang opposne
adjacent

Back <« > 546



Contents O

where ‘opposite’ is the length of the sidppositeand ‘adjacent’ is the
length of the sidedjacento 6.

term A singlevariable(such as/ or uy in the equatiorvg = uy + axt) or a
combination of variables, such ag.

test of associationA statisticalhypothesidest used to determine whether there is
a statistically significanaissociation between twaategorical levelariables
(e.g.x? tes) or a statistically significantorrelationbetween two variables at
ordinal level(e.g. Spearman rank correlati@ng)) or atinterval level(other
correlation co#icients(r)).

test of difference A statisticalhypothesidest used to test whether there is a
statistically significantlifference between, for example, the estimated
population means (e.g-test9 or estimated populatiomediangother tests)
calculated from two samples.

test statistic In most statistical tests oflaypothesisthe value of a test statistic is
calculated using aaquation The value of the test statistic is then compared
with a table ofcritical valuesin order to determine whether tineill
hypothesiought to be accepted or rejected at a particsignificance level

trigonometric ratios The ratios of the sides ofregght-angled triangleincluding
tangentsine cosine

trigonometry The branch of mathematics which deals with the relations between
the sides and angles of triangles, usualiyt-angled triangles
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true mean Thearithmetic mearf some quantity for a wholpopulation usually
denoted by the symbgd. For a large population, the true mean is generally
unknowable and the best estimate that can be made of it is the mean of the
quantity for an unbiasesbmpledrawn from the population.

unmatched samplesWhen data are collected from two samples such that there is
no logical connection between any particular item of data from one sample
and any particular item of data from the other sample (e.g. the heights of
plants randomly assigned to either an experimental or a control group), the
samples are described as unmatched. Seenvadsched samples

variable A quantity that can take a number of values.

vector A physical quantity that has a definteagnitudeand points in a definite
direction.

word equation An equationin which the quantities under consideration are
described in words.
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Hidden material

This ‘chapter’ contains material which you won't normally read through in se-
quence, but will access it through the links from the main text.
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Question 1.1 (a)
(-3)x4=-12
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Question 1.1 (b)
(-10)-(-5)=-5
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Question 1.1 (c)
6+ (-2)=-3
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Question 1.1 (d)
(-12)+ (-6) = 2
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Question 1.2

The lowest temperature in the oceans, which corresponds to the freezing point, is
319 Celsius degrees colder than the highest recorded temperature, which is
30.0°C.

Therefore, freezing point of seawater30.0 °C - 319 °C
=-19°C
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Question 1.3 (a)
117 - (-38)+ (—286)= -131
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Question 1.3 (b)
(-1624)+ (-29) = 56
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Question 1.3 (c)
(-123)x (—24) = 2952
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Question 1.4 (a)

The lowest common denominator is 6, so

2 1 _2x2_ 1 _4 1.3

3 6 3x2 6 6 6 6

Dividing top and bottom by 3 gives

3_1

6 2

Alternatively,

2 1 2x6 1x3_12 3 9
3 6 3x6 6x3 18 18 18

Dividing top and bottom by 9 gives

9 _1

18 2

as before.
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Question 1.4 (b)

The lowest common denominator is 30, so

1><10+1><15 2xX6
30 30 30
_10 15 12

30730 30
13

~ 30

1+ 2
3 2 5
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Question 1.4 (c)

In this case, the lowest common denominator isn’t immediately obvious, but a
common denominator will certainly be given by the product of 3 and 28, so

5 1 5x3 1x28

28 3 28x3 3x28
15 28

~ 84 84
13

84
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Question 1.5 (a)

4 1
The original fraction,— = = = 0.25.
e original fraction; = = 7
You may have chosen any number for your calculations. In this answer the number
2 is used, but the principles hold good whatever choice of (non-zero) number is

made.

Suppose we were to add 2 to the numerator and to the denominator

442 6 .
16:2-18" 0.333 to three places of decimals

This is not the same as the original fraction. (There is just one special case in
which this kind of operation would not change the value of the fraction and that is

adding 0 to top and bottom, which obviously leaves the fraction unchanged.)

Back

561



Contents O
Question 1.5 (b)

Suppose we were to subtract 2 from the numerator and from the denominator

4-2 2 .
16-2-14" 0.143 to three places of decimals
This is not the same as the original fraction. (Again, subtracting 0 from top and
bottom is the only case in which this operation leaves the fraction unchanged.)
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Question 1.5 (c)

If we square the numerator and the denominator

4x4 16
16x 16 256

This is not the same as the original fraction.

= 0.0625
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Question 1.5 (d)

If we take the square root of the numerator and of the denominator

=05

»IN

=

This is not the same as the original fraction.

Incidentally, checking a general rule by trying out a specific numerical example is
a helpful technique, which will be useful for algebra in Chapter 4.
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Question 1.6 (a)
2 2x3 6
77777
Back
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Question 1.6 (b)

5.,.5,1.5x1_ 5

9 977 9x7 63
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Question 1.6 (c)

16 1
1/3 6

1.1
3 6
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Question 1.6 (d)

3 7 2 3><7><2 42
4 8 7 4><8><7 224

Dividing top and bottom by 2, and then by 7

42 21 3
224 112 16

Alternatively, the original could have been simplified in the same way before
carrying out any multiplication:
3 7 ! 21 3
X —

4, 71E
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Question 1.7 (a)

11 1
2 2x2 4

27?2 =

You might have gone one step further and expressed this in decimal notation as
0.25.
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Question 1.7 (b)

1
—=3"=3x3x3=27
3-3
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Question 1.7 (c)

1 1
—:—:1
40 "1
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Question 1.7 (d)

1 1

10F ~ 10000~ 20001
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Question 1.8 (a)
2% =512
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Question 1.8 (b)

1 .
33= F - 0.037 to three places of decimals

It doesn’t matter if you quoted more digits in your answer than this. There is more
explanation in Chapter 2 about how and when to rouffithe values given on
your calculator display.
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Question 1.8 (c)

1
— =42-00625
42
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Question 1.9 (a)

230 % 22 — 2(30+2) — 232
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Question 1.9 (b)

325 % 3—9 — 3(25+(—9)) — 316
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Question 1.9 (c)
107/10° = 107 + 10° = 1029 = 107! (or 1/10)
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Question 1.9 (d)
107/103 =107 = 103 = 103 = 10°

or alternatively

107/10°% = 107 x =10 x 10° = 10°

1
103
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Question 1.9 (e)
104+ 10° = 10042 = 10°®
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Question 1.9 (f)

10102 . (si-2)-9

T 10° (or 1)
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Question 1.10 (a)

16\2 _ A16x2 _ 432
(4'°)" = 4102 = 4
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Question 1.10 (b)

(5—3)2 _5(-3%2 _ 56

This could also be written &5%5'
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Question 1.10 (c)

(1025) 102541 = 10-25

This could also be written &5075
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Question 1.10 (d)

5 -

or alternatively

1\° 56 a6 18 L
(?):(3):3 -3 = 53
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Question 1.11 (a)

FromEquation 1.3

(24)% _ 2(4><%) _2_24
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Question 1.11 (b)

FromEquation 1.3

V10t = (104)% = 10%3% = 10 = 100
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Question 1.11 (c)

FromEquation 1.3

3 1\3
1008 = (1002) ~ 10° = 1000

Alternatively

1003 = (1003)% - (106)% = 10°/2 = 10° = 1000
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Question 1.11 (d)

1 1
=-=02
12513 5

Since the cube root of 125 is 5.

12513 =
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Question 1.12 (a)

Multiplication takes precedence over subtraction, so
35-5%x2=35-(5%x2)

=35-10
=25
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Question 1.12 (b)

Here the brackets take precedence, so

(35-5)x 2 =30x% 2
= 60

Back 591



Contents O
Question 1.12 (c)

Again, the brackets take precedence over the (implied) multiplication, so

5(2—3) = 5x (-1)
= -5
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Question 1.12 (d)

Here the exponent takes precedence:

3x22=3x4
=12
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Question 1.12 (e)

The exponent takes precedence again:

22.3=8+3
=11
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Question 1.12 (f)

Here both brackets take precedence over the (implied) multiplication:

(2+6)(1+2)=8x3
=24
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Question 2.1 (a)

54 x 10* = 5.4 x 10000
= 54000
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Question 2.1 (b)

1
21x102=21%x —
% * 100
21

~ 100
= 0.021
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Question 2.1 (c)

06x101:06x3-

10
_06
10
= 0.06
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Question 2.2 (a)

215=2.15% 100
= 215x 107

Back

599



Contents

Question 2.2 (b)

46.7 = 467 x 10
=467x 10
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Question 2.2 (c)

152x 10° = 1.52x 100x 103
= 152x 10° x 10°
= 1.52x 10*3)
=152x 10°
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Question 2.2 (d)

8.76
0000087&:16666b

_876
1P
= 876x10°
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Question 2.3 (a)

A kilometre is 18 times bigger than a metre, so

3476 km= 3.476x 10° km
=3476x10°x 10° m
=3.476x10° m
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Question 2.3 (b)

A micrometre is 18 times bigger than a nanometre, so

8.0 um = 8.0 x 10° nm
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Question 2.3 (c)

A second is 18times bigger than a millisecond, so
0.8 s=0.8x 10> ms

To express this in scientific notation, we need to multiply and divide the right-hand
side by 10:

1
0.8x 10> ms= (0.8 x 10) x 1—%3 ms
=8x(10°x 10°*) ms

= 8x 108 D ms
= 8x10° ms
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Question 2.4 (a)

One million= 10, so the distance is

5900x 10° km = 5.9 x 10° km
~ 10t km (or 10* m)
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Question 2.4 (b)

The diameter of a spherical object is given by twice its radius. So for the Sun,

diameter= 2 x 6.97 x 10’ m
=1394x 10" m
=1.394x 10° m
~108m
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Question 2.4 (c)

2m = 2 x 3.14 (to two places of decimals)
= 6.28

This is greater than 5, so can be rounded up to the next power of ten to give the
order of magnitude, i.e.72~ 10 (or 13).
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Question 2.4 (d)

7.31x 10%% kg ~ 10x 10?6 kg
~ 10-26+1) kg
~10%°kg
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Question 2.5 (a)

(i) 10®° m=1 mand 162 m = 0.01 m, so the dference between them is
(1-0.01) m= 0.99 m.

(i) 10° m =100 mand 1®m = 1 m, so the dference between them is 99 m.

(i) 10° m = 10000 m and 1®m = 100 m, so the dference between them is
9900 m.

It is quite clear that as one goes up the scale the interval between each successive
pair of tick marks increases by 100 times.
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Question 2.5 (b)

The height of a child is about #0n, i.e. 1 m. The height of Mount Everest is
about 16 m (actually 8800 m, but it is not possible to read that accurately from
the scale on Figure 2.2). So Mount Everesti®* times taller than a child.
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Question 2.5 (c)

The length of a typical virus is 18 m and the thickness of a piece of paper is
104 m, so it would take- 1074/10°8 = 10748 = 10-4+8 = 10* viruses laid end
to end to stretch across the thickness of a piece of paper.
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Question 2.6

Magnitude 7 on the Richter scale represents four points more than magnitude 3,
and each point increase represents a factor 10 increase in maximum ground
movement. So a magnitude 7 earthquake corresponds'1.4010 000) times

more ground movement than a magnitude 3 earthquake.
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Question 2.7

Each of the quantities is quoted to four significant figures.
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Question 2.8 (a)

The third digit is an 8, so the second digit must be rounded up:

—3887°C = -39 °C to two significant figures
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Question 2.8 (b)

There is no way of expressing a number greater than or equal to 100
unambiguously to two significant figures except by the use of scientific notation.
The third digit is a 5, so again the second digit must be rounded up.

~1958°C = -1.958x 10? °C
= —2.0x 107 °C to two significant figures

{Note that the final zero does count.}
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Question 2.8 (c)

Again, this quantity cannot be expressed unambiguously to two significant figures
without the use of scientific notation. The third digit is an 8, so the second digit
must be rounded up.

10834 °C = 1.0834x 10° °C
= 1.1 x 10® °C to two significant figures
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Figure 2.1: Portions of the number line, showing the positions of a few large and
small numbers expressed in scientific notation.
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Figure 2.2: The scale of the known Universe.
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Figure 2.3: Some common sounds on the decibel scale of sound level.

Click onBackto return to text

Back 620



Contents

Question 3.1

(inchy, cn? and square miles all have units of (lendttgo they are all units of
area.

% cannot be a unit of area because the unit which has been squared, the second, is
a unit of time not of length.

m~2 cannot be a unit of area because the metre is raised to the punes2, not
2.

km?® cannot be a unit of area because the kilometre is cubed not squared. In fact, it
is a unit of volume.

Back
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Question 3.2 (a)

6.732
151
{6.732 is known to four significant figures, and 1.51 is known to three significant
figures. The number of significant figures in the answer is the same as in the input
value with the fewest significant figures, i.e. three.}

= 4.458 = 4.46 to three significant figures.
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Question 3.2 (b)

2.0 x 2.5 = 5.0 to two significant figures.

{2.0 and 2.5 are both given to two significant figures, so the answer is given to two
significant figures too.}
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Question 3.2 (c)

Working to three significant figures and rounding to two significant figures at the
end of the calculation gives:

4.2\ R
(3—1) = (1.35) = 1.82 = 1.8 to two significant figures.

{Squaring is repeated multiplication, so it is reasonable to quote the final answer
to two significant figures. However, working to two significant figures throughout
introduces a sizeable rounding error and gives a final answer of 2.0.}
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Question 3.2 (d)
The total mass: 3 x 1.5 kg = 4.5 kg.

{Note that you have exactly 3 bags of flour, so it would not be correct to round the
answer to one significant figure.}
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Question 3.3 (a)

(3.0x 10°) x (7.0 x 1072) = (3.0 x 7.0) x 1¢F*(-2)
= 21x 10t
=21x10°

{Note that 21x 10* is a correct numerical answer to the multiplication, but it is not
given in scientific notation.}
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Question 3.3 (b)

M :§><104_(_1):2>< 10°
4x101 4
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Question 3.3 (c)

104 x (4x 10%) 4 10+4 Ax 10609 = 4% 1013

1x105 105
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Question 3.3 (d)

(300 16F)° = (3.00% x (10F)°
= 9.00x 108?
= 9.00x 10'°
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Question 3.4

Area= (9.78>< 1073 m)2
— (9.78x 10°%)" m?

= 9.56 x 10"> m? to three significant figures.
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Question 3.5

To one significant figure,

distance to Proxima Centauyi4 x 10 m
distance to the Sus 2 x 1011 m

Thus,

distance to Proxima Centauri 4 x 10'® m
distancetothe Sun ~ 2x101m
L4, 10%m

2 101m

~ 2x 101611

z2><105

Thus Proxima Centauri is approximatelk2.0° times further away than the Sun.
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Question 3.6 (a)

1 m=100cm, so 1 rh= 100? cn?¥
Thus 104 n? = 1.04x 100? cn? = 1.04x 10* cm?
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Question 3.6 (b)

1m=10° um,solnf = (106)2 pum?

Thus 104 P = 104x (10°)° wm? = 1.04x 1012 2
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Question 3.6 (c)

1km=10>m, so 1 knf = (103)2 m?

Thus 1 nt = 5 km?
(10%)
and 104 n? = 1'042 km? = 1.04x 108 km?
(10°)
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Question 3.7 (a)

1km:1§m,solkn:|":(103)3 md = 10° m3

Volume of Mars= 1.64 x 101 km®
=164x 101 x 10° m®
= 1.64x 10°°m3
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Question 3.7 (b)

1m:1@mm,solrﬁ:(1§)3 mm? = 10° mm3

1
Thusilmm= — m3=10°9m3
10°

Volume of ball bearing= 16 mn?
=16x 107 m?
=16x108m?
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Question 3.8 (a)

1 m=100cm
So
1
1cm_ﬁ)m
Thus

1
1 cmday? = 100 m day?

and

12
12 cmday*’ = Too™ day?

= 0.12 mday*

Back

637



Contents

Question 3.8 (b)

1 day= 24x 60x 60 s= 8.64x 10* s

So
1 cmday? = _ 1 cmst
8.64x 104
and
12
12cmdayl= ———  cms?
Y = 86ax 100

= 14x10%cmst?

Back

638



Contents

Question 3.9 (a)

1
1m=10mm,sol mm= — m=103m

108
1 year= 365x 24x 60x 60 s= 3.154x 10" s

To convert from mmyeat ms™1 we need tanultiply by 103 (to convert the mm
to m) anddivideby 3.154x 10’ (to convert the yeart to s™1).

1 mmyear! = —103 1
year! = ms
3.154x 10/

SO

3
—1

—— _ms
3.154x 107
= 3% 107*? m s to one significant figure

0.1 mmyear! = 0.1 x

So the stalactite is growing at abouk30 12 ms™,
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Question 3.9 (b)

1 —2
1m_1OOCm,solcm:mm_10 m

1 day= 24x 60x 60 s= 8.64x 10* s

To convert from cmday* to m s we need tanultiply by 102 (to convert the cm
to m) anddivideby 864 x 10* (to convert the day* to s™1).

102
1cm daYl = m mS_l
102 el
8.64x 104
= 14%x10%mg?

12 cmday! = 12x

So the glacier is moving at aboutlx 10° ms?,
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Question 3.9 (c)

1km=10°m
1 Ma=10° x 365x 24x 60x 60 s= 3.154x 1013 s

To convert from km Ma! to ms'1, we need tonultiply by 1 (to convert the km
to m) anddivideby 3.154x 102 (to convert the Mat to s71).

103 9

1kmMal=——— ms
3.154x 1013

—1

35 kmMa?l=35x S

—— _m
3.154x 1013
= 1.1x 10" ms to two significant figures.

So the plates are moving apart at an average ratelof 10° ms1,

Comparing the answers to parts (a), (b) and (c) shows that the tectonic plates are
moving apart approximately 300 times faster than the stalactite is growing. The
glacier under consideration moves about 1000 times faster still, but remember that
there is considerable variation in the speeds at which all of these processes take
place.
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Question 3.10 (a)
11=10°ml

To convert fromug I~ to pg mi~t we need talivide by 1C°.

1
1ugl™t= T M9 mi~t = 1073 pgml?

10 g™t =10%x 102 ugmi™?t
= 1.0x 1072 ugmi~! to two significant figures.
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Question 3.10 (b)

Note that 10ug I~ = 10 ug dm 3, since 1 litre is defined to be equal to 1 $im
(Section 3.4.2).

1 mg=10° g

so
1ug= — mg=103m
ug = 108 g= g
To convert fromug dn? to mg dn? we need tanultiply by 103,

1 pugdn? = 103 mgdn?

10 ugdn® = 10x 10~ mg dn?
= 1.0x 1072 mg dnT to two significant figures.

So a concentration of 10g -1 is equal to 10 x 102 mg dnr’.
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Question 3.10 (c)
Note that 10ug |~ = 10 pg dm 3.

1g9=10 g

1
solpg:ﬁgzlo‘ﬁg

1 m=10dm

solnt=10°dm?
1

3 3 3
— m°=10"m
108

and 1 dni =

To convert frompug dm™3 to g m 2 we need tamultiply by 1076 (to convert thaug
to g) anddivideby 1073 (to convert the dm® to m3).

6

_ 10° _
1ugdm3zmgm

3
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_ 10°%
10 ugdn3 = 10x 75 gm 3
=10x 1053 gm3
=10x10°3gm3

= 1.0x 102 gm~° to two significant figures.

So a concentration of 10g 1™t is equal to 10 x 102 g m™2,
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Question 3.11

() and (iii) are equivalent. Multiplication is commutative, 5y + 2) = (Y + 2)X

(i) and (v) are equivalent. Both multiplication and addition are commutative, so
XYy+Z=2Z+YyX

Note that (i) is not equivalent to (ii) since, in (i), the whole gf{ 2), not justy, is
multiplied by x.

Substitutingx = 3,y = 4 andz = 5 gives
() a=x(y+2=3x(4+5)=27
(i) a=xy+z=(3x4)+5=17
(i) a=(y+2x=(4+5)x3=27
(iv) a=x+yz=3+(4x5)=23
(V) a=z+yx=5+(4x3)=17
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Question 3.12

The equivalent equations are (i) and (iii), since

a@_abcz_bac2
d d d

22 222

Note that only thes is squared, so (iin = abTC and (vim= .

Only the numerator of the fraction is multiplied byso (iv)m = % is different
too.

are diferent.
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Question 3.13

NPP = 1.06 x 10° kJ
R=3.23x 10" kJ

FromEquation 3.8

GPP= NPP+R
= 1.06x 10° kJ+ 3.23x 10’ kJ

= 1.38x 10° kJ to three significant figures.
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Question 3.14
1=621nmf =483x 104 Hz

Converting to Sl base units gives
1=621x10°m=621x10"m
f =483x 10" Hz = 483x 10" s!
FromEquation 3.13

v=fA
=483x 10" s1x6.21x 10" m
= 3.00x 168 ms™ to three significant figures.

{Note that this is the speed of light in a vacuum. Light of this frequency and
wavelength is in the red part of the visible spectrum.}
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Question 3.15 (a)

FromEquation 3.5

4
V=_mnrd
37'[

r=6.38x10°km=6.38x10°x 10° m = 6.38x 10° m

So

4
=Tt

V = Zr (638 1¢° m)’

= 1.09x 10°* m® to three significant figures.

The Earth’s volume is.09x 1071 m3.
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Question 3.15 (b)

FromEquation 3.18

MMy
r2

G =6.673x 107 Nm?kg 2
m = 5.97x 10%* kg
mp = 7.35x 1072 kg

r = 3.84x 10° km
=384x10°x10° m
=384x10°m

Substituting values into the equation gives

5.97 x 1074 kg x 7.35x 107% kg
(3.84 x 108 m)?

Fg = 6.673x 107 Nm? kg™ x

Rearranging to collect the units together

_ 6.673x 10711 x 5,97 x 1074 x 7.35x 10P22N m? kg 2 kg kg
(3.84x 108)> m2

Fg

Back >
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Many of the units can be cancelled

_ 6.673x 107 x 5.97x 1074 x 7.35x 1072 N o kg2 kg kg

F
’ (384 x 108)2 o

Calculating the numeric value gives

Fg = 1.99x 10?° N to 3 significant figures.

{Note that there was no need to express the newtons in terms of base units on this
occasion; all the other units cancelled to leave N as the units of force, as expected.}

The magnitude of the gravitational force between the Earth and the Moon is
1.99x 10?9 N.
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convert divide by 145 convert divide by 75

0 0

m— — e
length in mm length in m length in km

o 3 o 3
Convert multiply by 1° Convert myttiply by 1

© convert divide by (103)2 @ convert divide by (1032

area area area
in mm? in m2 in km?

fo 3\ o a2
Convert myttiply by (A0 ) Convert myttiply by (1 )

nvert divide by (; 093 nvert divide by (103

10 €0! 1 ©0

volume volu&e voluﬁe
in’[w 3 |n in/ 2

o 3> fo a3
Convert myttiply by (\° ) Convert myttiply by (1 )

Figure 3.8: Unit conversions for length, area and volume.
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Figure 3.11: A stone being thrown from aftli

Click onBackto return to text

Back 654



Contents

Box 3.4 Some scientific formulae

C=2mrr

whereC is the circumference of a circle of radius

A= mr?

whereA is the area of a circle of radius

4
V=_nrd
37'[

whereV is the volume of a sphere of radius

F =ma

whereF is the magnitude of force on an objentjs its mass and is the
magnitude of its acceleration.

(3.3)

(3.4)

(3.5)

(3.6)
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E=md (3.7)
whereE is energymis mass and is the speed of light.
GPP=NPP+R (3.8)
whereGPPis the gross primary production of energy by plants in an
ecosystemNPPis net primary production and is energy used in plant
respiration.
m
pP= v (3.9)
wherep is the density of an object of massand volumeVv.
Ve = \/E (3.10)
P
wherevs is the speed of an S wave travelling through rocks of depsiyd
rigidity modulusg.
Back < > 656
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P = pgh (3.11)

whereP is the pressure at depkhin a liquid of densityp, andg is the
acceleration due to gravity.

PV = nRT (3.12)

whereP is the pressure af moles of a gas in a container of volureheld at
temperaturd andRis a constant called the gas constant.

V=1l (3.13)

wherev is the speed of a wavd,is its frequency and is its wavelength.

g =MmcAT (3.14)

whereq is the heat transferred to an objetijs its massg is its specific heat
capacity and\T is the change in its temperature.
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\@:w;w (3.15)

wherevyy is average speet; is initial speed ands is final speed.

Vx = UX + axt (316)

whereuy, vy anday are respectively initial speed, final speed and acceleration,
all in the direction of the-axis, and is time.

1
&zug+§m9 (3.17)

wheresy, Uy anday are respectively distance, initial speed and acceleration, all
in the direction of thec-axis, and is time.
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MMy
r2

Fg=G (3.18)
whereFg is the magnitude of the gravitational force between two objects o
massesm andnp, a distance apart.G is a constant called Newton’s universal
gravitational constant.

2GM\Y?
Vesc= (T) (3.19)

wherevescis the escape speed, i.e. the speed with which an object must be: fired
from the surface of a planet of maBkand radiusR in order just to escape
from it. G is Newton’s universal gravitational constant.

d = [L/ (4 F)]¥? (3.20)

whered is the distance at which light from a star of luminodityas a flux
density ofF.

Return toSection 3.5.2
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alpha A x nu (new) N v
beta B B Xi (csi) = g
gamma r Y omicron O o]
delta A o pi (pie) II s
epsilon E € rho (roe) P »p
Zeta Z C sigma )y o
eta H n tau (taw) T =«
theta ] 0 upsilon Y v
iota I L phi (fie) d )
kappa K « chi (kie) X x
lambda A A psi v P
mu (mew) M wu omega Q w

Table 3.1: The Greek alphabet. The pronunciation is given in parentheses where it

is not obvious.

Click onBackto return to text
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Question 4.1 (a)

v = fA can be reversed to givel = v.

To isolatef we need to remove, andf is currentlymultiplied by A so, according
to Hint 3, we need talivideby 2. Remember that we must do thishioth sides of
the equationso we have

fi v

A A

The A in the numerator of the fraction on the left-hand side cancels withA the
the denominator to give
\Y;

f=-o
A
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Question 4.1 (b)

Etot = can be reversed to givE + Ep = Eiot.

To isolateEx we need to removEp, andE; is currentlyaddedto Ex so, according
to Hint 1, we need tesubtract . Remember that we must do thislioth sides of
the equationso we have

Ek+Ep_Ep: Etot—Ep

Ex = Etot - Ep
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Question 4.1 (c)

_m can be reversed to gi e =
P—V W@—P

To isolatem we need to remov¥, andmis currentlydividedby V so, according
to Hint 4, we need tanultiply by V. Remember that we must do thistioth sides
of the equationso we have

mV
- =yV
V p

TheV in the numerator of the fraction on the left-hand side cancels wittime
the denominator to give

m=pV
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Question 4.2 (a)

b =c-d+ ecan be written as — d + e = b (with e on the left-hand side).

Addingd to both sides gives

c-d+e+d=b+d

le.
c+e=b+d

Subtractinge from both sides gives
c+e-c=b+d-c

le.

e=b+d-c.
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Question 4.2 (b)

p = pgh can be written aggh = p (with h on the left-hand side).

Dividing both sides by gives

pgh _ p
p P

le.
gh=">
P

Dividing both sides by gives

gh_»p
g rg
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Question 4.2 (c)

2GM
Vgsc: T

Multiplying both sides byR (to getR onto the left-hand side) gives

2GMR
VasR = TR

=2GM

Dividing both sides by3. gives

V3R 2GM

2 2
Vesc Vesc
i.e.

2GM
R =

2
Vesc
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Question 4.2 (d)

E=hf-¢
Adding ¢ to both sides (to get onto the left-hand side) gives
E+gp=hf-9¢p+¢
le.
E+¢=nhf
Subtractinge from both sides gives
E+¢-E=hf-E
that is

6=hf—E
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Question 4.2 (e)

We need to start by finding an equation &r

a= g can be written agé = a (with c on the left-hand side).

d d
Multiplying both sides byd gives
le.

be® = ad

Dividing both sides by gives

b _ ad
b b
i.e.
ad
=3

Taking the square root of both sides gives
ad

C=++/—

b

Back
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Question 4.2 (f)

a= \/g can be written as\/g = a (with b on the left-hand side)
Squaring both sides gives

b
_:a2
C

Multiplying both sides byc gives

bc
—~ =a%
C
i.e.
b = a’c
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Question 4.3 (a)

We need to start by finding an equation f8r
Ex = $mV2 can be written agmv? = Ei. (with thev? on the left-hand side).

Multiplying both sides by 2 gives
mv? = 2B
Dividing both sides byn gives

2 = 2Bk
m

Taking the square root of both sides gives

ve s 2EK
m

but we are only interested in the positive value on this occasion.
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Question 4.3 (b)
If Ex = 2x 10° Jandm = 4 x 10?1 kg

ve 2Bk
m

2% 2x10°)

—\ 4x 10?1 kg

{At this speed, the plate would move 3 cm in a year.}
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Question 4.3 (c)
If Ex = 2x 10° J andm = 70 kg

2% 2x10° )
B 70 kg

=8ms!

{The sprinter, having a smaller mass, has to move rather faster than the tectonic
plate!'}
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Question 4.4 (a)

Vx = Uy + axt can be written as

UX + axt = VX
Subtractinguy from both sides gives
axt = VX - Ux

Dividing both sides by gives

Vy — Ux

a)(: t
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Question 4.4 (b)
Squaring both sides of = \/E gives
Je,
M
2=t
Multiplying both sides by gives
pVE=4

Dividing both sides by? gives

p=15
V8
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Question 4.4 (c)

Multiplying both sides ofF = L by d? gives
4t d2
L
2 _- —
Fd- = =

Dividing both sides by gives

L
2= —
4t F

Taking the square root of both sides gives

L
4=\ 72rF

{Note that if we consider just the positive value, we have arrivecatation 3.20
albeit written rather dferently.}
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Question 4.5 (a)

Ho i1iz  poXizlz  pol1iz

2 d  2nxd  2nd
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Question 4.5 (b)

Note that3—a / 2 meanss—a divided by 2.

2b 2b

3a 2_3a } 3a
2b B 2

272"
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Question 4.5 (c)

The product x b will be a common denominator, so we can write

@+§:_2bxb+3cxc_2b2+3c2
c b cxb bxc  cb

This is the simplest form in which this fraction can be expressed.
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Question 4.5 (d)

2ab 2ac 2ab b

c'b ¢  2ac

Cancelling the ‘2a’s gives

2ab 2ac Zéb b ©?

c b %c?

{Note that, for all parts of Question 4.5 and for many other questions involving
simplification, it is possible to check that the algebraic expression you end up with
is equivalent to the one that you started with by substituting numerical values for
the variables. For example, settiag- 2, b = 3 andc = 4 in the original

expression gives

2ab 2ac (2><2><3);(2><2><4)

c b 4 3
12 16 16 3 9
=273°3 373 %" 16
e . 2 32 9
Substituting the same values in the answer gheS: 75 = E}
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Question 4.5 (e)

The productf (f + 1) will be a common denominator, So we can write

1 1 (f+1) f
fof+1 f(f+1) (F+1)f
o f+1-f
T of(f+1)

1
T f(f+1)
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Question 4.5 (f)

202 2¢2 =W (a+0)
b0 (@a+9 (+0 "« 32
_b*(a+c)
- cA(b+c0)

bz(a+c)

The expression can be writtenfas
c/ (b+¢)

but cannot be simplified further.
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Question 4.6

The equation can be written as

1 1 1

fu'v
= ulv + viu (taking the productiv as the common denominator)

V+u

T w

Taking the reciprocal of both sides of the equation gives

uv
f=—0
V+Uu
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Question 4.7 (a)
}(v +u)t—}vt+}ut
2 X X —2X 2 X

or alternatively

1 Vel Uxt Wyl + Uyt
—(W+U)t=—+—or
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Question 4.7 (b)

(@-b)-(a-c) a-b-a+c
2 - 2
c-b
2

sincea— a = 0, and-b + cis more tidily written as — b.
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Question 4.7 (c)

A~/
(k—-2)(k -3)=k2 -3k -2k +6
N
=k>-5k+6
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Question 4.7 (d)
AN

t—=22=(t-2)(t-2
(t—2)* =( (&/)
=2 -2t -2t+4

=12 —41+4
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Question 4.8 (a)
Y -y=yy-1)
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Question 4.8 (b)

x? — 25 = (x + 5)(x — 5), by comparison witfEquation 4.3

We can check that the factorization is correct by multiplying the brackets out. This
gives

x2—-5x+5x-25
x2-25

ey
~
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Question 4.9

Both the terms on the right-hand sideE§; = %mv2 + mgAh includem, so we can
rewrite the equation as

Etot = M (%v2 + gAh)
Reversing the order gives
m (%v2 + gAh) = Etot
Dividing both sides by 3v? + g Ah) gives

__ Eo
32 + gAh

This is a perfectly acceptable equation harbut the fraction in the denominator
looks a little untidy. Multiplying the numerator and denominator by 2 gives

2E
me tot
V2 + 2g Ah
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Question 4.10 (a)

From the answer tQuestion 4.7 (c)

k? -5k +6 = (k—2)(k-3)

Thus, ifk? — 5k + 6 = 0, then k — 2)(k — 3) = 0 too,
sok-2=0o0rk-3=0.

ie.k=2ork=3

Checking fork = 2:
k2-5k+6=2%2-(5x2)+6=4-10+6=0, as expected.
Checking fork = 3:
k?-5k+6=3%-(5x3)+6=9-15+6 =0, as expected.

So the solutions of the equatiéf — 5k + 6 = 0 arek = 2 andk = 3.
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Question 4.10 (b)

From the answer tQuestion 4.7 (d)
2 -4t +4=(t-2)7

Thus, ift> — 4t + 4 = 0, then { — 2)? = 0 too,
sot—-2=0,
Le.t=2.

Checking:
t=2givest? —4t+4=22-(4x2)+4=4-8+4=0, as expected.

So the solution of the equatidA— 4t + 4 = 0 ist = 2.
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Question 4.10 (c)

Comparison ok? — 5k + 6 = 0 with ax? + bx+ ¢ = 0 shows thaa = 1,b = -5 and
c = 6 on this occasion, so the solutions are

-b+ Vb? - 4ac
2a
_ —(-5) % V(-52 - (4x 1x 6)
B 2x1
_ 5+ V25-24

k=

5+1 6 5-1 4
SOk—T—E—Sork—T—E—Z.
So the solutions of the equatiéf — 5k + 6 = 0 arek = 2 andk = 3. This is the

same answer as was obtainegbart (a)and could be checked in the same way.
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Question 4.10 (d)

Comparison of? — 4t + 4 = 0 with ax? + bx+ ¢ = 0 shows thaa = 1,b = -4 and
¢ = 4 on this occasion, so the solutions are

-b+ Vb? - 4ac
2a
(-4 £ V(42 - (4x 1x 4)
B 2x1
_ 4+ V16-16

2
0

k=

4

+

N

N

So there is just one solution td— 4t + 4 = 0; namelyt = 2. This is the same
answer as was obtainedpart (b)and could be checked in the same way.
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Question 4.11 (a)
Rearrangingp = mvto makev the subject gives

V= % (dividing both sides byn)

Substituting inEy = 3m\? gives

Back
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Question 4.11 (b)

Since both equations are already written v#lithe variable we are trying to
eliminate) as the subject, we can simply set the two equatiorts émual to each
other:

Imv = mgah

There is arm on both sides of the equation; dividing both sides of the equation by
m gives

3v? =gah
Multiplying both sides of the equation by 2 gives
V2 = 2gAh

Taking the square root of both sides of the equation gives

V = ++/2gAh
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Question 4.11 (c)

Rearranging = fAto makef the subject gives
f:%(mwmmmgmuw

Substituting inEx = hf — ¢ gives

hc
Ex=— -
k=7 )

Adding ¢ to both sides of the equation gives

hc
Ek+¢:7

Subtractingex from both sides gives

=—-E
¢ 71 K

Back
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Question 4.12

Let the number selected be represented:by

Adding 5 gives X+5

Doubling the result gives 2(H+5)=2x+10
Subtracting 2 gives @+ 10)-2=2x+8
Dividing by 2 gives 2+8 4

2
Taking away the number you first thought of givesH{4) — x = 4.
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Question 4.13

LetH represent Helen’s height in cm amdepresent Tracey’s height
in cm. Since Tracey is 15 cm taller than Helen we can write

T=H+15 (i) zJ
The height of the wall is equal to Tracey’s height up to her shoulders wall
(T — 25) plus Helen's height up to her eyds ¢ 10), thus

7,

(T - 25)+ (H - 10) = 300 (ii) -

Simplifying (ii) gives
T +H - 35= 300 b3

Adding 35 to both sides gives % C

T+H=335 =D

Substituting forT from (i) gives

(H+15)+ H = 335
2H + 15 = 335
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Subtracting 15 from both sides gives
2H = 320

Dividing both sides by 2 gives
H =160

i.e. Helen is 160 cm tall.
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Question 4.14

The equations required akg = mgAh (Equation 4.18andEy = %mv2 (Equation
4.17).

Assuming that the child’s gravitational potential energy is converted into kinetic
energy,Ex = Eg.

Imv? = mgah
Dividing both sides byn gives
IvZ = gaAh
Multiplying both sides by 2 gives
V2 = 2gAh
Taking the square root of both sides gives

V = ++/2gAh

On this occasion we are only interested in the positive square root,#.e/2g Ah
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SubstitutingAh = 1.8 m andg = 9.81 m s 2 gives

v=v2x981 ms2x18m
= 5.9 ms ! to two significant figures

(noting that Vm?s-1 = ms™).
Checking
The units have worked out to be mtsas expected.

An estimated value is

Va V2x10ms2x2m

~ V40 m¢s2

~6ms? sinceV40~ V36

The speed seems quite high; in reality not all of the child’s gravitational potential
energy would be converted into kinetic energy.

Back |
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Figure 4.1: (a) The analogy between an equation and a set of kitchen scales. The
scales remain balanced if (b) 50 g is added to both sides or if (c) the weight on both

sides is halved.

Click onBackto return to text

c+50=a+b+50
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Figure 4.2: A Hertzsprung—Russell diagram showing the Sun and a number of other

stars.

Click onBackto return to text
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P-wave arrival S—wave arrival

20seconds time

\

Figure 4.4: Seismogram recorded at the British Geological Survey in Edinburgh on
12 September 1988 at 2.23 p.m.

Click onBackto return to text
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Question 5.1

(a) The red lines on the graph show that, by interpolation, when cugdrb A
then voltage= 2.0 V.

(b) The line through the data points can be extended at each end, as shown below.
This process of extrapolation to the vertical axis shows that when the current is
zero the voltage has a value a05/.

(c) Extrapolation to the horizontal axis shows that when the voltage is zero the
current has a value of2 A.

50K

4.0

voltage/V

AN
N
A

0 05 10 15 20 25
current/A

Back 705



Contents O
Question 5.2

Using the red lines on Figure 5.38,

S

. e

. rise @
gradient= — £ e
run g 170

~ (170-10) km S

160 km =

= o

28 s 3
=57kms? 3 10
0

Therefore the average speed of the travel time after earthquake occurred/s

P waves is ¥ kms? (to two sig-

nificant figures). Figure 5.38

{You may have chosen fferent points from which to calculate your gradient, but
you should still have got the same answer. Note that the scale of the graph does
not really allow points to be specified to more than two significant figures, so this
is the precision to which the answer should be given.}
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Question 5.3

Using the red lines on Figure 5.39, \
gradient= fise » 40
run B
(32-2)s 2
- @ >
(170- 0) km ok
30s ° 30 |
= - |
170 km S |
= 0.176 skm? | |
8 20 |
Therefore o) |
& |
speec- — L 2 |
0.176 skm % 10 |
= 5.7 kms* (to two significant figures) 3 I
5 |
To the precision to which it is possible to read the —  /_ _ _ _ _ _ _ _ :
graph, this is the same value as before. ‘ nua
0 100 * 200

170
distance from epicentre/km

Figure 5.39
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Question 5.4

Using the red lines on Figure 5.40,

N
o

) rise
gradient= —
run
_(7-20)°C
~ (2-0) km
_-13°C
~ 2km
= -6.5°Ckm?

temperature/°C
< o

A

0 1 2
This could also have been written a6.5 °C/km. The negative altitude/km

value of the gradient implies that temperature decreases with in-
creasing height above sea-level and your sentence should reflect Figure 5.40
this. For example you could write: ‘For each successive kilome-

tre of height gained above sea-level, the atmospheric temperature
falls by 65 °C’.
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Question 5.5
Using the red lines on Figure 5.41,

(-50- (-20)) °C
(10— 5.5) km

_ -30°C

~ 45km

= —6.7°Ckm™

gradient=

This agrees quite well with the value obtained in
the answer tdQuestion 5.4 In fact temperature
does decrease with altitude at an almost constant
rate through the troposphere.

temperature/°C

5 10

| >
|
jaltitude/km

Figure 5.41
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Question 5.6

The line corresponding te = rz has the larger
(steeper) gradient. Therefares larger thars.

v=8Z
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Question 5.7

If two quantities are directly proportional to each other, a graph in which one is
plotted against the other will be a straight litmeough the origin Therefore, only
(c) corresponds to a proportional relationshipx z. In this case, the gradient is
negative, i.e. the constant of proportionality is negative.

f a u
e \ 0 Z
0 g 0 b
(a) (b) ()
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Question 5.8

SinceM is directly proportional ta®, these are the quantities to plot. The spheres
are selected and then their masses are measurdds $loe independent variable,
and so according to conventioi should therefore be plotted on the horizontal
axis. In other words, the convention would be to plbgainsi®.

Slightly rearranging the equation and comparing with the standard equation of a
straight line

y =

M = #+ 0)

shows that the gradient would gg

{If you chose to defy convention and pld¢ againstM, the gradient would have

, . 6
the reciprocal value, i.e—.}
TP
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Question 5.9

There are at least two equally valid ways to plot the data here. Since

T=2n E
\s

squaring both sides gives
4L
g

L is the independent variable, which according to convention should be plotted on
2

- , . 4
the horizontal axis. A graph Gf? againsi_ has gradient % SO

-|-2

3 472
~ gradient

g

Alternatively, you could have chosen to plbtagainstVL. The gradient of this

. 2n 2n
line would beﬁ. So+0 = gradientand
3 4
9= (gradient¥
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Question 5.10

After n half-lives, the number of radioactive atoms is reduce@l)g of the
original number.

1 (1\*
Slnceﬂ3 = (é)

four half-lives must elapse before the number of radioactive atoms wﬂ%lmé
the number there are today. Sx4.600 years= 6400 years must elapse for this to
happen.
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N1=N0X

Ny = Ny x

N3:N2x

=

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Click onBackto return to text

Figure 5.35: Radioactive
decay.

No radioactive nuclei are
present at timet = O.

During each half-life, the
number of radioactive nu-
cleiis halved. The half-life
is denoted by the symbol

t1/2.

Back

715



Contents O

Box 5.3 Sea-floor spreading

Plate tectonics describes how the outer layer of the Earth is made up of a series of
‘plates’ which move relative to one another. The top layer of these plates is known
as the ‘crust’. Ocean crust is about 7 km thick, continental crust up to 80 km thick.
The crust is split at mid-ocean ridges and material is ejected at the ridge crests to
form new sea-floor. This creation of new crust is balanced at the opposite end of the
plate by material being forced under an adjacent plate. As eruption at a mid-ocean
ridge continues, older sea-floor crust is moved aside to make way for younger crust
and the sea-floor ‘spreads’ symmetrically away from the ridge as shown in Figure
5.8a. Recently formed ocean crust is largely inaccessible, so scientists interested in the
speed at which this spreading occurs have to resort to indirect means of measuring it.

<~ material comes out of the >
ocean crust mid-ocean ridge to form new ocean crust
moves to the left ocean crust (sea floor). moves to the right

Figure 5.8a: Production of new sea-floor at a mid-ocean ridge.
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A record of their age is held in rocks by their magnetism. The orientation of the Eart~’~
magnetic field has reversed at irregular intervals throughout its history, and the orie
tion of the magnetic field at the time a rock was formed is ‘locked into’ the rock. T
times at which these changes in orientation took place are known from measuremer

a great many surface rocks that can be dated by a variety of means. 1

Figure 5.8b shows the timescale for reversals in the Earth’s magnetic field over the -
4 Ma. Black denotes ‘normal’ polarity (i.e. what we experience today) and white %2
notes reversed polarity. =

Marine magnetic surveys reveal patterns in the orientation of the magnetization of rc s
near mid-ocean ridges; an idealized pattern is shown in Figure 5.8c. Correlatio
patterns like this with the pattern in Figure 5.8b provides a method of dating the rock
various distances from a mid-ocean ridge.

stripes mid-ocean

ridge ‘magnetic stripes’ either side of a
ridge; rocks shown black are magne-
tized in the opposite direction to those
shown white and can be matched with
the timescale of Figure 5.8b

magnetic Figure 5.8c: Idealized symmetrical,:igure 5.8b

Return toSection 5.2.1
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Question 6.1 (a)

27t radians= 36C¢°

so 1 radian= @
27

0.123 radians= 0.123x %

~ 7.05° to three significant figures.
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Question 6.1 (b)

27t radians= 360°

so%7t radians= ? =12C¢
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Question 6.1 (c)

27t radians= 360°

sort radians= 180°

3x 180 540

3 radians=
2 2

2

=270

Back
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Question 6.2 (a)
360° = 2t radians

. 2n :
so P = 360 radians

o 27 .
365° = 365x% 360 radians

~ 0.637 radians to three significant figures.
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Question 6.2 (b)
360 = 2t radians

. 2n :
so P = 360 radians

27 .
90° = 90 x 360 radians

7T .
= — radians.
2

{This answer could have been written as 1.57 radians (to 3 significant figures), but
note that%[ radians is an exact answer which 1.57 radians is not.}

Back 722



Contents O
Question 6.2 (c)
360 = 2t radians

. 2n :
so P = 360 radians

27 .
210 = 210x 360 radians

77t
= — radians.
6

{This answer could have been written as 3.67 radians (to 3 significant figures), but
i . . . . .
note thatF radians is an exact answer which 3.67 radians is not.}
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Question 6.3 (a)

We are trying to find length in the diagram.
From Pythagoras’ Theorem

a2 + (1.15 my = (4.50 my
SO

a2 = (450 my — (1.15 mYy

a= V2025 n? - 1.3225 ¥
= 4.35 m to three significant figures.

ground «~—1.15m ——
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Question 6.3 (b)

We are trying to find anglé in the diagram.

The interior angles in a triangle add up to 180
0+ 752° +90° = 180

le.

6 =180 - 752° - 9C°
=14.8°.

ground «~—1.15m ——
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Question 6.4 (a)
sin49 = 0.7547
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Question 6.4 (b)

cosg = 0.9239

{Since the angle was given in radians, your calculator needs to be in ‘radians
mode’ in order to obtain the correct answer to this part.}
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Question 6.4 (c)

s
tan— =1
4

{Since the angle was given in radians, your calculator needs to be in ‘radians
mode’ in order to obtain the correct answer to this part.}
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Question 6.5 (a)
cos 1(0.5253)= 58.31°

{Your calculator needs to be in ‘degrees mode’ in order to obtain the correct
answer.}
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Question 6.5 (b)
tan 1(1.5574)= 1.0000 radians

{Your calculator needs to be in ‘radians mode’ in order to obtain the correct
answer.}
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Question 6.6 (a)

CcosH = a—dl
hyp
SO
cos 32 = %ﬂ

Multiplying both sides byh gives
hcos32 =43 m

Dividing both sides by cos 33jives

3 43 m
~ cos32

= 5.1 m to two significant figures.
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Question 6.6 (b)

sing = opP
hyp
SO
sinf = 2
3 10m
Multiplying both sides by 10 m gives

Tt
=10 mx sin—
a X 3

= 8.7 m to two significant figures.
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Question 6.6 (c)

opp
tanf = —
adj
3 50m
~10m

=50
So 6 =tan(5.0)
=79

{Note that ‘opp’ and ‘adj’ must be the sides opposite and adjacent to the angle you
are trying to find.}
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Question 6.7

H = height of West Towe# height of base of Cathedralheight of theodolite
=66 m+15m-15m
=795m

0=22T7

tang = H
D

Multiplying both sides byD gives
Dtan6 = H

Dividing both sides by taa gives

H

~ tang
795 m

" tan227
— 2006 m

~ 2000 m

So you can estimate the distance of the theodolite from Ely Cathedral to be about
2 km.
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Question 6.8
FromEquation 6.10

V = Wtang
whereW = 65 m and = 36°. So

V = 65 mx tan 36
= 47 m to two significant figures.

The vertical thickness of the stratum is 47 metres.
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Question 6.9

FromEquation 6.11
r = hcos45
wherer is the required radius arfd= 302 pm. So

r = 302 pmx cos 45
= 214 pm to three significant figures.

The radius of a lithium ion is 214 pm (i.e.12 x 10710 m)
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Question 6.10
i=450° r=263> v;=300x10¥mst
Snell’'s law states that

sini_ v
sinr v
We are trying to finds,, the speed of light in glass.

Multiplying both sides of% = % by v, and by sirr gives
2

Vo Sini = vy sinr

Dividing both sides by singives

sin 263°

sin 450°
0.4431

0.7071

=300x10® ms1x

=300x10® ms1x
=188x 1 mst

So the speed of light in glass is8Bx 10° ms™L.
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Question 6.11

FromEquation 6.13

: na
sing, = E

Reversing the equation and multiplying both sidegllgyves
nd = dsinéd,
Dividing both sides by

dsing
A= d
n

d=164x10%m 6,=241° n=1
So

1.64x 107°% mx sin241°
A=
1
= 6.70x 10”7 m to three significant figures.
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Question 6.12

Let the distance to car ferey d.
The length of car ferry1 =86 m.
The angle subtendeeld = 3.5°.

Convertingd to radians:

360 = 2 radians

. 2m .
sol = %radlans

35°=35x 2n radians= 0.0611 radians
360
FromEquation 6.1
6 (in radians)= FS

In this cases ~ | andr =~ d so

Multiplying both sides byd gives
0d=~|
Dividing both sides by gives

739
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So

N 86 m

~ 0.0611

~ 1408 m

The ferry is approximately.4 km away.
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a \ Py

(d) (e)

Figure 6.12: Triangles of various shapes.

Click onBackto return to text
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Figure 6.14: Three similar right-angled triangles.

Click onBackto return to text
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1
AVANATS
\/ \/ \/e/radians
Z 1

AW WANA
YRVILYA VA

Figure 6.17: Graphs of (8)= asing, (b)y = acosd .

Click onBackto return to text
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Question 7.1 (a)
Since 100= 107, log;100= 2.
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Question 7.1 (b)
Since 0001 = 1073, log;,0.001 = -3.
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Question 7.1 (c)

. 1
Since V10 = 10Y2, log;q V10 = >
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Question 7.1 (d)

Since 1329 = 10°1235(from thesection of texjust above the question),
logy1.329 = 0.1235.
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Question 7.2 (a)
log;o2 = 0.3010
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Question 7.2 (b)
log,,2000= 3.301

{ Note that log ;2000 is exactly 3 greater than lgg. This result will be
discussed further in Sections 7.2 and 7.3. }
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Question 7.3 (a)
10*° = 3162
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Question 7.3 (b)
p=3162

{ Because of the way in which log to base 10 is defined, this follows straight from
the answer t@Question 7.3(a)}
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Question 7.4 (a)

For human blood the hydrogen ion concentration@410-8 mol dm™3, so

4.0x 10°8 moldni3
pH = —logy )
moldm
= —log((4.0x 10°®)
= —(-7.4)
=74
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Question 7.4 (b)

For the hair shampoo, the hydrogen ion concentratior2is30-® mol dn3, so

3.2x 1076 moldm3
pH = —logy, )
mol dm
= — |oglo (32 X 10_6)
= —(-5.5)
=55
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Question 7.5 (a)

= 109,03 + l0g;7100 (fromEquation 7.2
= 04771+ log; g 10?
=04771+2 (fromEquation 7.}

= 2.477 to four significant figures.
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Question 7.5 (b)

= 109,03 — 10917100 (fromEquation 7.3
= 0.4771-log; o107
=0.4771-2 (fromEquation 7.}

= —1.523 to four significant figures.
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Question 7.5 (c)

109109 = 090 (3?)
= 2100953 (from Equation 7.4
=2x04771
= 0.9542 to four significant figures.
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Question 7.6

25-05 20
i ine ——— = — =20.
The gradient of the line 10-00" 10 0

This is the result expected.
The intercept of the line on the vertical axis is approximately 0.5.

log,o 7 = 0.497 to three significant figures, so the result seems reasonable.
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Question 7.7

Taking the log to base 10 of both sides of the equajien2x® gives

logoy = 109;0 (ZXS)
= log;y2 + log;ox°  (from Equation 7.2
=10g192 + 3l0g;ox (from Equation 7.4

We can reverse the order of the two terms on the right-hand side to give

log;oY = 310959 X + 10912

Comparison with the general equation of a straight-line grgghmx+ c, reveals
thatm = 3 andc = 109, 2, so the gradient of the graph will be 3 and the intercept
on the vertical axis will be log, 2.
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Question 7.8

n=nge

Taking the log to base 10 of both sides of the equation gives
logyoN = l0gyo(no e®)

= log;oNo + l0g;pe®  (from Equation 7.2
= log;gho + atlog;pe (fromEquation 7.4

We can reverse the order of the two terms on the right-hand side to give

log,on = atlog,pe+ l0g;qno
= (alog;pe)t +log;oho
Comparison with the general equation of a straight-line grgphmx+ ¢, shows

that a graph of logy n against will be a straight line of gradierdlog;ye and
intercept on the vertical axis of lggno.
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Question 7.9 (a)
In4 =1.386
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Question 7.9 (b)

The number whose natural logarithm is 4 f5-e 54.60.

Back 761



Contents O
Question 7.10

n=nye
Taking the log to base e of both sides of the equation gives
Inn=In (no eat)

=Inng +Ine® (from Equation 7.3
=Inng + at (from Equation 7.7

We can reverse the order of the two terms on the right-hand side to give
Inn=at+Inng

Comparison with the general equation of a straight-line grgphmx+ ¢, shows
that a graph of Im against will be a straight line of gradierd and intercept on
the vertical axis of Img.
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Stage Number k value

: . N 72
maximum total number of eggs if Ng =72 ki = Ioglo(N—o) = lOglo(S_l) = 0.1498
all pairs bred and laid 3 eggs (max- .

imum possible)

N1 51

maximum pos§ible nqmber of eggs N; =51 ko = log;g N, = 10049 3= 0.0741
from the 17 pairs thadid breed

actual number of eggs laid N2 =43 ks =1log;g E—i =100g;9 411—2 =0.4293
number of eggs that hatched N3 =16 ks =log;q E—z = 10039 i—g = 0.0280
number of chicks that fledged Na=15 ks =100;q E—: =10g10| — | =

. N 72
number of owlets that survive to N5 =9 Kiotal = Ioglo(—o) = Ioglo(—) =0.9031

form pairs Ns .

Table 7.1:k-values for various stages in the breeding of 24 pairs of owls in Wytham Wood in 1952--1953

Click onBackto return to text
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yl\
01 02 NQ3 04 05 06
02} Iog10X
—04f
> -0.6
0 X

(a) (b)

Figure 7.3: Graphs of (g)againstx and (b) logqy against logg x for the equation
y = 3x2.
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Figure 7.4: A graph ofl /Tg againsta/ag whereT is a
planet’s orbital period andis the planet’s average distance
from the Sun.Tg andag are the values of anda for the
Earth, and the values @f anda for other planets have been
divided by these so as to make the numbers plotted more
manageable.
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Figure 7.5: A graph of logy(T/Tg)
against logy(a/ag) where T is a
planet’s orbital period ana is the
planet’s average distance from the
Sun. Tg andag are the values of
anda for the Earth.
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Figure 7.7: A graph of disintegra-

tions per minute (on a log scale)
against time for the radioactive decay
of the excited state of barium-137.
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Question 8.1 (a)

Of the 52 cards in the pack, 13 are hearts. So accordiggjt@tion 8.2the
- . 1 1
probability of a card drawn at random being a heaggs: 7

{This result also follows from noting that there are 4 suits, each with the same
number of cards, so one-quarter will be hearts.}
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Question 8.1 (b)

Of the 52 cards in the pack, 26 are red (13 hearts and 13 diamonds). So the
probability of a card drawn at random being reeggs: %

{Or 2 of the 4 suits are red, so the probabilityﬁs: % .}
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Question 8.1 (c)

Of the 52 cards in the pack, 4 are aces (one for each suit). So the probability of a
. 4 1
card drawn at random being an ac%—rzs_ 13
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Question 8.1 (d)

Of the 52 cards in the pack, 12 are picture cards (3 for each suit). So the

. . 1
probability of a card drawn at random being a picture camg%s: 13
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Question 8.2 (a)

For any one toss the probability of heads is always the séme:
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Question 8.2 (b)

For the single toss of the third coin, the probability of getting heaésaiﬂd that is
undtected by what has gone before. This is ndedtent to tossing the same coin
three times in succession. Only foolish gamblers believe that because heads have
come up twice running the chances of tails coming up the next time are thereby
increased!
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Question 8.3 (a)

If two coins are tossed simultaneously, there are four possible outcomes, all of
which are equally likely:

Outcome 1 H H
Outcome 2 H T
Outcome 3 T H
Outcome 4 T T

The outcome of two tails can occur in only one way, so the probability of getting
two tails is .

This result can also be found from the multiplication rule:

the probability that the first coin will show tails %

the probability that the second coin will show taiI%i;s
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Question 8.3 (b)

The probability of throwing a six with one dice %s So the probability of getting a

pair of sixes when throwing two dice fsx & = &.
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Question 8.4 (a)

Assuming the germination probabilities to be independent of one another, the
probability of seeds of both A and B germinatingjis 1 = %.
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Question 8.4 (b)

Assuming the germination probabilities to be independent of one another, the

probability of the seeds of all three species germinatingpist x # = 2.
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Question 8.4 (c)

Assuming the germination probabilities to be independent of one another,

the probability that a seed of A willot germinate i%;
the probability that a seed of B witlot germinate i%;
the probability that a seed of C witlot germinate isg;

so the probability that none will germinatejs< § x 2 = 1.

Back 778



Contents

Question 8.5

The probability of drawing any one particular card from the pacg%isThis IS true

for each of the three named cards. So the probability of drawing the Jack of

diamondsor the Queen of diamonds the King of diamonds igs + 55 + 25 = 5.
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Question 8.6

The situation is similar to the one described in Question 8.3. If two coins are tossed
simultaneously, there are four possible outcomes, all of which are equally likely:

Outcome 1 H H
Outcome 2 H T
Outcome 3 T H
Outcome 4 T T

The outcome of a head and a tail can occur in two ways, so the probability of
getting a head and a tail §= 1.

This result can also be found from a combination of the multiplication and
addition rules. For the combination of one head and one tail:

the probability that the coin on the left will be tails%s

the probability that the coin on the right will be head%js

So the probability that the combination T H will occurgs« 3 = 3.

By similar reasoning, the probability that the combination H T will occur is %lso
These possibilities are mutually exclusive, so the probability of getting one head

_ 1_1
and one tails ig + % = 3.
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Question 8.7

The fraction of the atmosphere that is oxygen is

026 026
026+1 1.26

Expressed as a percentage to 2 significant figures, this fraction is 21%.
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Question 8.8

For the 10 measurementsiable 8.4
mean= 1.122 mm

standard deviatios, = 0.123 mm
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Question 8.9 (a)

For nine measurements, the median is thereasurement in the list (in ascending
or descending order). This is8/cm.
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Question 8.9 (b)

, . 704 cm
HomEqmmonasmenmanm—ji——:7820m.

Back 784



Contents

Question 8.10

The best estimate that can be made from this data of the mean numbder,
flowers per plant in the colony is the mean of the saniplén this case,

X = 7.25 flowers

{Note that it is normal practice to quote means and medians in this way, even for
guantities, such as numbers of flowers, which cannot really be fractional'}

The best estimate that can be made of the standard deviation of the population is
the sample standard deviatisn 1. In this case,

Sh-1 = 1.94 flowers.
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your guess is as
good as mine

impossible inevitable
outcome outcome

an extremely long shot virtually a certainty

no|— =

increasingly unlikely increasingly likely

Figure 8.1: The scale of probabilities.
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Xi/nm di/nm d2/107° nn?
2.458 Q0036 1296
2.452 -0.0024 0576
2.454 —-0.0004 0016
2.452 -0.0024 0576
2.459 Q0046 2116
2.455 Q0006 0036
2.464 Q0096 9216
2.453 -0.0014 0196
2.449 —-0.0054 2916
2.448 -0.0064 4096

n n n
> % =24544nm > 'di=0 Z diz = 21.04x 107 nn?
i=1 i=1 i=1
X = 2.4544 nm =2104x 1075 nm?

o e

= 4587x 1073 nm
= (0.0046 nm

Table 8.3: Calculation of the standard deviation for the set of measurements
originally given inTable 8.2

Return toPage412
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Question 9.1 (a)

The answer to this question depends on which significance level is used.
Employing the usual convention, i.e. rejecting the null hypothed#s<f0.05, the

null hypothesis should be rejected on this occasion, dihed.01 means thal®

must be less than 0.05. Therefore the alternative hypothesis should be accepted.
However, if it had been decided only to reject the null hypothedtwfere less

than 0.001, we would not be justified in categorically rejecting the null hypothesis
in this way.
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Question 9.1 (b)

Employing the usual convention, the null hypothesis should be accepted, since
P> 0.05.
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Question 9.1 (c)

This inequality is written in a way that is very unhelpful and ought to be avoided.
We are told thaP > 0.01. But how much greater? B > 0.05 then, employing the
usual convention, the null hypothesis must be accepted. Howewreligi

between 0.05 and 0.01 (i.e.06 > P > 0.01) then, employing the usual

convention, the null hypothesis should be rejected and the alternative hypothesis
accepted. In the former situation, the result ought to have been giver &s05;

in the latter it ought to have been given as eitRet 0.05 or Q05> P > 0.01.
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Question 9.2 (a)

Since the actual number of parasites per sheep is known, this data is at the interval
level.
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Question 9.2 (b)

Since the sheep are classified into just two contrasting categories (‘parasitized’ and
‘unparasitized’) this data is best treated as being at the categorical level.

{Since there is an element of ranking here, you might have regarded this data as
being at the ordinal level. However, whether ‘unparasitized’ is ‘good’ or ‘bad’
does depend on whether you take the point of view of the sheep or the parasites!
‘Parasitized’ and ‘unparasitizedhightcorrespond to the clear-cut categories
‘susceptible to parasites’ and ‘resistant to parasites’. In general, ordinal level data
is subdivided into more than two classes.}
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Question 9.2 (c)

Since degree of parasitization is recorded, but not precisely how many parasites
there were on each sheep, this data is at the ordinal level.
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Question 9.3

The total number of plants in the next generation was 636 (i.e +1835+ 146). If the
ratio in a sample of 636 plants were 1 red-flowered : 2 pink-flowered : 1 white-flowered,

then there would be
636

—— = 159 red-flowered plants

636

—— = 318 pink-flowered plants

2
636

= 159 white-flowered plants.

These are therefore the ‘expected’ numbers. Drawing up a table, calculating each

O -
Oi-E) e i value and then summing these values to obtain the test statfstic,
|
Flower , , . e G-E)?
colour O B &) (G- E) Ei
red 185 159 26 676 4,252
pink 305 318 -13 169 0.531
white 146 159 -13 169 1.063
total 636 636 0 5.846
Back > 794
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The number of degrees of freedom is given by

observed numbers B
—3-1
=2

(number of cells containir)g 1

Reading across the row for 2 degrees of freedoffeinle 9.3 it can be seen that the
value of 5.846 corresponds to a significance le®Idf less than 0.1 but more than 0.05
(i.,e. 01 > P> 0.05).

Since the probability that the entire population from which the sample of 636 plants was
drawn was in the ratio 1 red-flowered : 2 pink-flowered : 1 white-flowerepigater
than0.05, the null hypothesis cannot be rejected at the 5% significance level. The
experimental data is therefore compatible with the prediction from genetics theory that
the ratio of plants in the next generation should be in the ratio 1 red-flowered : 2
pink-flowered : 1 white-flowered.
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Question 9.4

n
The values ofRa)i, (Rs)i, D, Di2 andZ Di2 are given below.
i=1

Vertical Rank Ra); Mean water content (Rg); Dj = (Ra)i — (Re)i Di2
distancgcm % dry mass
0 1 76 1 0 0
4 2 83 3 -1 1
7 35 93 4 -05 0.25
9 5 80 2 3 9
7 35 102 6 -25 6.25
11 7 95 5 2 4
10 6 120 7 -1 1
13 8 130 8 0 0

Zn]Di:o Zn:Df:ZJ.S
i=1 i=1

{Since there are two vertical distances of 7 cm, both are given the rank
3+4

2

= 3.5 and the next vertical distance (9 cm) is given the rank 5.}
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n
Substitutingz D? = 21.5 andn = 8 into Equation 9.Zjives
i1

6x 215

- 2T =Y 0744
8x(82-1)

rs =
Reading across the row for 8 pairs of measuremernitslote 9.8 it can be seen

that Q05 > P > 0.01. SinceP < 0.05, the null hypothesis must be rejected at the
5% significance level and the alternative hypothesis accepted. There is a
statistically significant positive correlation between mean soil water content and
vertical distance from ridge crest.

{Although mean soil water content was significantly correlated with both

horizontal and vertical distance from the nearest ridge crest, the former produced a
value ofrs that was both higher and more significant than the latter (i.e.

rs = 0.905,P < 0.01 compared tos = 0.744,P < 0.05). This was because

horizontal distance from the ridge crest had been arranged to increase regularly.}
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Question 9.5 (a)

These samples are unmatched. There is no logical link between any particular
plant growing in one reserve and any particular plant growing in the other reserve.
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Question 9.5 (b)

These samples are matched. For each sampling station along the stream, the
number of nymphs is known for two species of Stonefly.
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Question 9.6
Inthiscasex; = 7.7, X =7.2,5 =27,% = 2.1,n; = 18 andny = 15.
Substituting forsy, sp, N1 andny into Equation 9.5ives
(S = (18- 1)(27)? + (15— 1)(21)?
(18-1)+(15-1)

_ (17x7.29)+ (14x 4.41)
B 17+ 14

=5.989

Substituting for(S¢)?, n andn, into Equation 9.4gives

5989 5. 989
Sk = \/ + ——— =0.856

Substituting forx;, X, andSky into Equation 9.3jives

_77-72
~ 0856

In this case, the number of degrees of freedom is

= 0.584 to three places of decimals.

(18- 1)+ (15— 1) =

The value ot (i.e. 0.584) is smaller thaany of the critical values in the row for
30 degrees of freedom (the nearest equivalent to 3Ile 9.13 The probability
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of obtaining a value of as large as this by chance if the null hypothesis were true
is therefore greater than 0.1 (if2.> 0.1), probably much greater. Thefidirence

in number of flowers per plant growing either side of this ridge is not statistically
significant.

{Note: If you worked to a diferent number of significant figures in this question
you may have obtained a slightlyftérent value fot. However, your conclusion
— that the diference in number of flowers per plant growing either side of this
ridge is not statistically significant — should be have been the same.}
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Degreesof P=0.1 P=005 P=0.01

Degreesof P=0.1 P=0.05 P=0.01

freedom freedom
1 2.706 3.841 6.635 16 23.542 26.296 32.000
2 4.605 5.991 9.210 17 24.769 27.587 33.409
3 6.251 7.815 11.341 18 25.989 28.869 34.805
4 7.779 9.488 13.277 19 27.204 30.144 36.191
5 9.236 11.070 15.086 20 28.412 31.410 37.566
6 10.645 12.592 16.812 21 29.615 32.671 38.932
7 12.017 14.067 18.475 22 30.813 33.924 40.289
8 13.362 15.507 20.090 23 32.007 35.172 41.638
9 14.684 16.919 21.666 24  33.196 36.415 42.980
10 15.987 18.307 23.209 25 34.382 37.652 44.314
11 17.275 19.675 24.725 26 35.563 38.885 45.642
12 18.549 21.026 26.217 27 36.741 40.113 46.963
13 19.812 22.362 27.688 28 37.916 41.337 48.278
14 21.064 23.685 29.141 29 39.087 42.557 49.588
15 22.307 24.996 30.578 30 40.256 43.773 50.892

Table 9.3: Critical values gf? for different degrees of freedom and at three levels of
significance. The null hypothesis is usually rejected if, for the appropriate number
of degrees of freedom, the calculated valug®fs greater than the value tabulated

at theP = 0.05 significance level.

Click onBackto return to text
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Number of pairs P=01 P=005 P=0.01

of measurements

-
8
9

10

12

14

16

18

20

22

24

26

28

30

0.714
0.643
0.600
0.564
0.506
0.456
0.425
0.399
0.377
0.359
0.343
0.329
0.317
0.306

0.786
0.738
0.683
0.648
0.591
0.544
0.506
0.475
0.450
0.428
0.409
0.392
0.377
0.364

0.929
0.881
0.833
0.794
0.777
0.715
0.665
0.625
0.591
0.562
0.537
0.515
0.496
0.478

Table 9.8: Critical values for the Spearman rank corre-
lation codficient (s) for different numbers of pairs of

measurements and at three levels of significance

Click onBackto return to text

Note (i) The null hypothesis is usually
rejected if, for the appropriate number
of pairs of measurements, the calculated
value ofrg is greater than or equal to the
value tabulated at th® = 0.05 signifi-
cance level.

(i) The lower part of Table 9.8 does not
have entries for odd numbers of pairs of
measurements. Should the data you are
analysing comprise (say) 17 pairs of mea-
surements, it is better to err on the side
of caution and compare your value of the
test statistic with the critical values for 16
pairs rather than those for 18 pairs. Be-
cause each critical value for 16 pairs of
measurements is higher than the corre-
sponding value for 18 pairs, this makes it
less likely that you will mistakenly reject

a true null hypothesis.
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Water Rank Numberof Rank Di = (Ra)i — (Re)i D?
speegns?t  (Ra)i nymphs (Re)i
0.8 9 35 12 -3 9
1.1 11 28 11 0 0
0.5 55 11 6 -0.5 0.25
0.7 7.5 12 7 0.5 0.25
0.2 25 7 4 -1.5 2.25
0.4 4 5 1 3 9
0.5 55 6 2.5 3 9
1.3 12 21 9 3 9
0.9 10 23 10 0 0
1.7 13 43 13 0 0
0.2 2.5 10 5 -2.5 6.25
0.1 1 6 2.5 -1.5 2.25
0.7 7.5 19 8 -0.5 0.25

Zn:Di:o > D?=475
i=1

i=1

Table 9.10: Extension dfable 9.9to include ranks ®a)i and Rg);), differences between rankis;{
and values oD?

Click onBackto return to text
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Degreesof P=0.1 P=005 P=0.01

Degreesof P=0.1 P=0.05 P=0.01

freedom freedom
1 6.314 12.706 63.657 18 1.734 2.101 2.878
2 2.920 4.303 9.925 19 1.729 2.093 2.861
3 2.353 3.182 5.841 20 1.725 2.086 2.845
4 2.132 2.776 4.604 21 1.721 2.080 2.831
5 2.015 2.571 4.032 22 1.717 2.074 2.819
6 1.943 2.447 3.707 23 1.714 2.069 2.807
7 1.895 2.365 3.499 24 1.711 2.064 2.797
8 1.860 2.306 3.355 25 1.708 2.060 2.787
9 1.833 2.262 3.250 26 1.706 2.056 2.779
10 1.812 2.228 3.169 27 1.703 2.052 2.771
11 1.796 2.201 3.106 28 1.701 2.048 2.763
12 1.782 2.179 3.055 29 1.699 2.043 2.756
13 1.771 2.160 3.012 30 1.697 2.042 2.750
14 1.761 2.145 2.977 40 1.684 2.021 2.704
15 1.753 2.131 2.947 60 1.671 2.000 2.660
16 1.746 2.120 2.921 120 1.658 1.980 2.617
17 1.740 2.110 2.898 00 1.645 1.960 2.576

Click onBackto return to text

Table 9.13: Critical values dffor the t-test for unmatched samples forfférent
degrees of freedom at three levels of significance. The null hypothesis is usually
rejected if the calculated value bfs greater than the value given for tRe= 0.05
significance level at the appropriate number of degrees of freedom.
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Question 10.1 (a)

The gradient of the tangent drawn to the graply ef x? at
x=1is
. rise (30-00) 30
gradient= run (20-05) 15 20
So the gradient of the curve at= 1 is 2.0 to two significant
figures.

18
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I
- |
I
|
|
B I
|
I
L |
tangent !
atx=3f 7~ ~
| tangent
atx=1
1 1 1 1
1 2 3 4

Back

806



Contents

Question 10.1 (b)

The graph showsg = x2 with a tangent drawn at= 2. The
gradient of this tangent is

. rise (120-00) 120
gradient= o =

_ - - 40
n_ (40-10) 30

So the gradient of the curve at 2 is 4.0 to two significant
figures.

{Note that drawing accurate tangents iffidult; values for
the gradient ofy = x? at x = 2 found by this method could
reasonably be anything between 3.5 and 4.5.

A comparison of the values for gradientat 1, x = 2 and

x = 3 shows that the gradient increasexascreases. This

is consistent with the observed increase in the gradient of
the graph ax increases.}
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tangent
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Question 10.2 (a)
y=x*soC=1andn=4

OI—y:1><4x3:4x3
dx

Whenx:4,3—i:4x43:44:256

So atx = 4 the gradient of the graph is 256.
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Question 10.2 (b)

y=5xsoC=5andn=1so0

Y o salo0=5
dx

The gradient of the graph is 5 for all values)of

{You may have been able to give this result withoutelientiatingy = 5x, from
your knowledge of the gradient of straight-line graphs.}
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Question 10.2 (c)
y=3x*soC =3andn=2

Y 3w 201 = 6x
dx

Whenx:4,$/:6><4:24
dx

So atx = 4 the gradient of the graph is 24.
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Question 10.2 (d)
y=5soC=5andn=0

Y soxxl=0
dx

The gradient of the graph is O for all values)of

{You may have been able to give this result withoutelientiatingy = 5.}
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Question 10.3 (a)
1

= — =x12s0C=1andn=-1
dy 1 —1/2—1:_X_3/2:_ 1
dx 2 2 2x3/2

This could also be written as

d_y _ 1
dx  2xv/X
Whenx = 4,
dy B 1 1 1

dX  oxax V4  2x4x2 16
So atx = 4 the gradient of the graph isl/16.
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Question 10.3 (b)

2 -2
y:Q:ZX soC=2andn= -2

dy 21 -3 4
& =2X (—2)X = 4X° = —g
Whenx = 4,

dy 4 1 1

dx 8 2 16

So atx = 4 the gradient of the graph is1/16.
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Question 10.4 (a)
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Question 10.4 (b)
E-S_crt
r
SO
dE _ -1-1 _ -2 C
v Cx(=Dr —Cr 2
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Question 10.5
zZ= 4y2 +y
Differentiating each of the terms separately gives

& = (@x2y Y + (1xyY
— 8y1 + yO

=8y+1
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Question 10.6 (a)
X=23+4t°2-2t+3

Differentiating this with respect tayives

Cdl—?[(:(2><3t2)+(4><2t)—2:6t2+8t—2

Differentiating again gives

d?x

@:(6x2t)+8:12+8
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Question 10.6 (b)

2
z==-=2y1
y y
Differentiating with respect tpgives
dz 2
—~= =2 -1 —1—12_2—2:__
&y~ 2 (-1 y ¥

Differentiating again gives

d—y2=—2><(—2)y =4y =

Back
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Question 10.7 (a)
y=2e*soC=2andk = 1.

g—zl(:Zx 1e*=2¢e* =y (sincey = 2€%).
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Question 10.7 (b)
z=e"2soC=1andk = 3

dz
o - 2®

t/2 _

z .
5 (sincez = et?).
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Figure 10.4: A graph

to show the increasing
, concentration of hypo-
bromite ions in a partic-
ular chemical reaction,
at 25°C.

2.0x103F

1.0x 1078

concentration of hypobromite ions/mol dm=3

0 1000 2000 3000 4000 5000 6000
time/s

Click onBackto return to text
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Box 10.4 Dfferentiating y = x? — 4x + 3 from first principles

The graph ofy = x? — 4x + 3 is shown again in
Figure 10.9 and, as in the previoustdrentiation
from first principles, P and Q represent any two
points on the curve.

Since both points lie on the curve, we can say
y=x>—4x+3 (10.1)
and
(Y+Ay) = (x+ AX)? —4(x+AX) +3  (10.6)

Multiplying out the brackets on the right-hand side
of Equation 10.6 gives

Y+ Ay = X2 + 2XAX + (AX)? — 4x — 4AX + 3
and rearranging gives

Y+ Ay = (X% — 4x + 3) + 2XAX — 4AX + (AX)?

Figure 10.9: Points P and Q on the cupe
X2 — 4x + 3.
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Sincey = x? — 4x + 3 (from Equation 10.1), we can subtradrom the left-
hand side and® — 4x + 3) from the right-hand side to give

Ay = 2XAX — 4AX + (AX)?
Dividing both sides byAx gives

Ay =2X—-4+ AX
AX

In the limit asAx approaches zero, the final term on the right-hand side will

disappear, an%( will become equal t%, SO we can say

dy
d—X_Zx—4

Return toSection 10.2.4
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yA
y =x2—4x+3 d2y
. =
@ dy _
@~
20 2
1r 1+
0 1 2 3 4x 0 1 2 3 4x
_1F

d?y

dx2

Figure 10.10: Graphs of (g)againstx, (b)g—i againstx and (c) againstx fory = x2 — 4x + 3.

Click onBackto return to text
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75m
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Figure 10.11: An object being dropped from the Clifton Suspension Bridge.
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Figure 10.12: Graphs to show the variation of (a) distance, (b) speed and (c) acceleration with time for
an object dropped from a bridge. Note that distance from the bridge, speed and acceleration are: all

measured in a downwards direction.
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Question A.1
cosa = ady = W
hyp v
SO Y A
Vx = VCOS
=86 ms!xcos4?
= 6.4 ms ! to two significant figures. SR
|
Ve |
Sina = opP _ L |
hyp v vy |
[Y0) U |
|
_ i |
Vy = Vsina |

=86msixsing?

= 5.8 ms! to two significant figures.
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Question A.2
F2=F%+FZ

So

F=F¢+F2

= (40 NP + (30 NP
~50N

tang = (;—F(;?

k"‘l—»
[

N

o

pd
A
s

\/

SopB = tam}(0.75) = 37 to two significant
figures.

So the resultant vectdf has a magnitude of
5.0 N and acts at an angle of 370 the hori-
zontal axis.
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