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Introduction

Welcome toMaths for Science. There are many reasons for studying maths and
a compelling motivation for many people is that it provides a way of representing
and investigating the nature of the real world. Real world contexts could include
population statistics, or economics, or engineering. Here, the context is ‘science’ in
its broadest sense.

Much of science is couched in the language of mathematics. Nearly all courses
in science will assume some mathematical skills and techniques. It is clearly not
possible forMaths for Scienceto discuss all the mathematical techniques you might
need to pursue your study of science to degree level, but by the end of it you will
have acquired a good array of basic mathematical tools and confidence in using
them. Equally importantly, you will have a foundation that should make it much
easier to learn further mathematics if and when required.

Maths is in some sense a language with its own alphabet, vocabulary and ‘rules
of grammar’. With any language the only route to fluency is use and practice, but
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eventually the process of constructing or understanding sentences becomes auto-
matic and one can then concentrate wholly on the message behind the words. You
should aim to develop a similar confidence and fluency in carrying out certain im-
portant mathematical operations. There are few shortcuts: the route requires prac-
tice, practice and more practice! Keep paper, a pencil and your calculator to hand
as you study, and use them constantly. You may find it helpful to write out notes
and even to rework some of the examples given in the text as you go along. You
will see that there are lots of questions seeded through the text and at the ends of
sections;you should work through each question as you reach it. Links are pro-
vided to the solutions, but don’t be tempted to look at these until you have made a
serious attempt at working out the answer for yourself. If you have solved all parts
of a question successfully on your own, then you are ready to move on.

The focus ofMaths for Scienceis maths and not science, so you are not expected
to bring specific prior knowledge of any particular branch of science. However,
most of the examples and questions involve the application of mathematical tools
to a real scientific purpose, so you will probably discover some interesting science
along the way. Enjoy the journey!

Back J I 7



Contents �

Starting Points 1
The point to start from is always what you already know. It is assumed that you
are familiar with the everyday usage of the basic arithmetic operations of addition,
subtraction, multiplication, division and the use of a calculator to carry them out,
decimal notation (e.g. for money), the representation of an idea by a formula (such
as Einstein’s famousE = mc2), and the interpretation of information on a chart
or graph (of the kind that might, for instance, accompany a TV news item about
economic trends). Beyond that, you will find that many of the early chapters begin
with a little revision of ideas and skills that you will probably already have met.
This chapter, which concentrates on ideas about numbers – including fractions and
powers – and the use of your calculator, is slightly different from later ones in that
it covers concepts that are the basis for what is to follow in the rest of the course,
so more of it may constitute revision.
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If the points covered in the rest of this chapter are completely familiar, you need not
spend very long on them, but they are worth checking out thoroughly as they are the
foundation of much that is to come later inMaths for Science. Even if it is only for
the sake of revision, make sure you understand all the emboldened terms and test
your own skills against the learning outcomes by doing the numbered questions.
If any of the material is new to you, time spent mastering it now will pay rich
dividends later.

1.1 Numbers

‘Numbers rule the universe’ (Pythagoras)

Numbers are the bedrock of mathematics, underlying measurement, calculation and
statistics, among other branches of maths. Everybody is familiar with the counting
numbers (1, 2, 3, etc.), but scientists also make use of other kinds of numbers, so it
is appropriate to begin this course with some revision of numbers of various sorts
and the ways in which they may be combined.
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1.1.1 Different types of number

One convenient way to represent numbers is on a ‘number line’, as shown in Fig-
ure 1.1. A ‘step’ to the right is taken by adding 1 to the previous number and a step
to the left by subtracting 1. Positive and negative whole numbers, including zero,
are calledintegers.

0 54321

zero
negative numbers positive numbers

−5 −3 −2 −1−4

Figure 1.1: A number line showing the integers from−5 to 5.

Fractions(formed by dividing one integer by another) and their equivalent decimal
numbers fit on the number line between the integers. For example, (i.e. 0.5) is
halfway between 0 and 1, and−2.5 is halfway between−2 and−3. A number in
which there is a decimal point (e.g. 0.5, 2.5, 100.35, etc.) is said to be written in
decimal notation.
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Figure 1.2 shows part of a thermometer. The inset portion
covers a range from about+4.4 ◦C to−5.6 ◦C, which might
represent the variation in temperature over a 24-hour period
during the winter in the UK.

This illustrates how subdivision of the number line forms
the basis of a scale for measuring physical quantities that
can vary continuously. In this case, the scale between the
integralvalues is divided into tenths. (Note that, in order to
describe a physical quantity the numerical value has to be
accompanied by a unit of measurement, in this case the de-
gree Celsius. This aspect of measuring is covered in Chap-
ters 2 and 3.)

In the case of a fraction such as213
25 , the decimal equivalent

is exact to twoplaces of decimals(i.e. two digits after the
decimal point):

213
25
= 8.52

This decimal equivalent of213
25 cannot be given to more than

two places of decimals except by putting zeros on the end
(e.g. 8.520 000), so it is said to terminate at the digit 2.

(a) (b)

−4

−5

−3

−2

−1

0

1

2

3

4

Figure 1.2: Part of a thermometer.
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However, if you work out a fraction like13 on your calculator you will get a decimal
like 0.333 333 333 (the number of digits displayed will depend on the make of your
calculator). 41

333 will come out as 0.123 123 123, and70
9 as 7.777 777 778. These

decimals in fact recur (i.e. repeat themselves) for ever, so they are called infinite
recurring decimals. The calculator truncates them when it runs out of digits on the
display, and in the case of the final example also ‘rounds up’ the last digit from a
7 to an 8. In scientific calculations, it is usually totally inappropriate to quote so
many digits after the decimal point and in Chapter 2 we will consider the rules for
deciding how to round off such numbers in real situations.

Fractions and decimals are grouped together as the so-calledrational numbers. All
the rational numbers result in a decimal that either terminates or recurs. How-
ever, there are also numbers whose decimal equivalent neither terminates nor re-
curs. These numbers cannot be obtained by dividing one integer by another, so they
are calledirrational numbers. Well-known examples are

√
2 (the number that mul-

tiplied by itself gives 2, said as ‘the square root of 2’) andπ, which is defined as
the number obtained by dividing the circumference of a circle by its diameter. This
would be an appropriate moment to check that you know how to use theπ button
on your calculator. You should be able to get:

2× π = 6.283 185 307
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Note that as there are so many makes of scientific and graphics calculators on the
market, each operating differently, it is impossible to state the exact sequence of
keystrokes you will need to carry out particular calculations. Whenever you meet
a new type of mathematical operation, you should therefore check that you know
how to perform it on your own calculator and refer to the manufacturer’s instruction
book if necessary. A calculator symbol in the margin will alert you to the points at
which you particularly need to carry out this kind of check.

All the integers, rational and irrational numbers can be placed somewhere on the
number line, so they are grouped together as thereal numbers. All the numbers
you will use in this course will be real. However, it may interest you to know
that there are alsoimaginary numbersbased on the square root of minus 1, which
is usually represented by the symboli. Numbers made up of real and imaginary
parts, such as (3+ 2i) are known ascomplex numbers. Complex numbers are used
quite extensively in science and have practical applications in telecommunications,
electrical engineering and the beautiful patterns of fractals.

In case hearing about all these different types of numbers leads you to think that
straightforward ‘counting numbers’ hold little interest for scientists,Box 1.1shows
how a series of numbers, which mathematicians find interesting in their own right,
have also been found to describe intricate patterns of plant growth.
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Box 1.1 Fibonacci numbers

The sequence of numbers

0,1,1,2,3,5,8,13,21,34,55,89. . .

was first defined in 1202 by the Italian mathematician
Leonardo of Pisa, nicknamed Fibonacci. Each term in
the sequence after the first two is obtained by adding
together the previous two (0+1 = 1; 1+1 = 2; 1+2 = 3;
2+ 3 = 5, etc.)

It is intriguing to discover that the spiral patterns of plant
growth correspond to pairs of numbers in this series, as
illustrated in Figure 1.3.

Part (a) shows a pinecone with 8 parallel rows of bracts
spiralling gradually and 13 parallel rows of bracts spi-
ralling steeply.

Part (b) shows a sunflower head in which the seeds spi-
ral out from the centre: 55 rows clockwise and 89 rows
anticlockwise.

Figure 1.3: Fibonacci numbers in nature.
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1.1.2 Calculating with negative numbers

Many scientific quantities can take negative values. For example, chemical reac-
tions may either give out heat to the surroundings or absorb heat from the surround-
ings. Scientists adopt a convention that in the case of a heat-absorbing reaction, the
change in energy has a positive value. In the case of a heat-releasing reaction (such
as combustion), on the other hand, the energy change is negative. To be able to
handle quantities like this in scientific calculations it is essential to understand the
rules for performing thearithmetic operations(addition, subtraction, multiplication
and division) when negative numbers are involved. If I amalgamate a credit card
debt of £100 with an overdraft of £150, I owe £250 in total:

£100 debt+ £150 debt= £250 debt

Just in terms of numbers, this is equivalent to writing:

(−100)+ (−150)= −250

Note from this example how brackets can be used to make it clear how numbers and
signs are associated. The rules for performing arithmetic operations with negative
numbers are summarized by the examples in the box‘Arithmetic with negative
numbers’. You should check that you are familiar with all the rules exemplified in
the box.
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Arithmetic with negative numbers

The numbers used as examples here are small integers between 1 and 10, but
could of course be any number. As is normally the case, positive numbers are
not preceded by a+ sign.

(−3)+ 5 = 2 3+ (−4) = −1 (−3)+ (−3) = −6
(−5)− 2 = −7 4− (−3) = 7 (−5)− (−4) = −1
(−2)× 2 = −4 3× (−2) = −6 (−2)× (−2) = 4
(−3)÷ 3 = −1 3÷ (−3) = −1 (−3)÷ (−3) = 1

Thinking about some of the examples in concrete terms may help to make sense of
them. For instance, taking money from a bank account that is already overdrawn
increases the amount of the debt (i.e. makes it ‘more negative’). Doubling an
overdraft produces an even larger debt (i.e. a bigger negative number).

Brackets are included to associate negative signs with particular numbers. For ex-
ample, 3+ (−4) means that (−4) is being added to 3; this is equivalent to subtracting
4 from 3, with the result (−1).

Before reading on, test your understanding of the rules by doingQuestion 1.1.
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Question 1.1

Without using your calculator, work out:

(a) (−3)× 4 Answer

(b) (−10)− (−5) Answer

(c) 6÷ (−2) Answer

(d) (−12)÷ (−6) Answer

The examples given so far illustrate one important feature of both addition and
multiplication: both these operations arecommutative. This is just the mathemat-
ical way of saying that if one adds two numbers then the result (called thesum) is
identical whichever number is written first. For example:

5+ 3 = 8 and 3+ 5 = 8

(−2)+ 3 = 1 and 3+ (−2) = 1

Similarly, in multiplying two numbers the result (called theproduct) is unchanged
if the order of the numbers is reversed. For instance:

5× 4 = 20 and 4× 5 = 20

(−3)× 4 = −12 and 4× (−3) = −12
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Subtraction and division, on the other hand, are not commutative:

5− 3 = 2 but 3− 5 = −2

8÷ 4 = 2 but 4÷ 8 = 1
2

The commutativity of addition and multiplication may seem rather obvious when
applied to the counting numbers, but is worthy of attention because of its impor-
tance in the algebraic manipulations that will be discussed in Chapter 4.

Worked example 1.1andQuestion 1.2are two rather more realistic examples re-
quiring the use of arithmetic with negative numbers.
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Worked example 1.1

One of the hottest places on Earth is Death Valley, California, where an air
temperature of 56◦C has been recorded. Probably the coldest inhabited place is
the Siberian village of Oymyakon, where the temperature has fallen to−72 ◦C.
What is the difference in temperature between these two extremes?

Answer

The difference in temperature may be worked out in two ways. The first
method involves subtracting the lower temperature from the higher, i.e. 56◦C−
(−72 ◦C), which gives apositive difference of 128 Celsius degrees. This
is the amount by which Death Valley is hotter than Oymyakon. Alterna-
tively, it is equally valid to subtract the higher temperature from the lower, i.e.
−72 ◦C−56 ◦C, which gives anegativedifference of−128 Celsius degrees. This
is equivalent to saying that Oymyakon is 128 Celsius degrees colder than Death
Valley.

This example shows that in scientific calculations involving negative numbers it
is important to keep the physical situation in mind.
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Contents �

Question 1.2 Answer

The maximum temperature range within the oceans is 31.9 Celsius degrees. This
is a much smaller variation in temperature than that achievable for the air above
a landmass, in part because the lowest ocean temperature is fixed at the tem-
perature at which seawater freezes. The highest recorded ocean temperature is
30.0 ◦C. What is the freezing point of seawater?

1.1.3 Working with negative numbers on a calculator

The calculations inQuestions 1.1and 1.2 were easy enough to work out by hand,
but many of the calculations you will encounter in science will require the use of a
calculator. It is therefore important to check that you know how to input negative
numbers into your own calculator.

Take the following examples:

6+ (−8) = −2

4− (−3) = 7

5× (−3) = −15

(−8)÷ (−2) = 4

and make sure that you can carry out each sum on your calculator, obtaining the
correct sign on the display of the answer. With some makes of calculator you will
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be able to enter the expression on the left-hand side more or less as it is written,
with or without brackets. With other makes you may have to use a combination of
the arithmetic operation keys and the+/− (or on some makes±) button.

When you are confident that you can input negative numbers in association with the
first arithmetic operations, test your skill with Question 1.3.

Question 1.3

Making sure you input all the signs, use your calculator to work out the follow-
ing:

(a) 117− (−38)+ (−286) Answer

(b) (−1624)÷ (−29) Answer

(c) (−123)× (−24) Answer

There is, however, one case in which the calculator does not fully deal with signs,
and that case concerns square roots. The ‘square rootof 9’ is defined as the number
that multiplied by itself gives 9. One such number is 3:

3× 3 = 9

and if you use your calculator to work out
√

9 you will indeed obtain the answer 3.
However, it is also true that

−3× −3 = 9
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So the square root of 9 is either+3 or−3. It is a mathematical convention that the
notation

√
9 means ‘the positive value of the square root of 9’, and this is what your

calculator displays. In cases in which the negative value of the square root might
be relevant this is indicated by use of the sign± (plus or minus) before the square
root sign, i.e.±

√
9.

In Section 1.1.1, the number
√

2 was given as an example of an irrational number.
Check that you can use the square root button on your own calculator to get
√

2 = 1.414 213 562

(You may obtain more or fewer digits depending on the make and model of your
calculator. The fact that the number is irrational means that in any case it never
ends.)

Question

What is

√
5

3
?

Answer
√

5
3
= 0.745 355 922

Be sure to check that you can obtain this value on your own calculator, by ensuring
that the calculator takes the square root of 5beforedividing by 3. Otherwise, you
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will get the positive value of the square root of5
3, which is not the same at all!√

5
3
= 1.290 994 449

1.1.4 The number zero

Zero is a number to be careful about, especially when it is used in multiplication or
division.

If you try multiplying 0 by 6 on your calculator, you will get the answer 0. This
is hardly surprising. If we start off with nothing, it doesn’t matter how often we
multiply it, we still have nothing. The commutativity of multiplication shows that
6× 0 is therefore also equal to 0, and your calculator will confirm this.

The result of multiplying any number by 0 is 0.

In a similar way, dividing 0 by any non-zero number gives zero.

Trying to divide by zero is more problematic. If you enter 6÷ 0 into your calcu-
lator, you will get an error message. To understand why, imagine dividing 6 by
successively smaller and smaller numbers: the answers will get successively larger
and larger. The number by which we’re dividing approaches zero, the result of the
division becomes too large for the calculator to cope with. Dividing by zero does
not produce a meaningful number and is to be avoided!
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1.2 Fractions

With the increasing decimalization of everyday units of measurement, we use frac-
tions less than people used to. Nowadays adding eighths and sixteenths of inches
is about as much as you might need to do, and that only if you still have a ruler, or
some items in a toolbox, marked in inches. However the ability to add, subtract,
multiply and divide using numerical fractions is extremely important inMaths for
Science, because it is the basis for the skill of manipulatingalgebraic fractions
which will be discussed in Chapter 4.

1.2.1 Using fractions

Fractions are characterized by anumerator(the number on top) and adenomina-
tor (the number on the bottom). So in the fraction3

8, the numerator is 3 and the
denominator is 8.
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A pictorial representation, such as that in Figure 1.4, makes it obvious
that it is possible to have fractions which have different numerators and
denominators, but are nevertheless equal. The cake can be divided into
two and the shaded half further sub-divided into two quarters or four
eighths, but half the cake still remains shaded. So the fractions1

2, 2
4 and

4
8 all represent the same amount of the original cake, and can therefore
be described asequivalent fractions.

Figure 1.4 exemplifies the most fundamental rule associated with frac-
tions:

The value of a fraction is unchanged if its numerator and denomina-
tor are both multiplied by the same number, or both divided by the
same number.

In the case of the half cake, numerator and denominator have been mul-
tiplied by 2 to get the equivalent two quarters and again to get the equiv-
alent four eighths. In the following example of equivalent fractions,
other multiplying and dividing numbers have been used:

6
9
=

2
3
=

8
12
=

10
15

1

2

2

4

4

8

Figure 1.4: Sharing out half a
cake.

2
3 is the simplest form in which this fraction may be expressed, i.e. the one in which
the numerator and denominator have the smallest possible value.
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A percentagemeans a ‘number of parts per hundred’, so is equivalent to a fraction
in which the denominator is 100. For example, 50% is the same as50

100 or 1
2

Question

Express 35% as a fraction of the simplest possible form.

Answer

35% is the same as35
100. The value of the faction will be unchanged if the nu-

merator and denominator are both divided by the same number, and 35 and 100
can both be divided by 5. Doing this gives

35
100
=

7
20

This is the simplest form in which the fraction can be expressed.

One way to convert a fraction to a percentage is to multiply top and bottom of the
fraction by whatever number is required to make the denominator equal to 100. For
instance:

1
4
=

1× 25
4× 25

=
25
100

Hence1
4 is equivalent to 25%.
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In the first few sections of this course, all fractions have been written in the form3
4.

However, in most maths and science texts, you will find that the alternative form,
3/4, is also very common, so you have to become equally comfortable with both
systems and also have to be able to swap between them at will. From now on,
therefore, both notations will be used.

1.2.2 Adding and subtracting fractions

Suppose we want to add the two fractions shown below:

3
4
+

7
16

We cannot just add the 3 and the 7. The 3 represents 3 ‘quarters’ and the 7 represents
7 ‘sixteenths’, so adding the 3 to the 7 would be like trying to add 3 apples and 7
penguins!

In order to add or subtract two fractions, it is necessary for them both to have
the samedenominator(bottom line).
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Fractions with the same denominator are said to have acommon denominator. In
numerical work, it is usually convenient to pick the smallest possible number for
this denominator (the so-calledlowest common denominator). In this example, the
lowest common denominator is 16; we can multiply both top and bottom of the
fraction 3

4 by 4 to obtain the equivalent fraction12
16, so the calculation becomes

3
4
+

7
16
=

12
16
+

7
16
=

19
16

A top heavy fraction such19
16 (i.e. one in which the numerator is larger than the

denominator) is sometimes referred to as animproper fraction. We could also write
the final answer as 1316. This notation is called amixed number(i.e. a combination
of a whole number and a simple fraction). However for most purposes in this course
it is better to leave things as improper fractions.
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If the lowest common denominator is not easy to spot, it is perfectly acceptable to
useany common denominator when adding and subtracting fractions. It may be
most convenient to multiply the top and bottom of the first fraction by the denom-
inator of the second fraction, and the top and bottom of the second fraction by the
denominator of the first. A return to our example may make this clearer:

3
4
+

7
16
=

3× 16
4× 16

+
7× 4
16× 4

=
48
64
+

28
64
=

76
64

However,76
64 is not the simplest form in which this fraction can be expressed. We

can divide both the numerator and the denominator by four to obtain19
16. Reassur-

ingly, this is the same answer as we obtained before!

This process of dividing the top and bottom of a fraction by the same quantity is
often referred to ascancellation, because it is commonly shown by striking through
the numbers being divided. For example,5

15 can be simplified by dividing the
numerator and denominator by 3, and this may be shown as

��5 1

��153
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Worked example 1.2

Evaluate3
2 +

1
32, giving the answer in the form of the simplest possible improper

fraction.

Note that the instruction to‘evaluate’simply means ‘calculate the value of’.

Answer

Choosing 2× 32 as the common denominator,

3
2
+

1
32
=

3× 32
2× 32

+
1× 2
32× 2

=
96
64
+

2
64

=
98
64

=
��9849

��6432

This cannot be simplified any further, so

3
2
+

1
32
=

49
32
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Question 1.4

Without using a calculator, evaluate the following, leaving your answers in the
form of the simplest possible fractions.

(a)
2
3
−

1
6

Answer

(b)
1
3
+

1
2
−

2
5

Answer

(c)
5
28
−

1
3

Answer

1.2.3 Manipulating fractions

It is very important to remember that multiplying both numerator and denominator
by the same non-zero number, or dividing both numerator and denominator by the
same non-zero number, are theonly things you can do to a fraction that leave its
value unchanged. Adding the same number to the numerator and denominator will
alter the value of the fraction, as will any other operations. The following question
will help you to convince yourself of this, so it is particularly important that you
should work through it at this point.
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Question 1.5

Take any fraction, say416, and evaluate it as a decimal, using your calculator if
necessary. Now try each of the following operations in turn, using your calcula-
tor to work out the result:

(a) choose any integer and add it to the numerator and
denominator

Answer

(b) subtract the same integer from the numerator and denominatorAnswer

(c) square the numerator and the denominator (i.e. multiply the
numerator by itself, and the denominator by itself)

Answer

(d) take the square root of the numerator and the square root of
the denominator.

Answer

The results you obtained for Question 1.5 confirm that, for example, adding the
same non-zero number to the top and bottom of a fraction changes its value, as
do operations such as taking the square root of the numerator and denominator.
The experience of all calculations of this type can be generalized by saying that
excluding operations involving the integer zero,

A fraction is unchanged by either the multiplication, or the division, of its nu-
merator and denominator by the same amount. All other operations carried out
on the fraction will alter its value.
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In terms of numerical fractions, this rule may seem fairly obvious. But forgetting
it once the numbers are replaced by symbols is the root cause of many errors in
algebra!

1.2.4 Multiplying fractions

The expression ‘three times two’ just means there are three lots of two (i.e. 2+2+2).
So multiplying by a whole number is just a form of repeated addition. For example,

3× 2 = 2+ 2+ 2

This is equally true if you are multiplying a fraction by a whole number:

3×
4
5
=

4
5
+

4
5
+

4
5
=

12
5

We could write the 3 in the form of its equivalent fraction3
1 and it is then clear that

the same answer is obtained by multiplying the two numerators together and the
two denominators together.

3
1
×

4
5
=

3× 4
1× 5

=
12
5

In fact, this procedure holds good for any two fractions.
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To multiply two or more fractions, multiply the numerators (top lines) together
and also multiply the denominators (bottom lines) together.

So

3
4
×

7
8
=

3× 7
4× 8

=
21
32

Multiplying three fractions together is done by simple extension of the method used
in the previous examples:

7
16
×

7
8
×

3
4
=

7× 7× 3
16× 8× 4

=
147
512
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1.2.5 Dividing fractions

How are we to interpret 4÷ 1
2? The analogy with dividing by an integer may help.

The expression 4÷ 2 asks us to work out how may twos there are in 4 (answer 2).
In exactly the same way, the expression 4÷ 1

2 asks how many halves there are in 4.
Figure 1.5 illustrates this in terms of circles. Each circle contains two half-circles,
and 4 circles therefore contain 8 half-circles. So

4÷
1
2
= 4× 2 = 8

Figure 1.5: Each circle contains two half-circles.
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Figure 1.6: Each half-circle contains two quarter-circles.

Similarly, 1
2 ÷

1
4 asks how many quarters there are in a half. Figure 1.6 illustrates

that:

• each whole circle contains 4 quarter-circles

• each half-circle contains12 × 4 quarter-circles

So

1
2
÷

1
4
=

1
2
× 4 =

1
2
×

4
1
=

1× 4
2× 1

=
4
2
= 2

This may be extended into a general rule

To divide by a fraction, turn it upside down and multiply.
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So

4
3
÷

5
9
=

4
3
×

9
5

=
��3612

��155

=
12
5

Here the cancellation has been done by dividing the numerator and the denominator
of the final answer by 3. However, cancellation could equally well have been carried
out at an earlier stage,

4

��31
×

��93

5
=

12
5

Note that divisions involving fractions are commonly written in several different

ways; the example above might equally well have been expressed as
4
3

/
5
9

or
4/3
5/9

.
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It is always important to remember that an integer is equivalent to a fraction in
which the numerator is equal to that integer and the denominator is equal to 1: for
example, the integer 3 is equivalent to the fraction3

1. So dividing by the integer 3
is equivalent to dividing by the fraction31, and that, according to the general rule
about how to divide by a fraction, is the same as multiplying by the fraction1

3.

Thus
1
2
÷ 3 =

1
2
÷

3
1
=

1
2
×

1
3
=

1× 1
2× 3

=
1
6

In this context, it may be helpful to restate the general rule in terms of a
specific example:

Multiplying by 1
2 is equivalent to dividing by 2.

Dividing by 1
2 is equivalent to multiplying by 2.

The blue box and the cartoon use the integer 2 as the example, but it
could of course be replaced by any other integer: it is equally true to
say that dividing by1

10 is equivalent to multiplying by 10.
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Question 1.6

Work out each of the following, leaving your answer as the simplest possible
fraction:

(a)
2
7
× 3 Answer

(b)
5
9
÷ 7 Answer

(c)
1/6
1/3

Answer

(d)
3
4
×

7
8
×

2
7

Answer

1.3 Powers, reciprocals and roots

1.3.1 Powers

Most people are familiar with the fact that 2× 2 can also be written as 22 (said as
‘two squared’) and 2× 2 × 2 as 23 (said as ‘two cubed’). This shorthand notation
can be extended indefinitely, so 2×2×2×2×2×2 becomes 26 (said as ‘two raised
to the power of six’ or ‘two to the power of six’, or more usually just as ‘two to the
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six’). In these examples, 2 is called thebase numberand the superscript indicates
the number of ‘2’s that have been multiplied together. The superscript number is
variously called theexponent, the index (plural indices) or thepower. In the rest
of this section, the term exponent will be the one used, because that ties in most
closely with the notation on calculators.

‘Power’ is a slightly confusing term because it is commonly used to denote two
different quantities:

• the value of the superscript number (as in ‘two to the power of six’),

• the complete package of base number and exponent .

The context should make it clear what is meant in any particular example.

In the following example, the base number is 5:

Exponent 1 2 3 4

Power of 5 51 52 53 54

Value 5 25 125 625

If you read this table starting at the right and stepping to the left, each time you take
a step you are subtracting 1 from the number in the top row and dividing the number
in the bottom row by five. On the basis of this pattern, mathematicians extend this
table further to the left by continuing to apply the same ‘rule’ for each step, giving:
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Exponent −3 −2 −1 0 1 2 3 4

Power of 5 5−3 5−2 5−1 50 51 52 53 54

Value 1
125

1
25

1
5 1 5 25 125 625

Firstly, note the extremely important result that 50 = 1.

Any base number raised to the power of zero is equal to 1.

Next, notice that 5−2 = 1
25. But since 25= 52, 1

25 is also
1

52
. So we have developed

a new form of shorthand such that

5−1 =
1
5

5−2 =
1

52
5−3 =

1

53
and so on.

Another way of saying this is that 5−2 is thereciprocalof 52. The reciprocal of any
number is 1 divided by that number. Note that this also works the other way round:

52 is the reciprocal of 5−2. This means that
1

5−2
= 52.
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The system shown above for powers of 5 could be applied to any base number,
and is especially useful when applied to powers of ten, because then it ties in with
our normal system for writing decimal numbers. In the example below, the table is
constructed the other way round to emphasise this:

thousands hundreds tens units point tenths hundredths thousandths

Value 1000 100 10 1 . 0.1 0.01 0.001

Power of 10 103 102 101 100 10−1 10−2 10−3

Exponent 3 2 1 0 −1 −2 −3

In the next chapter, you will see how useful thispowers of ten notationcan be in
scientific work.
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Question 1.7

Without using a calculator, evaluate

(a) 2−2 Answer

(b)
1

3−3
Answer

(c)
1

40
Answer

(d)
1

104
Answer

Your calculator probably has anx2 button, and either anx−1 or a 1/x button, but
to evaluate other powers you will have to use a special ‘powers’ button. On some
calculators this is markedxy, on others it has the symbol∧. To input a negative
exponent, you may have to combine the powers button with the+/− button. Make
sure at this point that you can operate your own calculator to obtain correctly:

54 = 625

5−1 = 0.2 (i.e. 1/5)

5−2 = 0.04 (i.e. 1/25)
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Question 1.8

Use your calculator to evaluate:

(a) 29 Answer

(b) 3−3 Answer

(c)
1

42
Answer

Box 1.2 An intimate knowledge of powers!

Srinivasa Ramanujan (1887–1920), an Indian mathematician of immense talent,
came to England in 1913 at the invitation of the distinguished British mathe-
matician, G. H. Hardy. In his biography of Ramanujan, Hardy wrote:

I remember once going to see him when he was lying ill at Putney. I had ridden
in taxi cab number 1729 and remarked that the number seemed to me rather a
dull one, and that I hoped it was not an unfavorable omen. “No,” he replied, “it
is a very interesting number; it is the smallest number expressible as the sum of
two cubes in two different ways.”

Indeed: 1729= 13 + 123 = 93 + 103
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1.3.2 Multiplying and dividing with powers

In scientific calculations, it is very common to have to multiply and divide by
powers, especially powers of ten. It is therefore extremely important to become
confident in manipulating powers in this way, both with and without a calculator.
However, the rules for doing so are quite easy to work out.

Suppose we wanted to multiply 103 by 102. We could write this out more fully as

103 × 102 = (10× 10× 10)× (10× 10)= 105

The exponent of the result (5) is the same as the sum of the two original exponents
(3+ 2).

The process is of course not limited to powers of ten. It works for any base number.
For example:

22 × 24 = (2× 2)× (2× 2× 2× 2) = 26

Again, the exponent of the result (6) is the same as the sum of the two original
exponents (2+ 4).

The process also works for negative exponents. For example, since 5−2 =
1

52

53 × 5−2 = (5× 5× 5)×
1

5× 5
= 5 = 51
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Adding the exponents here again gives the exponent of the answer:

3+ (−2) = 1

In science and maths, general rules are often stated in terms of symbols. We could
express the rule we have discovered through the above examples in the much more
general form

Na × Nb = Na+b (1.1)

whereN represents any base number anda andb represent any exponents

Quantities such as those represented by the symbolsN, a andb, which can take any
value we choose, are calledvariables.

The example involving a negative exponent we looked at previously shows immedi-
ately how to extend the rules to cover situations in which we want to divide powers.
We had:

53 × 5−2 = 53+(−2) = 51 = 5

But as you will remember fromSection 1.2.5, multiplying by a fraction is the same
as dividing by that fraction turned upside down (i.e. its reciprocal). So multiplying
by 5−2 is the same as dividing by its reciprocal (52), and we can write

53 ÷ 52 = 53−2 = 51 = 5
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This time, instead of adding the exponents, we have subtracted the second from the
first. More generally,

Na ÷ Nb = Na−b (1.2)

whereN represents any base number anda andb represent any exponents

Question 1.9

Without using a calculator, simplify the following to the greatest possible extent
(leaving your answer expressed as a power).

(a) 230× 22 Answer

(b) 325× 3−9 Answer

(c) 102/103 Answer

(d) 102/10−3 Answer

(e) 10−4 ÷ 102 Answer

(f)
105 × 10−2

103
Answer
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1.3.3 Powers of powers

Consider now what happens when a number which is already raised to a power, for
example 32, is again raised to a power. Suppose for example 32 is itself cubed, so

that we have
(
32

)3
. Writing this out in full shows that(

32
)3
= (32) × (32) × (32) = (3× 3)× (3× 3)× (3× 3) = 36

This time the exponents have been multiplied together to obtain the exponent of the
answer: 3× 2 = 6.

More generally,

(
Nm)n

= N m× n (1.3)

whereN represents any base number andm andn represent any exponents

Equation 1.3 applies for all values ofN, m andn whether positive or negative. So
for example:(

1

1020

)3

=
(
10−20

)3
= 10(−20)×3 = 10−60 =

1

1060

This is equivalent to saying that(
1

1020

)3

=
13(

1020)3 = 1

1020×3
=

1

1060
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Question 1.10

Without using a calculator, simplify the following to the greatest possible extent,
leaving your answer expressed as a power.

(a)
(
416

)2
Answer

(b)
(
5−3

)2
Answer

(c)
(
1025

)−1
Answer

(d)

(
1

33

)6

Answer

Back J I 49



Contents �

1.3.4 Roots and fractional exponents

Finally, how are we to interpret a power with a fractional exponent, such as 21/2?
The rule for multiplying powers gives a clue. Suppose we were to multiply 21/2 by
itself. ApplyingEquation 1.1suggests that:

21/2 × 21/2 = 2
(
1
2+

1
2

)
= 21 = 2

But the positive number that multiplied by itself gives 2 is more commonly written
as
√

2. The two shorthands, 21/2 and
√

2 are often used interchangeably.

Similarly, the number that multiplied by itself three times gives 125 is sometimes
written as

3√
125 (said as ‘the cube root of 125’), but more commonly written in

science as (125)1/3. This number is clearly 5, and you should notice the correspon-
dence:

53 = 125 and conversely (125)1/3 = 5

More generally,

The positiventh root of a numberN can be written as eithern
√

N or asN1/n

In practice, the first type of notation is only used whenn = 2 orn = 3.
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Worked example 1.3

Without using a calculator, evaluate

(
21/2

)7

(
23)1/2

Answer

FromEquation 1.3(
21/2

)7
= 2

1
2×7 = 27/2 and

(
23

)1/2
= 23×1

2 = 23/2

so(
21/2

)7

(
23)1/2 = 27/2

23/2

FromEquation 1.2

27/2

23/2
= 27/2 − 23/2

= 24/2

= 22

= 4
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Equation 1.3can now be used to bring meaning to a number like 272/3.

Since2
3 =

1
3 × 2, applyingEquation 1.3shows that 272/3 = (271/3)2 i.e. the square

of the cube root of 27. The cube root of 27 is 3, so 272/3 is equal to 32 or 9.

Question 1.11

Without using a calculator, simplify the following to the greatest possible extent,
expressing your answer as an integer or a decimal.

(a)
(
24

)1/2
Answer

(b)
√

104 Answer

(c) 1003/2 Answer

(d) (125)−1/3 Answer
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1.4 Doing calculations in the right order

In Section 1.1.2, brackets were used to make it clear that the minus signs were
tied to particular numbers. Brackets can also be used to show the order in which
calculations are to be performed.

If a calculation were written as

3+ 2× 5 =

should one do the addition first or the multiplication first? Try entering this expres-
sion into your calculatorexactly as it is written. Do you get the answer 13? If so,
your calculator knows the convention adopted by mathematicians everywhere that
multiplication takes precedence over addition. The calculator has ‘remembered’ the
3 until it has worked out the result of multiplying 2 by 5 and has then added the 3
to the 10. According to the rules all mathematicians follow, if you wanted to add
the 3 and the 2 first and then multiply that result by 5 you would have to write

(3+ 2)× 5 = 25

Again, check that you can use the bracket function on your calculator to enter this
expression exactly as written on the left-hand side of this equation and that you
obtain the correct answer.

There are similar rules that govern the order of precedence of other arithmetic op-
erations, which are neatly encapsulated in the mnemonic BEDMAS.
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Order of arithmetic operations

Brackets take precedence over
Exponents. Then. . .
Division and
Multiplication must be done before. . .
Addition and
Subtraction.

So if we write−3 − 12÷ 6, the BEDMAS rules tell us we must do the division
(12÷ 6 = 2) before carrying out the subtraction (−3 − 2 = −5). Try this on your
calculator too; you may have to use the+/− button to input the−3.

Many people, including scientists, find it hard to visualize the rules in a string of
numbers. They often opt to use brackets to make things clear, even when those
brackets simply reinforce the BEDMAS rules. So one could choose to write

(12÷ 3)+ 2 = 6

There is nothing wrong with adding such ‘redundant’ brackets — they are simply
there for clarity and can even be entered into your calculator (try it). Far better to
have a few additional brackets than to be confused about the order in which the
calculation must be carried out!
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There is one final quirk associated with the use of brackets. In mathematics, the
multiplication sign is often left out (though its presence is implied) between num-
bers and brackets, and between brackets and brackets. So

2(3+ 1) = 2× (3+ 1) = 8

and

(1+ 1)(4+ 3) = 2× 7 = 14

Some calculators ‘understand’ this convention and some do not. Check your own
calculator carefully using the two examples above.

The next operation in precedence after brackets involves exponents. If there are
powers in the expression you are evaluating, deal with any brackets first, then work
out the powers before carrying out any other arithmetical operations.

Question

Evaluate 2× 32 and (2× 3)2

Answer

In the first case, there are no brackets so the exponent takes precedence:

2× 32 = 2× 9 = 18

In the second case, the bracket takes precedence:

(2× 3)2 = 62 = 36
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Question 1.12

Evaluate (preferably without using your calculator):

(a) 35− 5× 2 Answer

(b) (35− 5)× 2 Answer

(c) 5(2− 3) Answer

(d) 3× 22 Answer

(e) 23 + 3 Answer

(f) (2+ 6)(1+ 2) Answer

Back J I 56



Contents �

1.5 Learning outcomes for Chapter 1

After completing your work on this chapter you should be able to:

1.1 carry out addition, subtraction, multiplication and division operations
involving negative numbers;

1.2 add two or more fractions;

1.3 subtract one fraction from another;

1.4 multiply a fraction by an integer or by another fraction;

1.5 divide a fraction by a non-zero integer or by another fraction;

1.6 evaluate powers involving any base and positive, negative or fractional
exponents;

1.7 multiply or divide two powers involving the same base;

1.8 evaluate any given power of a number already raised to a power.
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Measurement in Science 2
Observation, measurement and the recording of data are central activities in science.
Speculation and the development of new theories are crucial as well, but ultimately
the predictions resulting from those theories have to be tested against what actually
happens and this can only be done by making further measurements. Whether
measurements are made using simple instruments such as rulers and thermometers,
or involve sophisticated devices such as electron microscopes or lasers, there are
decisions to be made about how the results are to be represented, what units of
measurements will be used and the precision to which the measurements will be
made. In this chapter we will consider these points in turn. Then in Chapter 3
we will go on to think about how measurements of different quantities may be
combined, and what significance should be attached to the results.
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2.1 Large quantities and small quantities

Scientists frequently deal with enormous quantities — and with tiny ones. For
example it is estimated that the Earth came into being about four and a half thousand
million years ago. It took another six hundred million years for the first living
things — bacteria — to appear. Bacteria are so small that they bear roughly the
same proportion to the size of a pinhead as the size that pinhead bears to the height
of a four-year old child!

In the previous chapter, we saw how convenient powers of ten could be as a way of
writing down very large or very small numbers. For example,

106 = 1 000 000 (a million) and 10−3 = 1/1000= 0.001 (a thousandth)

This shorthand can be extended to any quantity, simply by multiplying the power
of ten by a small number. For instance,

2× 106 = 2× 1 000 000= 2 000 000 (two million)

(The quantity on the left-hand side would be said as ‘two times ten to the six’.)

Similarly,

3.5× 106 = 3 500 000 (three and a half million)

7× 10−3 = 7/1000= 0.007 (seven-thousandths)
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Scientists make so much use of this particular shorthand that it has come to be
known asscientific notation(although in maths texts you may also find it referred
to asstandard index formor standard form.)

A quantity is said to be expressed in scientific notation if its value is written as
a number multiplied by a power of ten. The number can be a single digit or a
decimal number, but must be greater than or equal to 1 and less than 10.

Note the restriction: 75× 102 is not in scientific notation and nor is 0.75× 104,
though these are both equivalent to 7.5× 103 which is in scientific notation.

Scientific notation can be defined more succinctly by making use of some of the
mathematical symbols denoting the relative sizes of quantities. These symbols are:

> greater than (e.g. 3> 2);

≥ greater than or equal to (e.g.a ≥ 4 means that the quantitya may take the
exact value 4 or any value larger than 4);

< less than;

≤ less than or equal to.

Note that ‘a ≥ 4’ and ‘4 ≤ a’ convey exactly the same information about the
quantitya.
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Using these symbols, scientific notation may be defined as a notation in which
the value of a quantity is written in the forma × 10n, wheren is an integer and
1 ≤ a < 10.

To move from scientific notation to integers or to decimal notation, first deal with
the power of ten, then carry out the multiplication or division.

Worked example 2.1

Express the following numbers as integers or in decimal notation:

(a) 4.53× 103

(b) 8.371× 102

(c) 6.4× 10−3

Answer

(a) 4.53× 103 = 4.53× 1000= 4530

(b) 8.371× 102 = 8.371× 100= 837.1

(c) 6.4× 10−3 = 6.4×
1

1000
=

6.4
1000

= 0.0064

Note that, as in Worked example 2.1, a requirement to express a quantity in a dif-
ferent form simply involves taking the quantity and writing down its equivalent in
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the new form. You may do this in one step, or write down intermediate steps as was
done in the worked example.

Question 2.1

Without using your calculator, express the following numbers as integers or in
decimal notation. Note that (a) and (b) are in scientific notation, while (c) is not.

(a) 5.4× 104 Answer

(b) 2.1× 10−2 Answer

(c) 0.6× 10−1 Answer

Moving from an integer or decimal notation to scientific notation is equivalent to
deciding what power of ten you need to multiply or divide by in order to convert
the number you are starting with to a number that lies between 1 and 10.
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Worked example 2.2

Express the following numbers in scientific notation:

(a) 356 000

(b) 49.7× 104

(c) 0.831

Answer

(a) 356 000= 3.56× 100 000= 3.56× 105

(b) 49.7× 104 = 4.97× 10× 104 = 4.97× 10(1+4) = 4.97× 105

(c) 0.831=
8.31
10
= 8.31× 10−1

In this worked example, all the steps have been written out in full. You may be able
to manage with fewer steps in your own calculations — just use as many or as few
as you feel comfortable with in order to get the right answer!
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Question 2.2

Without using your calculator, express the following numbers in scientific nota-
tion:

(a) 215 Answer

(b) 46.7 Answer

(c) 152× 103 Answer

(d) 0.000 0876 Answer

It is only too easy to lose track of the sizes of things when using scientific notation,
so you should make a habit of thinking carefully about what the numbers mean,
bearing in mind that numbers may be positive or negative. For example:

−1× 1010 is a very large negative number;

−1× 10−10 is a very small negative number;

1× 10−10 is a very small positive number.

Figure 2.1places on the number line some numbers in scientific notation. You may
find this helps you to visualize things.
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We started this section thinking about the early Earth and the first appearance of life.
Using scientific notation, the age of the Earth can be neatly expressed as 4.6× 109

years and the size of one type of those early bacteria as 1.2 × 10−6 metres. Of
course the value we come up with for such sizes will depend on the units in which
we choose to make the measurements. If we were measuring the diameter of the
Moon, we could elect to express it in metres or in kilometres, or even in miles.

2.2 Units of measurement

In the UK, two systems of units are in common use. We still use old imperial mea-
sures for some things: milk is sold in pints and signposts indicate distances in miles.
But for many other everyday measurements metric units have been adopted: we buy
petrol in litres and sugar in kilogram bags. A great advantage of metric units is that
we no longer have to convert laboriously from imperial units, such as gallons, feet
and inches, in order to trade with continental Europe. Also, calculations are easier
in a metric (i.e. decimal) system! Similar advantages were the main consideration
when in 1960 an international conference formally approved a standard set of sci-
entific units, thus replacing at a stroke the many different systems of measurement
that had been used up until then by scientists of different nationalities. This ‘univer-
sal’ system for scientific measurement is referred to asSI units(short for Système
International d’Unités).
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In SI, there are seven ‘base units’, which are listed in Box 2.1. Surprising as it
may initially seem, every unit for every other kind of quantity (speed, acceleration,
pressure, energy, voltage, heat, magnetic field, properties of radioactive materials,
indeed whatever you care to name) can be made up from combinations of just these
seven base units. For instance, speed is measured in metres per second. You will
find some other combinations of base units described in Chapter 3. In this course
we shall work mainly with the familiar base units of length, mass, time and temper-
ature, and some of their combinations, but it is worth knowing that the other base
units exist as you may meet them in other courses.

Box 2.1 The SI base units

Physical quantity Name of unit Symbol for unit

length metre m
time second s
mass kilogram kg
temperature kelvin K
amount of substance mole mol
electric current ampere A
luminous intensity candela cd
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Most of these base units relate to physical descriptions that apply universally.
The SI base unit of time, the second, is defined as the period over which
the waves emitted by caesium atoms under specific conditions cycle exactly
9192 631 770 times. Then the SI base unit of length, the metre, is defined by
stating that the speed of light in a vacuum, which is a constant throughout the
Universe, is exactly 299 792 458 metres per second.

The SI base unit of mass, the kilogram, is the only fundamental unit that is
defined in terms of a specific object. The metal cylinder which constitutes the
world’s ‘standard kilogram’ is kept in France. Note that the kilogram is actually
the standard unit ofmass, not of weight. In scientific language, the weight of
an object is the downward pull on that object due to gravity, whereas its mass
is determined by the amount of matter in it. When astronauts go to the Moon,
where the pull of gravity is only about one-sixth of that on Earth, their mass
remains the same but their weight drops dramatically! And in zero gravity, they
experience a condition known as ‘weightlessness’.

The SI base unit of temperature is the kelvin, which is related to the everyday
unit of temperature, the degree Celsius:

(temperature in kelvin)= (temperature in degrees Celsius)+ 273.15

(You will find some of the rationale for the kelvin scale of temperature in Chap-
ter 5.)
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The amount of a pure substance is expressed in the SI base unit of the mole.
Whatever the smallest particle of a given substance is, one mole of that sub-
stance will contain 6.02211367× 1023 (known as Avogadro’s number) of those
particles. A mole of graphite contains Avogadro’s number of carbon atoms.
Carbon dioxide is made up of molecules in which one carbon atom is joined to
two oxygen atoms, and a mole of carbon dioxide contains Avogadro’s number
of these molecules.

You will have noticed that while the base unit of length is the metre, not the kilo-
metre, the base unit of mass is the kilogram, not the gram.

It is important to realize that, although in everyday usage it is common to say that
you ‘weigh so many kilos’, there are two things wrong with this usage from the
scientific point of view. First, as noted inBox 2.1, the kilogram is not a unit of
weight, but a unit of mass. (The SI unit of weight, the newton, will be discussed in
Chapter 3.) Secondly, in scientific language, ‘kilo’ is never used as an abbreviation
for kilogram, in the sense of the everyday phrase ‘he weighs so many kilos’. In
science, kilo is always used as aprefix, denoting a thousand: one kilometre is a
thousand metres, one kilogram is a thousand grams.

Another prefix with which everybody is familiar is ‘milli’, denoting a thousandth.
One millimetre, as marked on ordinary rulers, is one-thousandth of a metre; or put
the other way round, a thousand millimetres make up a metre. There are many other
prefixes in use with SI units, all of which may be applied to any quantity. Like kilo
and milli, the standard prefixes are based on multiples of 1000 (i.e. 103). The most
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commonly used prefixes are listed in Box 2.2.

It is important to write the symbols for units and their prefixes in the correct case.
So k (lower case) is the symbol for the prefix ‘kilo’ whilst K (upper case) is the
symbol for the Kelvin; m (lower case) is the symbol for the metre or the prefix
‘milli’ whilst M (upper case) is the symbol for the prefix ‘mega’.

Box 2.2 Prefixes used with SI units

prefix symbol multiplying factor

tera T 1012 = 1000 000 000 000
giga G 109 = 1000 000 000
mega M 106 = 1000 000
kilo k 103 = 1000
– – 100 = 1
milli m 10−3 = 0.001
micro µ∗ 10−6 = 0.000 001
nano n 10−9 = 0.000 000 001
pico p 10−12 = 0.000 000 000 001
femto f 10−15 = 0.000 000 000 000 001

* The Greek letterµ is pronounced ‘mew’.

The following data may help to illustrate the size implications of some of the
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prefixes:

• the distance between Pluto (the furthest planet in the Solar System) and
the Sun is about 6 Tm,

• a century is about 3 Gs,

• eleven and a half days contain about 1 Ms,

• the length of a typical virus is about 10 nm,

• the mass of a typical bacterial cell is about 1 pg.

Astronomers have long been making measurements involving very large quanti-
ties, but scientists are increasingly probing very small quantities. ‘Femtochem-
istry’ is a rapidly developing area, which involves the use of advanced laser
techniques to investigate the act of chemical transformation as molecules collide
with one another, chemical bonds are broken and new ones are formed. In this
work, measurements have to be made on the femtosecond timescale. Ahmed H.
Zewail (whose laboratory at the California Institute of Technology in Pasadena
is often referred to as ‘femtoland’) received the 1999 Nobel Prize in Chemistry
for his development of this new area.

Although scientific notation, SI units and the prefixes inBox 2.2are universal short-
hand for all scientists, there are a few instances in which other conventions and units
are adopted by particular groups of scientists for reasons of convenience. For ex-
ample, we have seen that the age of the Earth is about 4.6 × 109 years. One way

Back J I 70



Contents �

to write this would be 4.6 ‘giga years’ but geologists find millions of years a much
more convenient standard measure. They even have a special symbol for a million
years: Ma (where the ‘a’ stands for‘annum’, the Latin word for year). So in Earth
science texts you will commonly find the age of the Earth written as 4600 Ma. It
won’t have escaped your notice that the year is not the SI base unit of time — but
then perhaps it would be a little odd to think about geological timescales in terms
of seconds!

A few metric units from the pre-SI era also remain in use. In chemistry courses,
you may come across the ångström (symbol Å), equal to 10−10 metres. This was
commonly used for the measurement of distances between atoms in chemical struc-
tures, although these distances are now often expressed in either nanometres or pi-
cometres. Other metric but non-SI units with which we are all familiar are the litre
(symbol l) and thedegree Celsius(symbol◦C).

There are also some prefixes in common use, which don’t appear inBox 2.2be-
cause they don’t conform to the ‘multiples of 1000’ rule, but that when applied to
particular units happen to produce a very convenient measure. One you will cer-
tainly have used yourself iscenti(hundredth): rulers show centimetres (hundredths
of a metre) as well as millimetres, and standard wine bottles are marked as holding
75 cl. One less commonly seen isdeci(tenth) but that is routinely used by chemists
in measuring concentrations of chemicals dissolved in water, or other solvents, as
you will see in Chapter 3. In the next section you will also come across the decibel,
which is used to measure the loudness of sounds.
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Worked example 2.3

Diamond is a crystalline form of carbon in which the distance between adja-
cent carbon atoms is 0.154 nm. What is this interatomic distance expressed in
picometres?

Answer

1 pm= 10−12 m so

1 m=
1

10−12
pm= 1012 pm

1 nm= 10−9 m so

1 nm= 10−9 × 1012 pm

= 10−9+12 pm

= 103 pm

0.154 nm= 0.154× 103 pm

= 154 pm
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Question 2.3

Using scientific notation, express:

(a) 3476 km (the radius of the Moon) in metres. Answer

(b) 8.0 µm (the diameter of a capillary carrying blood in the body)
in nm,

Answer

(c) 0.8 s (a typical time between human heartbeats) in ms. Answer
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2.3 Scales of measurement

In thinking about the sizes of things, it is sometimes useful to do so in quite rough
terms, just to the nearest power of ten. For example, 200 is nearer to 100 than it is
to 1000, but 850 is nearer to 1000 than it is to 100. So if we were approximating to
the nearest power of ten we could say 200 was roughly 102, but 850 was roughly
103. This process is called reducing the numbers to the nearestorder of magnitude.

The approximate value of a quantity expressed as the nearest power of ten to
that value is called the order of magnitude of the quantity.

The easiest way to work out the order of magnitude of a quantity is to express it
first in scientific notation in the forma× 10n. Then ifa is less than 5, the order of
magnitude is 10n. But if a is equal to or greater than 5, the power of ten is rounded
up by one, so the order of magnitude is 10n+1. For example, the diameter of Mars
is 6762 km. This can be written as 6.762× 103 km, and because 6.762 is greater
than 5, the diameter of Mars is said to be ‘of order 104 km’.

This is normally written as:

diameter of Mars∼ 104 km

where the symbol∼ denotes ‘is of order’.
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Question

What is the order of magnitude of the mass of the Earth, 6.0× 1024 kg?

Answer

Mass of the Earth∼ 1025 kg (since 6.0 is greater than 5, the power of ten has
been rounded up).

Question

What is the order of magnitude of the mass of Jupiter, 1.9× 1027 kg?

Answer

Mass of Jupiter∼ 1027 kg (since 1.9 is less than 5, the power of ten remains
unchanged).
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Question

What is the order of magnitude of the average lifetime of unstable ‘sigma plus’
particles, 0.7× 10−10 s?

Answer

Particle lifetime= 0.7× 10−10 s

= 7× 10−11 s

∼ 10(−11+1) s
Since 7 is greater than
5, the power of ten
must be rounded up

∼ 10−10 s
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The phrase ‘order of magnitude’ is also quite commonly used to compare the sizes
of things, e.g. a millimetre is three orders of magnitude smaller than a metre.

Worked example 2.4

To the nearest order of magnitude, how many times more massive is Jupiter than
the Earth?

Answer

We had:

mass of Jupiter∼ 1027 kg

and

mass of Earth∼ 1025 kg

so

mass of Jupiter
mass of Earth

∼
1027

1025
∼ 10(27−25) ∼ 102

Jupiter is two orders of magnitude (i.e. roughly 100 times) more massive than
the Earth.
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Question 2.4

What is the order of magnitude of the following measurements?

(a) The distance between Pluto (the furthest planet in the Solar
System) and the Sun: five thousand nine hundred million kilo-
metres.

Answer

(b) The diameter of the Sun, given that its radius is 6.97× 107 m. Answer

(c) 2π. Answer

(d) The mass of a carbon dioxide molecule: 7.31× 10−26 kg. Answer

Sophisticated instrumentation now allows scientists to measure across 40 orders of
magnitude, as shown inFigure 2.2. If you turn back toFigure 1.2, you will see
that the scale there is quite different to that in Figure 2.2. On the thermometer,
the interval between marked points was always the same, with marked points at
−0.1,0,0.1,0.2, etc. In other words, each step from one division to the next on the
scale represented theaddition or subtractionof a fixed amount (0.1 in that case).
This kind of scale is calledlinear. In Figure 2.2, on the other hand, each step
involvesmultiplication or divisionby a fixed power of ten (102 in this particular
case). As a result, the intervals between divisions are all different. This kind of
scale is calledlogarithmic. The next question allows you to investigate some of the
properties of this type of scale.
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Question 2.5

Use information fromFigure 2.2to answer the following questions.

(a) What is the difference in value between: Answer

(i) the tick marks at 10−2 m and 100 m;

(ii) the tick marks at 100 m and 102 m, and

(iii) the tick marks at 102 m and 104 m?

(b) Calculate to the nearest order of magnitude, how many times
taller than a child is Mount Everest.

Answer

(c) Calculate to the nearest order of magnitude, how many typical
viruses laid end to end would cover the thickness of a piece of
paper. (Hint: you may find it helpful to look back atWorked
example 2.4.)

Answer
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2.3.1 Logarithmic scales in practice

In Figure 2.2, a logarithmic scale was used for the purposes of display, and the
power of ten for the multiplying factor (102) was chosen because it was the one that
best fitted the page. In drawing diagrams and graphs we are always free to choose
the scale divisions. However, logarithmic scales are used in a number of fields to
measure quantities that can vary over a very wide range. In such cases, an increase
or decrease of one ‘unit’ always represents a ten-fold increase or decrease in the
quantity measured. The following sections give two examples.

Sound waves

Thedecibel(symbol dB) is the unit used to measure the relative loudness of sounds.
The ‘intensity’ of a sound is related to the square of the variation in pressure as the
sound wave passes through the air, and the range of intensities that people can detect
is enormous. The sound that just causes pain is 1012 times more intense than the
sound that is just audible! To deal with this huge range, a logarithmic scale for
loudness was devised, according to which every 10 dB (or ‘1 B’) increase in sound
level is equivalent to a 10-fold increase in intensity. The decibel is also a convenient
measure because a sound level of 1 dB is just within the limit of human hearing, and
a change of 1 dB is about the smallest difference in sound that the ear can detect.
(SeeFigure 2.3.)
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Earthquakes

The Richter scaledescribes the magnitude of earthquakes. An instrument called
a seismometer is used to measure the maximum ground movement caused by the
earthquake, and a correction factor is applied to this reading to allow for the distance
of the seismometer from the site of the earthquake. Seismometers are very sensi-
tive and can detect minute amounts of ground movement (they have to be shielded
from the effects caused just by people walking near them), but some earthquakes
can produce ground movements millions of times greater than the minimum de-
tectable limit. To cope with this huge variation, the Richter scale is logarithmic: an
increase of one unit on the scale implies a ten-fold increase in the maximum ground
movement. A magnitude 2 earthquake can just be felt as a tremor. A magnitude 3
earthquake produces 10 times more ground motion than a magnitude 2 earthquake.
Damage to buildings occurs at magnitudes in excess of 6. The three largest earth-
quakes ever recorded (in Portugal in 1775, in Columbia in 1905 and in Japan in
1933) each had a Richter magnitudes of 8.9.
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Worked example 2.5

A whisper corresponds to a sound level of about 20 dB, and a shout to a level of
about 80 dB. How much greater is the intensity of a shout compared to that of a
whisper?

Answer

The increase in sound level is

80 dB− 20 dB= 60 dB

This may be expressed as (10 dB+ 10 dB+ 10 dB+ 10 dB+ 10 dB+ 10 dB),
andeach10 dB increase corresponds to multiplying the intensity by 10.

So the intensity of a shout is (10× 10× 10× 10× 10× 10)= 106 times greater
than a whisper!

Question 2.6 Answer

How much more ground movement is there in an earthquake measuring 7 on the
Richter scale compared to one measuring 3?

The basis of logarithmic scales will be discussed in Chapter 7.
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2.4 How precise are the measurements?

Scientists are always trying to get better and more reliable data. One way of getting
a more precise measurement might be to switch to an instrument with a more finely
divided scale. Figure 2.4 shows parts of two thermometers placed side by side to
record the air temperature in a room.

°C

°C

A

B

2019 21 22 23 24 25

18 1917

26 27

20 21 22 23 24 25

Figure 2.4: Parts of two thermometers A and B, measuring the air temperature in
the same place.

The scale on thermometer A is quite coarse. The marked divisions represent integer
numbers of degrees. On this scale we can see that the temperature is between 21◦C
and 22◦C. I might estimate it as 21.7 ◦C, but somebody else could easily record it
as 21.6 ◦C or 21.8 ◦C. So there is some uncertainty in the first decimal place, and
certainly there is no way we could attempt to guess the temperature to two decimal
places using this particular thermometer.
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Thermometer B has a finer scale, with divisions marked every 0.1 ◦C. Now we can
clearly see that the temperature is between 21.6 ◦C and 21.7 ◦C. I might read it as
21.63 ◦C, but a second person could plausibly read it as 21.61 ◦C or 21.65 ◦C. With
this scale we are sure of the first decimal place but uncertain of the second.

When quoting the result of a measurement, you should never quote more digits
than you can justify in terms of the uncertainty in the measurement. The number of
significant figuresin the value of a measured quantity is defined as the number of
digits known with certainty plus one uncertain digit. With thermometer A we could
be sure of the 21 (two digits), but were uncertain about the digit in the first decimal
place, so we can quote a reading to three significant figures, as 21.7 ◦C (or 21.6 ◦C
or 21.8 ◦C). With thermometer B it was the fourth digit that was uncertain, so we
can quote our reading to four significant figures, as, for example, 21.64 ◦C.

Question 2.7 Answer

How many significant figures are quoted in each of the following quantities:
1221 m; 223.4 km; 1.487 km?

Question 2.7 emphasizes that significant figures mustn’t be confused with the num-
ber of decimal places. After all, if you had measured the length of something
as 13 mm, you wouldn’t want the precision of your result to be changed just be-
cause you converted the measurement to centimetres. Whether you write 13 mm or
1.3 cm you are expressing the result of your measurement to two significant figures.
Now suppose you convert to metres: 0.013 m. The uncertainty in your result still
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hasn’t changed, so this shows thatleading zeroes in decimal numbers do not count
as significant figures. Scientific notation is helpful in this regard. Expressing the
result as 1.3× 10−2 m makes it very obvious that there are two significant figures.

Another circumstance in which one has to be careful about not using unjustified
precision occurs when the results of measurements are used as the basis for calcu-
lations. Suppose we had measured the diameter of a circular pattern to two signifi-
cant figures and obtained the result 3.3 cm. If we then needed to calculate the radius
of the circle, it might be tempting simply to divide the diameter by 2 and say ‘the
radius of the pattern is 1.65 cm’. But 1.65 cm implies that the value is known to
three significant figures! So we need to round off the figure in some way, to express
the fact that the last significant digit in this particular case is the first digit after the
decimal point. The usual rule for doing this is to leave the last significant digit un-
changed if it would have been followed by a digit from 0 to 4, and to increase it by
one if it would have been followed by a digit from 5 to 9. To two significant figures
our circular pattern therefore has a radius of 1.7 cm. The issues involved in dealing
with significant figures in more complex calculations are discussed in Chapter 3.

Scientific notation also shows up the need for care in dealing with very large num-
bers. The speed of light in a vacuum (the constantc in Einstein’s equationE = mc2

is, to six significant figures, 299 792 kilometres per second. Remembering the
rounding rule, this can quite properly be written as 3× 105 kilometres per sec-
ond (one significant figure), or 3.00× 105 kilometres per second (three significant
figures). But it would be misleading to write it as 300 000 kilometres per second,
because that could imply that all six digits are significant.
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One of the advantages of using scientific notation is that it removes any ambiguity
about whether zeroes at theend of a number are significant or are simply place
markers. For example, if a length is measured to just one significant figure as
8 m, how should the equivalent value in centimetres be expressed? It would be
ambiguous to write 800 cm, since that could imply the value is known to three
significant figures. The only way out of this difficulty is to use scientific notation:
writing 8× 102 cm makes it clear that the quantity is known only to one significant
figure, in line with the precision of the original measurement.

Question

If the speed of light through glass is quoted as 2.0× 108 metres per second, how
many significant figures are being given?

Answer

Final zeroesaresignificant, so the speed is being given to two significant figures.

Back J I 86



Contents �

Question

Neon gas makes up 0.0018% by volume of the air around us. How many signif-
icant figures are being given in this percentage?

Answer

Leading zeroes arenot significant, so this value is also being given to two sig-
nificant figures.

Worked example 2.6

The average diameter of Mars is 6762 km. What is this distance in metres,
expressed to three significant figures?

Answer

The only way to express this quantity unambiguously to fewer than the four
significant figures originally given is to use scientific notation.

6762 km= 6.762× 103 km

= 6.762× 103 × 103 m

= 6.762× 10(3+3) m

= 6.762× 106 m

The final digit is a 2, so no rounding up is required and the average diameter of
Mars is 6.76× 106 m to three significant figures.
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Question 2.8

Express the following temperatures to two significant figures:

(a) −38.87 ◦C (the melting point of mercury, which has the un-
usual property for a metal of being liquid at room temperature);

Answer

(b) −195.8 ◦C (the boiling point of nitrogen, i.e. the temperature
above which it is a gas);

Answer

(c) 1083.4 ◦C (the melting point of copper). Answer
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In the following chapter and in your future studies of science generally, you will
be doing lots of calculations with numbers in scientific notation, and will also be
expected to quote your results to appropriate numbers of significant figures. Chapter
3 will discuss the efficient way to input scientific notation into your calculator, and
how to interpret the results.

2.5 Learning outcomes for Chapter 2

After completing your work on this chapter you should be able to:

2.1 convert quantities expressed as integers or in decimal notation to scientific
notation and vice versa;

2.2 use prefixes in association with the SI base units and convert between prefixes;

2.3 express a given quantity as an order of magnitude;

2.4 state the number of significant figures in any given quantity;

2.5 express a given quantity to any stipulated number of significant figures.
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Calculating in Science 3
There comes a point in science when simply measuring is
not enough and we need tocalculatethe value of a quantity
from values for other quantities that have been measured
previously. Take, for example, the piece of granite shown in
Figure 3.1. We can measure the lengths of its sides and its
mass. With a little calculation we can also find its volume,
its density, and the speed at which seismic waves will pass
through a rock of this type following an earthquake.

This chapter looks at several scientific calculations, and in
the process considers the role of significant figures, scien-
tific notation and estimating when calculating in science. In
addition, it introduces unit conversions and the use of for-
mulae and equations.

Figure 3.1: A specimen of granite.
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3.1 Calculating area; thinking about units and significant
figures

Suppose we want to find the area of the top of the granite spec-
imen shown inFigure 3.1. The lengths of its sides, measured
in centimetres, are shown in Figure 3.2, and the area of a rect-
angle is given by

area of rectangle= length× width

Thus the area of the top of the granite is

area= 8.4 cm× 5.7 cm

Multiplying the two numbers together gives 47.88. However,
if given as a value for the area, this would be incomplete and
incorrectly stated for two reasons.

1 No units have been given.

2 The values for length and width which we’ve used are each
given to two significant figures, but 47.88 is tofour signifi-
cant figures. This is too many.

Figure 3.2: The lengths of the sides of
the specimen of granite.
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3.1.1 Units in calculations

The length and the width of the specimen of granite aren’t just
numbers, but physical quantities, with units. The area — the
result of multiplying the length by the width — is a physical
quantity too and it should also have units. The units which have
been multiplied together are cm× cm, which can be written as
(cm)2, or more commonly as cm2. In fact any unit of length
squared will be a unit of area. Conversely, a value given for
area shouldalwayshave units of (length)2.

All measurements should be given with appropriate units,
and when performing calculations the units of the answer
must always be consistent with the units of the quantities
you input.

Care needs to be taken when multiplying together two lengths which have been
measured in different units. Suppose, for instance, that we needed to find the area
of a 1 cm by 4 m rectangle. Units of cm×m are meaningless; we need to convert
the units to the same form before proceeding, and if in doubt it is best to convert to
SI base units. Since 1 cm= 0.01 m, this gives an area of 0.01 m× 4 m= 0.04 m2.
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Question 3.1 Answer

Which of the following are units of area:

(inch)2; s2; m−2; cm2; km3; square miles?

Note: the symbols used for SI units are as given inBox 2.1.

3.1.2 Significant figures and rounding in calculations

It is not appropriate to quote answers to calculations to an unlimited number of
significant figures. Suppose that, as part of a calculation, you were asked to divide
3.4 (known to two significant figures) by 2.34 (known to three significant figures).
Entering 3.4÷2.34 on most scientific calculators gives 1.452 991 453, but to quote a
result to this number of significant figures would imply that you know the answer far
more precisely than is really the case. The fact that 3.4 is quoted to two significant
figures implies that the first digit is precisely known, but there is some uncertainty
in the second digit; similarly the fact that 2.34 is quoted to three significant figures
implies that there is some uncertainty in the third digit. Yet in giving the result as
1.452 991 453 we are claiming to be absolutely confident of the answer as far as
1.452 991 45, with just some uncertainty in the final digit. This is clearly nonsense!
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The sensible number of significant figures to quote in any answer depends on a
number of factors. However, in the absence of other considerations, a simple rule
of thumb is useful:

When multiplying and dividing numbers, the number of significant figures in
the result should be the same as in the measurement with thefewestsignificant
figures.

Applying this rule of thumb, the answer to the calculation 3.4÷2.34 should be given
to two significant figures, i.e. as 1.5.

Similarly, the result of the multiplication 8.4 cm× 5.7 cm (used in finding the area
of the top of the granite specimen) should be given as 48 cm2, again to two signifi-
cant figures.

There are two points of caution to bear in mind when thinking about the appropriate
number of significant figures in calculations.

Avoiding rounding errors

You should round your answer to an appropriate number of significant figures at
the end of a calculation. However, be careful not to round too soon, as this may
introduce unnecessary errors, known asrounding errors. As an example of the
dangers of rounding errors, let’s return to our previous example. We found that:

3.4÷ 2.34= 1.452 991 453
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Or, giving the answer to two significant figures:

3.4÷ 2.34= 1.5

Suppose that we now need to multiply the answer by 5.9:

1.452 991 453× 5.9 = 8.572 649 573= 8.6 to two significant figures

However, using the intermediate answer as quoted to two significant figures gives

1.5× 5.9 = 8.85= 8.9 to two significant figures

Rounding too soon has resulted in an incorrect answer.

The use of scientific calculators enables us to work to a large number of significant
figures and so to avoid rounding errors. If this is not possible, you should follow
the following advice:

Work to at least one more significant figure than is required in the final answer,
and just round at the end of the whole calculation.

In our example, the final answer should be given to two significant figures, which
means that we should work using the result of the first calculation to at least three
significant figures (1.45).

1.45× 5.9 = 8.555= 8.6 to two significant figures.
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Applying common sense!

Always bear in mind the real problem that you are solving, and apply common
sense in deciding how to quote the answer. Particular care needs to be taken when
the calculation involves numbers which areexactlyknown. A light-hearted example
should illustrate this point.

Question

Suppose you have 7 apples to share between 4 children. How many apples does
each child get?

Answer

Dividing the number of apples by the number of children gives

7
4
= 1.75

If we were to assume that the number of apples and number of children were
each quoted to one significant figure, we would round the answer to one signifi-
cant figure too, i.e. to 2 apples. But we would then need eight apples, which is
more than we’ve got. In reality there areexactly4 children and 7 apples, so the
number of significant figures need not bother us. Provided we have a knife, it is
perfectly possible to give each child 1.75 (13

4) apples.
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Question 3.2

Do the following calculations and express your answers to an appropriate num-
ber of significant figures.

(a)
6.732
1.51

Answer

(b) 2.0× 2.5 Answer

(c)

(
4.2
3.1

)2

Answer

(d) What is the total mass of three 1.5 kg bags of flour? Answer

3.2 Calculating in scientific notation

In science it is very often necessary to do calculations using very large and very
small numbers, and scientific notation can be a tremendous help in this.

3.2.1 Calculating in scientific notation without a calculator

Suppose we need to multiply 2.50×104 and 2.00×105. The commutative nature of
multiplication is completely general, so it applies when multiplying two numbers
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written in scientific notation too. This means that (2.50× 104) × (2.00× 105) can
be written as (2.50× 2.00)× (104 × 105), i.e.

(2.50× 104) × (2.00× 105) = (2.50× 2.00)× (104 × 105)

= 5.00× 104+5

= 5.00× 109

All of the rules for the manipulation of powers discussed in Chapter 1 can be applied
to numbers written in scientific notation, but care needs to be taken to treat the
decimal parts of the numbers (such as the 2.50 in 2.50× 105) and the powers of ten
separately. So, for example

2.50× 104

2.00× 105
=

2.50
2.00

×
104

105
=

2.50
2.00

× 104−5 = 1.25× 10−1

and(
2.50× 105

)2
= 2.502 ×

(
105

)2
= 6.25× 1010
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Question 3.3

Evaluate the following without using a calculator, giving your answers in scien-
tific notation.

(a) (3.0× 106) × (7.0× 10−2) Answer

(b)
8× 104

4× 10−1
Answer

(c)
104 × (4× 104)

1× 10−5
Answer

(d)
(
3.00× 108

)2
Answer
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3.2.2 Using a calculator for scientific notation

In the rest of this chapter, and in your future studies of science generally, you will be
doing many calculations with numbers in scientific notation, so it is very important
that you know how to input them into your calculator efficiently and how to interpret
the results.

First of all make sure that you can input numbers in scientific notation into your cal-
culator.You can do this using the button you used to input powers inSection 1.3.1,
but it is more straightforward to use the special button provided for entering scien-
tific notation. This might be labelled as EXP, EE, E or EX, but there is considerable
variation between calculators. Make sure that you can find the appropriate button
on your calculator. Using a button of this sort is equivalent to typing the whole of
‘×10 to the power’. So, on a particular calculator, keying 2.5 EXP 12 enters the
whole of 2.5× 1012.
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In addition to being able to enter numbers in scientific notation into
your calculator, it is important that you can understand your calculator
display when it gives an answer in scientific notation.

Enter the number 2.5×1012 into your calculator and look at the display.

Again there is considerable variation from calculator to calculator, but it
is likely that the display will be similar to one of those shown in Figure
3.3. The 12 at the right of the display is the power of ten, but notice
thatthe ten itself is frequently not displayed. If your calculator is one of
those which displays 2.5× 1012 as shown in Figure 3.3e, then you will
need to take particular care; thisdoes notmean 2.512 on this occasion.
You should be careful not to copy down a number displayed in this way
on your calculator as an answer to a question; this could cause confusion
at a later stage.

No matter how scientific notation is entered and displayed on your
calculator or computer, when writing it on paper you should always
use the form exemplified by 2.5× 1012.

To enter a number such as 5× 10−16 into your calculator, you may need
to use the button labelled something like+/− (as used inSection 1.1.3)
in order to enter the negative exponent.

(a)

(b)

(c)

(d)

(e)

e2.5 12

Figure 3.3: Examples of how
various calculators would dis-
play the number 2.5× 1012

To enter a number such as 108 into your calculator using the scientific notation
button, it can be helpful to remember that 108 is written as 1× 108 in scientific

Back J I 101



Contents �

notation, so you will need to key something like 1 EXP 8.

If you are at all unsure about using your calculator for calculations involving sci-
entific notation, you should repeatQuestion 3.3, this time using your calculator.

Question 3.4 Answer

A square integrated circuit, used as the processor in a computer, has sides of
length 9.78× 10−3 m. Give its area in m2 in scientific notation and to an appro-
priate number of significant figures.

3.3 Estimating answers

The first time I attempted Question 3.4, my calculator gave me the answer 95.6 m2.
This is incorrect (I’d forgotten to enter the power of ten). It is sensible to get into the
habit of checking that the answer your calculator gives is reasonable, by estimating
the likely answer. In the case of Question 3.4, the answer should beapproximately(
1× 10−2 m

)2
which you can see (without using a calculator!) is 1× 10−4 m2. So

a calculator answer of 95.6 m2 is clearly wrong.
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In addition to being useful as a way of checking calculator answers, estimated an-
swers are, in their own right, quite frequently all that is needed. Chapter 2 began
with a comparison between the size of a bacterium and the size of a pinhead. We
could use precise measuring instruments to find that the diameter of a particular
bacterium is 1.69µm (i.e. 1.69× 10−6 m) and that the diameter of the head of a
particular pin is 9.86× 10−4 m. The diameter of the pinhead would then be

9.86× 10−4 m

1.69× 10−6 m
= 5.83× 102 times bigger than that of the bacterium.

However, to get a feel for the relative sizes, we only really need to estimate the
answer. If an estimate is all that is required, it is perfectly acceptable to work to one
significant figure throughout (indeed, working to the nearest order of magnitude is
sometimes sufficient) and since the final answer is only approximately known, the
symbol ‘≈’ (meaning ‘approximately equal to’) is used in place of an equals sign.
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Worked example 3.1

Working to one significant figure throughout, estimate how many times big-
ger a pinhead of diameter 9.86× 10−4 m is than a bacterium of diameter
1.69× 10−6 m.

Answer

Diameter of pinhead≈ 1× 10−3 m.
Diameter of bacterium≈ 2× 10−6 m.

diameter of pinhead
diameter of bacterium

≈
1× 10−3 m

2× 10−6 m

≈
1
2
×

10−3

10−6

≈ 0.5× 10−3−(−6)

≈ 0.5× 103

≈ 5× 102

So the diameter of the pinhead is approximately 500 times that of the bacterium.
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It is important that you write out your mathematical calculations carefully, and
one of the functions of the worked examples scattered throughout the course is to
illustrate how to do this. There are three particular points to note from Worked
example 3.1.

Taking care when writing maths

1 Note that the symbols= and≈mean ‘equals’ and ‘approximately equals’ and
shouldneverbe used to mean ‘thus’ or ‘therefore’. It is acceptable to use
the symbol∴ for ‘therefore’; alternatively don’t be afraid to writewordsof
explanation in your calculations.

2 It can make a calculation clearer if you align the= or ≈ symbols vertically,
to indicate that the quantity on the left-hand side is equal to or approximately
equal to each of the quantities on the right-hand side.

3 Note that the diameter of the bacterium and the pinhead each have metres (m)
as their units, so when one diameter is divided by the other, the units cancel
to leave a number with no units.

The handling of units in calculations is discussed further in Section 3.5.4.
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Question 3.5 Answer

The average distance of the Earth from the Sun is 1.50× 1011 m and the dis-
tance to the nearest star other than the Sun (Proxima Centauri) is 3.99× 1016 m.
Working to one significant figure throughout, estimate how many times further
it is to Proxima Centauri than to the Sun.

3.4 Unit conversions

In calculating the area of the top of the granite specimen earlier in this chapter, we
measured the length of the sides in centimetres and hence calculated the area in
cm2. If we had wanted the area in the SI units of m2 we could have converted the
lengths from centimetres to metres before starting the calculation. We would then
have had

area= (8.4× 10−2 m)× (5.7× 10−2 m) = 4.8× 10−3 m2

It is best, whenever possible, to convert all units to SI units before starting on a
calculation.

Unfortunately it is not always possible to convert units before commencing a calcu-
lation; sometimes you will be given an area in, say, cm2, without knowing how the
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area was calculated, and you will need to convert this to an area in m2. This section
discusses this, as well as some more complex unit conversions.

3.4.1 Converting units of area

Let’s start with an example which is relatively easy to visual-
ize. Suppose we want to know how many mm2 there are in a
cm2. There are 10 millimetres in a centimetre, so each side of the
square centimetre in Figure 3.4 measures either 1 cm or 10 mm.
To find the area, we need to multiply the length by the width.
Working in centimetres gives

area= 1 cm× 1 cm= (1 cm)2 = 12 cm2 = 1 cm2

Working in millimetres gives

area= 10 mm× 10 mm= (10 mm)2 = 102 mm2 = 100 mm2

Thus 1 cm2 = 100 mm2 and 1 mm2 =
1

100
cm2.

1
c
m

1 cm

10 mm

1
0

m
m

Figure 3.4: A square centimetre
(not to scale)

If we want to convert from cm2 to mm2 we need to multiply by 100; if we want to
convert from mm2 to cm2 we need to divide by 100.
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Figure 3.5 illustrates another example which is a little harder to
visualize. Each side of the square measures either 1 km or 1000 m
(103 m). Working in kilometres gives

area= 1 km× 1 km= (1 km)2 = 12 km2 = 1 km2

Working in metres gives

area= 103 m× 103 m =
(
103 m

)2
=

(
103

)2
m2 = 106 m2

Thus 1 km2 = 106 m2 and 1 m2 =
1

106
km2.

To convert from km2 to m2 we need to multiply by 106; to convert
from m2 to km2 we need to divide by 106.

103 m

1
0

3
m

1 km

1
k
m

Figure 3.5: A square kilometre

The number by which we need to divide or multiply to convert from one unit to
another is known as the‘conversion factor’. In general, to convert between units
of area we need tosquarethe conversion factor which we would use to convert
corresponding lengths.
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As a final example consider a conversion between km2 and mm2.

There are 103 millimetres in a metre and 103 metres in a kilome-
tre, so there are 106 millimetres in a kilometre as illustrated in
Figure 3.6.

To convert from kilometres to millimetres we need to multiply by
106; however to convert from km2 to mm2 we need to multiply by(
106

)2
, i.e. 1012.

Similarly, to convert from mm2 to km2 we need to divide by(
106

)2
, i.e. 1012.

106 mm

1
0

6
m

m

1 km

1
k
m

Figure 3.6: A square kilometre

Question 3.6

A desk has an area of 1.04 m2. Express this area in:

(a) cm2 Answer

(b) µm2 Answer

(c) km2 Answer
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3.4.2 Converting units of volume

The volume of the piece of granite shown inFigure 3.2is given by

volume= length× width× height

The lengths of the sides are 8.4 cm, 5.7 cm and 4.8 cm, so

volume= 8.4 cm× 5.7 cm× 4.8 cm

= 2.3× 102 cm3 to two significant figures.

Note that the units which have been multiplied together are cm× cm× cm, so in
this case the units of volume are cm3. A value given for volume shouldalwayshave
units equivalent to those used for (length)3, and if we had converted the lengths of
the sides to metres before doing the calculation, we would have obtained a value
for volume in m3:

volume= (8.4× 10−2 m)× (5.7× 10−2 m)× (4.8× 10−2 m)

= 2.3× 10−4 m3 to two significant figures.

The method for converting between different units of volume is a direct extension
of the method for converting between different units of area. Suppose we want to
know how many mm3 there are in a cm3.
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There are 10 mm in 1 cm, so each side of the cubic centimetre
in Figure 3.7 measures either 1 cm or 10 mm. The volume can
be written as either 1 cm3 or 103 mm3. Thus 1 cm3 = 103 mm3

and 1 mm3 =
1

103
cm3. To convert from cm3 to mm3 we need to

multiply by 103; to convert from mm3 to cm3 we need to divide
by 103.

In general, to convert between units of volume we need tocube
the conversion factor that we would use to convert corresponding
lengths.

We can convert a volume of 2.3× 102 cm3 into m3 simply by say-

ing that there are 102 cm in 1 m; hence there are
(
102

)3
cm3 in

1 m3, so

1 cm3 =
1(

102)3 m3

and

1
c
m

10 mm

10 mm

1
0

m
m

1 cm

1 cm

Figure 3.7: A cubic centimetre (not
to scale).

2.3× 102 cm3 =
2.3× 102(

102)3 m3

= 2.3× 10−4 m3

This value is, of course, the same as the one we obtained from first principles!
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The prefix ‘deci’ meaning one tenth was introduced inSection 2.2, thus 1 decimetre
(dm) is one tenth of a metre. The cubic decimetre (dm3) is sometimes used as a unit
of volume. The litre (l) (also introduced in Chapter 2) was defined in 1901 as the
volume of a kilogram of water at 4◦C, under standard atmospheric pressure. This
volume turns out to be 1.000 28 dm3, and since 1969 a litre has beendefinedto be
1 dm3.

Worked example 3.2

Convert a volume of 1 dm3 to: (a) cm3 (b) m3

Answer

(a) 1 m= 10 dm and 1 m= 100 cm so 1 dm= 10 cm.

Thus 1 dm3 = 103 cm3.

(b) 1 m= 10 dm

Thus 1 m3 = 103 dm3

and 1 dm3 =
1

103
m3 = 10−3 m3.

{Thus 1 dm3 (i.e. 1 litre) is a thousand times bigger than a cubic centimetre and
a thousand times smaller than a cubic metre. You may already have been aware
that 1 litre= 1000 cm3. Thus 1 ml= 1 cm3. }
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Figure 3.8is a summary of unit conversions for length, area and volume, but you
should try to remember the general principles involved rather than memorizing in-
dividual conversion factors.

Question 3.7

Express each of the following volumes in scientific notation in m3:

(a) the volume of the planet Mars, which is 1.64× 1011 km3; Answer

(b) the volume of a ball bearing, which is 16 mm3. Answer

3.4.3 Converting units of distance, time and speed

You were introduced inBox 2.1to the metre as the base unit of distance or length
and to the second as the base unit of time. The average speed with which an object
moves is the total distance travelled divided by the total time taken, so when Marion
Jones won the women’s 100-metre final at the 2000 Sydney Olympics in 10.75 s,
her average speed was

average speed=
100.0 m
10.75 s

= 9.302 m s−1

Similarly, if a girl grows a total of 116 cm in 12.5 years, her average rate of growth
is

growth rate=
116 cm

12.5 years
= 9.28 cm year−1
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Note that it is appropriate to give the answer to the first example to four significant
figures (assuming that the length of the running track was known to at least four
significant figures). Also note the way in which the units have been written in both
examples.

The notation of negative exponents, which we have used to represent numbers
like 1/23 as 2−3 and 1/108 as 10−8, can also be used for units. So 1/s can
be written as s−1, m/s can be written as m s−1 and cm/year can be written as
cm year−1.

The SI unit of speed is m s−1 and this is usually said as ‘metres seconds to the
minus one’. Although m s−1 is the correct scientific way of writing the unit, it is
sometimes written as m/s, and quite frequently said as ‘metres per second’, even
when written as m s−1. The ‘/’ for per is quite commonly used in other units too.
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Many things move and/or grow in the world around us, and it is useful to compare
different values for speed or rate of growth. Different speeds are frequently mea-
sured in different units, so in order to be able to compare like with like it is necessary
to convert between different units for distance, time and speed. Box 3.1 considers
various examples of speed and growth, and the text immediately following the box
looks at ways of converting one unit to another.

Box 3.1 How fast?

Light (and other forms of radiation such as X-rays and radio waves) travels in a
vacuum with a constant speed of 3.00× 108 m s−1. It is currently believed that
nothing can travel faster than this.

Towards the opposite extreme are stalactites and stalagmites, which grow just
fractions of a millimetre each year. A typical growth rate is 0.1 mm year−1. Sta-
lactites form when water drips from the roof of an underground cave, depositing
calcite (frequently from the limestone in the rock above the cave) in an icicle
shaped formation as it does so. Stalagmites form as the water drips onto the
floor of the cave, depositing further calcite.
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Figure 3.9: The Saskatchewan Glacier, Banff National Park, Canada.

It is not normally possible to detect the motion of a glacier by eye, but there
is considerable variation in the speed with which they move. The Franz Josef
Glacier in New Zealand is particularly fast moving, with an average speed of
about 1.5 m day−1. The speed of the Saskatchewan Glacier in Canada (Figure
3.9) is rather more typical, at about 12 cm day−1.

In addition to geological processes such as glacier flow and stalactite formation,
the theory of plate tectonics tells us that the surface of the Earth is itself moving.

The Earth’s surface is thought to comprise seven major tectonic plates and nu-
merous smaller ones, each only about 100 km thick but mostly thousands of
kilometres in width. Evidence, including evidence from sea-floor spreading (to
be discussed in Chapter 5) indicates that plates move relative to one another with
speeds between about 10 km Ma−1 and 100 km Ma−1 (where Ma is the abbrevi-
ation for a million years, as discussed inSection 2.2).
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P waves S waves Love waves Rayleigh waves

5 minutes

Figure 3.10: A seismogram (the printout from a seismometer) showing the ar-
rival of P waves, S waves, Love waves and Rayleigh waves from a distant earth-
quake. Elapsed time increases from left to right.

Earthquakes and volcanoes occur all over the Earth, but they are more common
close to the boundaries of tectonic plates than elsewhere. Following an earth-
quake, seismic waves (the word ‘seismic’ is from the Greek for ‘shaking’) travel
out from the centre of the quake and are recorded by seismometers at various lo-
cations. There are several different types of seismic waves, including P waves, S
waves, Love waves and Rayleigh waves, each travelling at different speeds (and
sometimes also by different routes), so reaching a given seismometer at different
times (see Figure 3.10). P waves travel fastest, with an average speed of about
5.6 km s−1 in rocks close to the Earth’s surface, so reach the seismometer first
(the name P wave was originally an abbreviation for primary wave). S waves (S
for secondary) travel with an average speed of about 3.4 km s−1 in rocks close
to the Earth’s surface.

Perhaps the most dangerous sort of volcanic eruption is one that leads to a high-
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speed pyroclastic flow (a mixture of rock fragments and gases, moving as a
fluid) away from the volcano. Pyroclastic flows are particularly destructive both
because of their high temperatures (typically between 200◦C and 700◦C) and
the high speed at which they travel (up to about 100 km hour−1).

The speeds given so far have related to processes on the Earth, but remember
that the Earth itself is moving too! The rotation of the Earth on its axis leads to
a movement of up to 0.5 km s−1 at the surface. In addition, the Earth is orbiting
the Sun at about 30 km s−1 and the entire Solar System is moving around the
centre of the galaxy at about 250 km s−1.

To convert from one unit of speed to another, we may need to convert both the
unit of distance and the unit of time. To start with, let’s consider the rather more
straightforward case when we only have to convert the unit of distance, for example
in converting from mm s−1 to m s−1.

We know that 1 m= 103 mm

so 1 mm=
1

103
m = 1× 10−3 m

We can therefore say straight away that 1 mm s−1 = 1× 10−3 m s−1

We have simply applied the same conversion factor as in converting from mm to
m. Note that the answer makes sense: it is reasonable to expect that the numerical
value of a speed in m s−1 will be smaller than the same speed when given in mm s−1.
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Worked example 3.3

Convert the speed of the Earth as it orbits the Sun (given above as 30 km s−1)
into a value in m s−1.

Answer

1 km= 1× 103 m

So

1 km s−1 = 1× 103 m s−1

30 km s−1 = 30× 103 m s−1

= 3.0× 104 m s−1 in scientific notation.

The Earth orbits the Sun with a speed of about 3.0× 104 m s−1. Again the an-
swer makes sense: it is reasonable to expect that the numerical value of a speed
in m s−1 will be larger than the same speed when given in km s−1.

Next let’s consider what happens when we need to convert only the time part of
units of speed, for instance in converting from km hour−1 to km s−1.

We know that there are 60 minutes in an hour and 60 seconds in a minute, so

1 hour= 60× 60 s= 3600 s

However, in this case we don’t want to convert from hours to seconds, but rather
from kilometresper hour to kilometresper second. The way forward comes in
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recognizing that the word ‘per’ and the use of negative exponents in hour−1 and s−1

indicate division. So to convert from hour−1 to s−1 (or from km hour−1 to km s−1)
we need to find the conversion factor from hours to seconds and thendivideby it.

1 hour= 3600 s

so 1 km hour−1 =
1

3600
km s−1

In deciding whether to divide or multiply by a particular conversion factor, common
sense can also come to our aid. It is reasonable to expect that a speed quoted in
km s−1 will be smaller than the same speed when quoted in km hour−1, so it is
reasonable todivideby the 3600 on this occasion.
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Worked example 3.4

Two tectonic plates are moving apart at an average rate of 35 km Ma−1. Convert
this to a value in km year−1.

Answer

We know that

1 Ma= 106 years

so

1 km Ma−1 =
1

106
km year−1

and therefore

35 km Ma−1 =
35

106
km year−1

= 3.5× 10−5 km year−1 in scientific notation.

The plates are moving apart at an average rate of 3.5× 10−5 km year−1.

This answer is reasonable: you would expect the rate of separation quoted in
km year−1 to be smaller than the same rate quoted in km Ma−1.
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Question 3.8

Convert the average speed of the Saskatchewan Glacier (12 cm day−1) to a value
in:

(a) m day−1 Answer

(b) cm s−1 Answer

Finally we need to consider conversions for speed in which both the units of dis-
tance and the units of time have to be converted. This is simply a combination of
the techniques illustrated in Worked examples 3.3 and 3.4. Suppose we want to
convert from km hour−1 to m s−1.

1 km= 103 m

1 hour= 3600 s

To convert from km hour−1 to m s−1, we need tomultiplyby 103 (to convert the km
to m) anddivideby 3600 (to convert the hour−1 to s−1):

1 km hour−1 =
103

3600
m s−1 = 0.278 m s−1 to three significant figures.
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Worked example 3.5

Convert the average speed of separation of the tectonic plates discussed in
Worked example 3.4 (35 km Ma−1) to a value in mm year−1.

Answer

1 km= 103 m and 1 m= 103 mm, so 1 km= 106 mm

1 Ma= 106 year

To convert from km Ma−1 to mm year−1, we need tomultiplyby 106 (to convert
the km to mm) anddivideby 106 (to convert the Ma−1 to year−1.

1 km Ma−1 =
106

106
mm year−1 = 1 mm year−1

Thus a speed given in km Ma−1 is numerically equal to one given in mm year−1.
The plates are moving apart at a 35 mm year−1. This is similar to the rate at
which human fingernails grow and is easier to imagine than is 35 km Ma−1.
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Question 3.9

Convert each of the following to values in m s−1 and then compare them.

(a) A stalactite growth rate of 0.1 mm year−1. Answer

(b) The average speed of the Saskatchewan Glacier (12 cm day−1). Answer

(c) The speed of separation of the tectonic plates discussed in
Worked examples 3.4 and 3.5 (35 km Ma−1).

Answer

(Note: for the purposes of this question, consider 1 year to be 365 days long.)
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3.4.4 Concentration and density; more unit conversions

Methods for converting units for physical quantities, such as concentration and den-
sity, follow directly from the discussion in the previous sections.

Box 3.2 Concentration

The concentration of a solution is a term used as a measure of how much of
a certain substance the solution contains, relative to the solution’s total volume.
For example, we may want to know how much sugar has been dissolved in water
to give one litre of syrup.

The amount of the substance can be measured in moles, in which case the con-
centration will have units of mol l−1 or mol dm−3. Alternatively, the amount can
be measured by mass, in kg, g, mg, etc., leading to units for concentration of
kg dm−3, g m−3, or mg l−1, and so on.

The World Health Organization (WHO) sets limits for safe concentrations of
various impurities in water, for example, the limit for the concentration of ni-
trates in water is currently 50 mg l−1. This means that there should be no more
than 50 mg of nitrate in each litre (dm3) of water.
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To convert a concentration from, say, mg l−1 to µg ml−1 you need to follow a very It is very easy to
confuse the letter ‘l’,
used as the symbol for
litres, with the number
1. Take care!

similar procedure to the one introduced inSection 3.4.3, as the following worked
example shows.

Worked example 3.6

Convert 50 mg l−1 (the World Health Organization’s limit for the concentration
of nitrates in water) to a value inµg ml−1.

Answer

We can easily write down the conversion factors for mg toµg and from litres to
ml.

1 mg= 103 µg

1 litre = 1 l = 103 ml

So to convert from mg l−1 toµg ml−1, we need tomultiplyby 103 (to convert the
mg toµg) anddivideby 103 (to convert the l−1 to ml−1).

1 mg l−1 =
103

103
µg ml−1 = 1 µg ml−1

Thus a concentration given in mg l−1 is numerically equal to one given in
µg ml−1, in particular 50 mg l−1 = 50µg ml−1.

Back J I 126



Contents �

Box 3.3 Density

The density of a piece of material is found by dividing its mass by its volume.
In other words

density=
mass

volume

If mass is measured in kg and volume is in m3, then it follows that the unit of
density will be kg/m3 (said as ‘kilograms per metre cubed’) or, written in the
form favoured in this course, kg m−3 (said as ‘kilograms metres to the minus
three’).

The density of pure water is 1× 103 kg m−3; materials with a density greater
than this (such as steel of density 7.8× 103 kg m−3) will sink in water
whereas materials of lower density (such as wood from an oak tree, density
6.5× 102 kg m−3) will float.

If mass is measured in g and the volume is in cm3, then the unit of density will be
g cm−3. Note that g cm−3 is not an SI unit, but it is nevertheless quite frequently
used.

Back J I 127



Contents �

Question

The specimen of granite shown inFigure 3.2has a mass of 6.20× 102 g. Cal-
culate the density of the granite in g cm−3.

Answer

The volume of the specimen= 8.4 cm× 5.7 cm× 4.8 cm, so

density=
mass

volume

=
6.20× 102 g

8.4 cm× 5.7 cm× 4.8 cm
= 2.6977 g cm−3

= 2.7 g cm−3 to two significant figures.

Note that it was not necessary actually to calculate a value for volume before
completing the calculation of density. If you had used the value for volume
calculated at the beginning ofSection 3.4.2, you would have obtained

density=
mass

volume
=

6.20× 102 g

2.3× 102 cm3
= 2.7 g cm−3

but you would have risked introducing rounding errors.
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The final worked example in this section converts the units of the density of the
granite specimen from g cm−3 to kg m−3, using a method which is a combination of
the techniques taught throughout Section 3.4. You can convert units of concentra-
tion such as mg dm−3 to g m−3 in a similar way.

Worked example 3.7

Convert 2.7 g cm−3 (the density of the specimen of granite shown in Figures 3.1
and 3.2) to a value in the SI units of kg m−3.

Answer

1 kg= 103 g, so 1 g= 1
103 kg = 10−3 kg

1 m= 102 cm, so 1 m3 =
(
102

)3
cm3 = 106 cm3 (from Section 3.4.2)

so 1 cm3 = 1
106 m3 = 10−6 m3

To convert from g cm−3 to kg m−3 we need tomultiplyby 10−3 (to convert the g
to kg) anddivideby 10−6 (to convert the cm−3 to m−3).

1 g cm−3 =
10−3

10−6
kg m−3 = 10−3−(−6) kg m−3 = 103 kg m−3

Thus 2.7 g cm−3 = 2.7× 103 kg m−3.

The specimen of granite has a density of 2.7× 103 kg m−3.
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You may have already known that you need to multiply by 1000 in order to convert
from units of g cm−3 to units of kg m−3, but as was the case with the unit conversions
for area and volume, it is better to consider general principles rather than trying to
memorize conversion factors.

Question 3.10

The World Health Organization reduced its maximum recommended concentra-
tion for arsenic in drinking water from 50µg l−1 to 10µg l−1 in 1999. Convert
10µg l−1 to a value in:

(a) µg ml−1 Answer

(b) mg dm−3 Answer

(c) g m−3 Answer
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3.5 An introduction to symbols, equations and formulae

To progress further in our exploration of ways of calculating in science, we need
to enter the world of symbols, equations and formulae. The word‘algebra’ is used
to describe the process of using symbols, usually letters, to represent quantities
and the relationships between them. Algebra is a powerful shorthand that enables
us to describe the relationships between physical quantities briefly and precisely,
without having to know their numerical values. Some people consider algebra to
be a beautiful thing: others are filled with terror by the very word. This course may
not convince you of algebra’s beauty, but it should at least illustrate its usefulness
and give you an opportunity to learn and practise new techniques or revise old ones.

Chapter 4 is devoted to algebraic techniques such as simplifying, rearranging, and
combining equations. The remainder of Chapter 3 simply introduces the language
of algebra by looking at a few equations very carefully, and substituting values into
them.

The wordequationis used for an expression containing an equals sign. The quanti-
ties under consideration may be described in words, for example

density=
mass

volume

in which case the equation is known as a‘word equation’, or represented by sym-
bols, for example

ρ =
m
V
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but the important thing to remember is that what is written on the left-hand side of
the ‘=’ sign mustalwaysbe equal to what is written on the right-hand side. Thus,
as explained inTaking care when writing mathsin Section 3.3, you should never
use ‘=’ as a shorthand for anything other than ‘equals’.

The wordformula is used in mathematics to mean a rule expressed in algebraic

symbols. Thusρ =
m
V

is a formula which tells you that the densityρ of a substance

can be obtained by dividing the mass,m, of a sample of the substance by the volume,
V, of the sample. Strictly speaking, not all equations are formulae, but the words
tend to be used interchangeably.

3.5.1 What do the symbols mean?

Mathematics textbooks teaching algebra frequently contain page after page of equa-
tions of the form:

x+ 3 = 8 (3.1)

and

y = x+ 5 (3.2)

In Equation 3.1,x can only have one value, i.e. it is a constant. In this casex has
the value 5. In Equation 3.2,x andy arevariableswhich can each take an infinite
number of values, buty will always be 5 greater thanx. The values (ofx andy, etc.)
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which satisfy a particular equation are known assolutionsand if you are asked to
solvean equation you need to look for solutions.

In both Equation 3.1 and Equation 3.2,x andy represent purenumbers. Equations
in science are often rather different. Rather than representing pure numbers, the
symbols usually represent physical quantities and will therefore haveunitsattached.

3.5.2 Which symbols are used

Box 3.4contains a range of scientific formulae in common use, along with a brief
explanation of the meaning of each symbol used. Have a quick at these equations
now, but don’t worry about their details; you are not expected to learn them or to
understand the meanings of the scientific terms introduced. The equations in the
boxes will be used as examples throughout the rest of this chapter, and have been
numbered for ease of reference.

The symbol chosen to represent something is often the first letter of the quantity in
question, e.g.m for mass,t for time andl for length, but it isn’t always so simple.
Greek letters are also frequently used as symbols e.g.λ (lambda) for wavelength
in Equation 3.13andρ (rho) for density inEquations 3.9, 3.10and3.11. A list of
Greek letters and their pronunciation is given in theTable 3.1and you will soon
become familiar with those that are commonly used. In a sense it doesn’t matter
which symbol you use to represent a quantity, since the symbol is only an arbitrar-
ily chosen label. For instance, Einstein’s famous equation (Equation 3.7) is usually
written asE = mc2, but the equation could equally well be written using any sym-
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bols you wanted to use, e.g.p = qr2, provided you also made it clear thatp was
used to represent energy,q was used to represent mass andr was used to represent
the speed of light. However, the use of conventional symbols, such asE for energy,
saves scientists a lot of time in explaining their shorthand.Maths for Sciencefol-
lows convention as far as possible in its use of symbols. Sometimes the reason for
the choice of symbol will be obvious but unfortunately this is not always the case.

Sometimes a subscript is used alongside a symbol in order to make its meaning
more specific, as invi , vf andvav used inEquation 3.15to mean initial, final, and
average speed, andax in Equations 3.16and3.17used to mean acceleration along
thex-axis. Note that althoughax, for example, uses two letters, it represents a single
physical entity; note also thatax is not the same asax. The symbol∆ (the Greek
upper case delta) is frequently used to represent the change in a quantity, so∆T in
Equation 3.14means a change in temperatureT; again asinglephysical entity is
represented bytwo letters.

A few letters have more than one conventional meaning, for examplec in Equation
3.7 represents the speed of light, but inEquation 3.14the same letter represents
specific heat capacity. Other letters have two meanings but lower case is conven-
tionally used for one meaning and upper case for the other, for examplev for speed
andV for volume ort for time andT for temperature. Care needs to be taken, but
the intended meaning should be clear from the context.
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Unfortunately some Greek letters look rather like everyday English ones; for exam-
ple ρ (rho), used for density, can look rather like the English lower casep. Some
textbooks use lower casep for pressure (this course uses capitalP) andEquation
3.11 (P = ρgh) can then appear to have the same quantity on both the left- and
right-hand sides of the equals sign, especially when written out by hand. In reality,
this formula haspressureon the left-hand side anddensity(and other things) on the
right-hand side. A similar confusion can arise because the letterl can look like the
number 1.

A final possible source of confusion stems from the fact that the same letter may
sometimes be used to represent both a physical quantity and a unit of measurement.
For example, an object with a mass of 6 kilograms and a length of 2 metres might be
described by the relationshipsm= 6 kg, l = 2 m, where the letter m is used to rep-
resent both mass and the units of length, metres. In all material for this course, and
in most other printed text, letters used to represent physical quantities are printed in
italics, whereas those used for units are not.
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3.5.3 Reading equations

To understand, and thus use, the equations inBox 3.4you need to be aware of a
few rules and conventions. Most of these are extensions of things you have learnt
earlier in this course. First:

When using symbols instead of words or numbers, it is conventional to drop the
‘×’ sign for multiplication.

So inEquation 3.6, mameans masstimesmagnitude of acceleration and inEquation
3.11, ρghmeans densitytimesacceleration due to gravitytimesdepth.

Rules of arithmetic, such as the fact that addition and multiplication are com-
mutative, and theBEDMAS order of operations, apply when using symbols too.

The fact that multiplication is commutative means that equations involving sev-
eral multiplications can be written in any order. SoEquation 3.14could be (and
sometimes is) written asq = cm∆T instead ofq = mc∆T. Addition is also com-
mutative, soEquation 3.16could be written asvx = axt+ux instead ofvx = ux+axt.
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Although the order in which multiplications are written doesn’t matter, various con-
ventions are generally applied. Note that inEquation 3.3(C = 2π r), the number 2
is written first, then the constantπ, then the variabler. This order (numbers, then
constants, then variables) is the one that is generally applied. Similarly,E = mc2

(Equation 3.7) could be written asE = c2m, but it generally isn’t! Variables that
are raised to a power tend to appear at the end of equations.

BEDMAS tells us that operations within brackets take precedence, i.e. operations
inside brackets should be evaluated before those outside the brackets. When work-
ing with symbols, this means that an operation applied to a bracket applies to every-
thing within the bracket. So inEquation 3.19, the whole of

(
2GM

R

)
is raised to the

power 1
2. Equation 3.20uses two sets of brackets (different styles of brackets have

been used to avoid confusion). The inner, round brackets ( ) are used to indicate
thatL should be divided by the whole of (4π F) and the outer, square brackets [ ]
are used to indicate that the whole ofL/ (4π F) should be raised to the power1

2 .

There are two further points to note that are linked to the use of brackets.

1 A square root sign and a horizontal line used to indicate division can both be
thought of as containing invisible brackets, i.e. the square root sign is taken to
apply to everything within the sign and the division applies to everything above

the line. So, inEquation 3.10, the square root applies to the whole of

(
µ

ρ

)
, (this

means that
√
µ

ρ
could be written as

√
µ
√
ρ

), and inEquation 3.15the whole of

(vi + vf) should be divided by two.
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2 Throughout this course, brackets are sometimes used for added clarity even when
this is not strictly necessary. In addition, you are encouraged to add your own
brackets whenever you think doing so would make the meaning of an equation
clearer.

The ‘E’ in BEDMAS (seeSection 1.4) tells us that exponents take precedence over
divisions and multiplications, so inEquation 3.7(E = mc2) thec must be squared
before being multiplied bym. This means that it isonly thec that is squared, not
the m. For clarity you could write this asE = m

(
c2

)
, but it is very important to

remember thatmc2 , (mc)2, i.e. thatmc2 , m2c2, where the symbol, means ‘is
not equal to’.

BEDMAS also reminds us that multiplications should be carried out before addi-
tions and subtractions, so inEquation 3.16, ax andt should be multiplied together
beforeux is added.

Finally, note that all of the rules discussed in Chapter 1 for the writing and manipu-
lation of fractions and powers apply when using symbols, in exactly the same way
as they do when using numbers. So,Equation 3.17could be written assx = uxt +
axt2

2
instead ofsx = uxt + 1

2axt2; Equation 3.18could be written asFg =
Gm1m2

r2

instead ofFg = G
m1m2

r2
; and the following two representations ofEquation 3.20,

although they look very different, are actually identical in meaning:

d =

√
L

4π F
d = [L/(4π F)]1/2
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Question 3.11 Answer

Which two pairsof equations fora of those given below are equivalent? You
should be able to answer this question by just looking at the equations, but you
might like to check your answer by substituting values such asx = 3, y = 4,
z= 5.

(i) a = x(y+ z)

(ii) a = xy+ z

(iii) a = (y+ z)x

(iv) a = x+ yz

(v) a = z+ yx
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Question 3.12 Answer

Two of the equations given below formare equivalent. Which two? Again, you
should attempt this question initially by simply looking at the equations.

(i) m=
bac2

d

(ii) m= a
b2c2

d

(iii) m= a
bc2

d

(iv) m=
abc2

ad

(v) m=
b2a2c2

d
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3.5.4 Using equations

Substituting values into equations provides a way of checking your understanding
of many of the techniques introduced in this chapter, especially the correct reading
of equations, the use of scientific notation, and the need to quote answers to an
appropriate number of significant figures. It also provides an opportunity for you to
extend your understanding of units in calculations and to begin to think about how
to choose an appropriate equation to use in answering a particular question. Don’t
worry about the science in the worked examples in this section; they are given as
illustrations of good practice for substituting values into equations.

Worked example 3.8

Usevx = ux + axt (Equation 3.16) to find the speed reached after 0.45 s by a
stone thrown downwards from a cliff with initial speed 1.5 m s−1. This situation
is illustrated inFigure 3.11. You can assume that themagnitude(size) of the
acceleration is 9.81 m s−2, where m s−2 are the SI units of acceleration.

Answer

Equation 3.16states thatvx = ux+axt, and we are trying to findvx. The question
tells us that

ux = 1.5 m s−1 ax = 9.81 m s−2 t = 0.45 s
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Thus

vx =
(
1.5 m s−1

)
+

(
9.81 m s−2 × 0.45 s

)
where the units ofax are m s−2 and the units oft are s, so the units ofaxt are
m s−2 × s. Simplifying this gives

m s−2 × s=
m

s2
× s=

m× �s
s× �s

=
m
s
= m s−1

So

vx = 1.5 m s−1 + 4.4145 m s−1

= 5.9 m s−1 to two significant figures,

i.e. the speed after 0.45 seconds is 5.9 m s−1.
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Note, fromWorked example 3.8, the following points about the handling of units:

1 Calculations have been done in SI units.

2 Units have been included next to values at all times, and the units in the final
answers are both consistent with the workingandwhat we would expect the
units of the final answer to be.

The second point follows from what was said about units inSection 3.1.1; we have
input values with units of m s−1 for initial speed, units of s for time, and units of
m s−2 for acceleration, and the units for final speed haveworked out to bem s−1.
We have not simply assumed the units for final speed to be m s−1, but rather have
calculated the units forvx at the same time as calculating the numerical value. Han-
dling units in this way ensures that the answers are expressed as physical quantities
(with units), not just numbers. It also gives an easy way of checking a calculation.
If the final units inWorked example 3.8had come out as m2 s−1 you might have
realized that, since these arenot units of speed, you must have made a mistake.

It is good practice to work out the units in this way inall your scientific calculations.
To enable you to do this,Box 3.5explains a little more about some of the derived
units that you will encounter in this course.
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Box 3.5 Derived SI units

Box 2.1introduced the SI base units, and since then you have encountered the
SI units of m s−1 for speed, kg m−3 for density and m s−2 for acceleration. These
units are combinations of the base units m, kg and s; other physical quantities
have units involving other base units too. Some physical quantities are so com-
monly used that their units have names and symbols of their own, even though
they could be stated as a combination of base units. Several of these derived
units are listed in Table 3.2. Note that if you become a sufficiently famous sci-
entist you are likely to end up with a unit named after you! The units in Table
3.2 are named after Sir Isaac Newton, James Prescott Joule, James Watt, Blaise
Pascal and Heinrich Hertz respectively.

Physical quantity Name
of unit

Symbol
for unit

Base unit
equivalent

force, such as weight newton N kg m s−2

energy joule J kg m2 s−2

power watt W kg m2 s−3

pressure pascal Pa kg m−1 s−2

frequency hertz Hz s−1

Table 3.2: Some derived units
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Note also that many of the derived units are interlinked:

1 J= 1 N× 1 m

1 W =
1 J
1 s

1 Pa=
1 N

1 m2

The following data may help to illustrate the sizes of the units:

• An eating apple has a weight of about 1 N on Earth;

• An athlete with mass 75 kg, sprinting at 9 m s−1, has an energy of about
3000 J;

• A domestic kettle has a power rating of about 2500 W;

• Atmospheric pressure at sea-level is about 105 Pa;

• The human heart beats with a frequency of about 1.3 Hz.
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To find the units ofvesc in Worked example 3.9, you need to use the fact, from
Table 3.2, that 1 N= kg m s−2. This worked example also provides a reminder of
the importance of converting to SI base units before beginning a calculation.

Worked example 3.9

Usevesc =

(
2GM

R

)1/2

(Equation 3.19) to find the escape speed,vesc, needed

for an object to escape from the Earth’s gravitational attraction. The mass of
the Earth,M = 5.98× 1024 kg, the radius of the Earth,R = 6.38× 103 km and
G = 6.673× 10−11 N m2 kg−2.

Answer

ConvertingR to SI base units gives

R= 6.38× 103 km

= 6.38× 103 × 103 m

= 6.38× 106 m

M = 5.98× 1024 kg

G = 6.673× 10−11 N m2 kg−2
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Substituting in Equation 3.19

vesc=

(
2GM

R

)1/2

=

(
2× 6.673× 10−11 N m2 kg−2 × 5.98× 1024 kg

6.38× 106 m

)1/2

Rearranging this so that the units on the top of the fraction are all together we
get

vesc=

(
2× 6.673× 10−11× 5.98× 1024 N m2 kg−2 kg

6.38× 106 m

)1/2

Since 1 N= 1 kg m s−2, this can be rewritten as

vesc=

(
2× 6.673× 10−11× 5.98× 1024 kg m s−2 m2 kg−2 kg

6.38× 106 m

)1/2

This can be simplified by cancelling some of the units

vesc=

(
2× 6.673× 10−11× 5.98× 1024

��kg��ms−2 m2
�

��kg−2
��kg

6.38× 106 ��m

)1/2
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Calculating the numeric value, and reordering the units, we have

vesc=
(
1.2509× 108 m2 s−2

)1/2

Taking the square root of both 1.2509× 108 and m2 s−2 gives

vesc= 1.12× 104 m s−1 to three significant figures.

The escape speed is 1.12× 104 m s−1, with units of m s−1, as expected.

Question 3.13 Answer

In a classic experiment in the USA in 1926, Edgar Transeau calculated the
amount of energy stored in the corn plants in a one-acre field in a 100-day grow-
ing period to be 1.06× 108 kJ. This isNPP in Equation 3.8. For the same field
and the same time period, he found the energy used by the plants in respiration
(R) to be 3.23× 107 kJ. UseEquation 3.8to find the corresponding value of
GPP, the total energy captured by the plants.
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Question 3.14 Answer

UseEquation 3.13to find the speed of waves (in m s−1) which have a frequency
of 4.83× 1014 Hz and a wavelength of 621 nm.

The final worked example in this section returns us to the piece of granite introduced
at the beginning of the chapter. It is perhaps a somewhat more realistic example than
Worked examples 3.8 and 3.9 because the question does not tell us which formula
to use.
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Worked example 3.10

The rigidity modulus of granite (a measure of the rock’s ability to resist defor-
mation) near the surface of the Earth is 3.0× 1010 Nm−2. Use this value, and
the value you found previously for the density of granite to find the speed of S
waves travelling through granite.

Answer

Which equation shall we use? When faced by this dilemma it is best to start
by thinking carefully about what you already know and what you want to find.
On this occasion we’re told that the rigidity modulus is 3.0× 1010 Nm−2 and we
know (fromWorked example 3.7) that the density of granite is 2.7× 103 kg m−3

(using a value to three significant figures to avoid rounding errors). We need
to find a value for S wave speed. So we need an equation which links density,

rigidity modulus and S wave speed;Equation 3.10(vs =

√
µ

ρ
) from Box 3.4fits

the bill.

Simply finding an equation from a list, all that is possible in this course, is
somewhat unlike the situation you are likely to encounter in the real scientific
world. Nevertheless, the principle of starting each question by thinking about
what you already know and what you want to find is a good one, and on this
occasion it makes it straightforward to find an equation to use from Box 3.4.
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vs =

√
µ

ρ

µ = 3.0× 1010 N m−2

ρ = 2.70× 103 kg m−3

So

vs =

√
3.0× 1010 N m−2

2.70× 103 kg m−3

Since 1 N= 1 kg m s−2, this can be rewritten as

vs =

√
3.0× 1010 kg m s−2 m−2

2.70× 103 kg m−3

This can be simplified by cancelling the kg on top and bottom of the fraction

vs =

√
3.0× 1010

��kg m s−2 m−2

2.70× 103
��kg m−3
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Calculating the numeric value, and combining the m and m−2 on the top of the
fraction with the m−3 on the bottom, we have

vs =
√

1.11× 107 m2 s−2

= 3.3× 103 m s−1 to two significant figures

So the S waves travel with a speed of 3.3× 103 m s−1 through granite.

Question 3.15

The Earth has an average radius of 6.38× 103 km and a mass of 5.97× 1024 kg.
The Moon has a mass of 7.35× 1022 kg. The distance between the Earth and
the Moon is 3.84× 105 km andG = 6.673× 10−11 N m2 kg−2. Use appropriate
equations fromBox 3.4to calculate:

(a) the Earth’s volume (in m3); Answer

(b) the magnitude of the gravitational force between the Earth and
the Moon (in newtons).

Answer

Note: on this occasion you should be able to work out the final units of your
answer without expressing newtons in the form of base units. This is further
discussed in the answer to the question.
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3.6 Learning outcomes for Chapter 3

After completing your work on this chapter you should be able to:

3.1 demonstrate understanding of the terms emboldened in the text;

3.2 perform calculations to an appropriate number of significant figures;

3.3 give answers to calculations in appropriate SI units;

3.4 carry out calculations in scientific notation, both with and without the use of a
scientific calculator;

3.5 estimate answers to one significant figure;

3.6 convert between various units for quantities such as area, volume, speed,
density and concentration;

3.7 demonstrate understanding of the rules and conventions used in scientific
formulae;

3.8 substitute values (numbers and units) into scientific formulae.
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Algebra 4
At the end of Chapter 3 we used the equationvs =

√
µ

ρ
to calculate the S wave

speed,vs, of seismic waves passing through a rock of densityρ and rigidity modulus
µ. But suppose that, instead of knowingρ andµ and wanting to findvs, we knowvs

andρ and want to findµ. The best way to proceed is to rearrangevs =

√
µ

ρ
to make

µ the subjectof the equation, where the word ‘subject’ is used to mean the term
written by itself, usually to the left of the equals sign. Rearranging equations is the
first topic considered in Chapter 4. The rest of the chapter introduces methods for
simplifying equations and ways of combining two or more equations together, and
it ends with a look at ways of using algebra to solve problems.
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4.1 Rearranging equations

There are many different methods taught for rearranging equations, and if you are
happy with a method you have learnt previously it is probably best to stick with
this method, provided it gives correct answers to all the questions in this section.
However, if you have not found a way of rearranging equations which suits you,
you might like to try the method highlighted in the blue-toned boxes throughout
this section. This method draws on an analogy between an equation and an old-
fashioned set of kitchen scales, and considers the equation to be ‘balanced’ at the
equals sign. The scales will remain balanced if you add a 50 g mass to one side of
the scales, or halve the mass on one side,providedyou do exactly the same thing to
the other side. In a similar way, you can do (almost) anything you like to one side
of an equation and, provided you do exactly the same thing to the other side, the
equation will still be valid. This point is illustrated inFigure 4.1.

The following rule summarizes the discussion above:

Whatever you do mathematically to one side of an equation you must also do to
the other side.

This rule is fundamental when rearranging equations, but it doesn’t tell youwhat
operation to perform to both sides of an equation in order to rearrange it in the way
you want. The highlighted points below should help with this, as will plenty of
practice.
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Two things are worth noting at the outset:

1 Equations are conventionally written with the subject on the left-hand side of the
equals sign. However, when rearranging an equation it can very often be helpful
simply to reverse the order.

So if you derive or are given the equationc = a+b you can rewrite it asa+b = c;
if you derive or are given the equationab= c you can rewrite it asc = ab.

2 Even if you choose the ‘wrong’ operation, provided you correctly perform that
operation to both sides of the equation, the equation will still be valid. Suppose
we want to rearrange the equationc = a + b to obtain an expression fora. We
could divide by two, as illustrated byFigure 4.1c; this gives

c
2
=

a+ b
2

This is a perfectly valid equation; it just doesn’t help much in our quest fora.
The numbered points below give some hints for more helpful ways forward, and
each guideline is followed by an illustration of its use.

In the numbered hints the wordsexpressionandtermare used to describe the parts
of an equation. An equation must always include an equals sign, but an expression
or term won’t. A term may be a single variable (such asvx or ux in the equation
vx = ux + axt, or a combination of several variables (such asaxt); an expression is
usually a combination of variables (such asaxt or ux + axt, but the words are often
used interchangeably.
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Hint 1

If you want to remove an expression that isaddedto the term you want,subtract
that expression from both sides of the equation.

To rearrangea + b = c to makea the subject, note that we need to remove theb
from the left-hand side of the equation. Theb is currently added toa, so we need
to subtractb from both sides. This gives

a+ b− b = c− b

or

a = c− b (sinceb− b = 0)

Hint 2

If you want to remove an expression that issubtractedfrom the term you want,
add that expression to both sides of the equation.

To rearrangea − b = c to makea the subject, note that we need to remove theb
from the left-hand side of the equation. Theb is currently subtracted froma, so we
need to addb to both sides. This gives

a− b+ b = c+ b
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or

a = c+ b (since − b+ b = 0)

Hint 3

If the term you want ismultipliedby another expression,divideboth sides of the
equation by that expression.

To rearrangeab= c to makea the subject, note that we need to remove theb from
the left-hand side of the equation. Thea is currently multiplied byb, so we need to
divide both sides of the equation byb. This gives

ab
b
=

c
b

Theb in the numerator of the fraction on the left-hand side cancels with theb in the
denominator to give

a =
c
b

Hint 4

If the term you want isdividedby another expression,multiplyboth sides of the
equation by that expression.
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To rearrange
a
b
= c to makea the subject, note that we need to remove theb from

the left-hand side of the equation. Thea is currently divided byb, so we need to
multiply both sides of the equation byb. This gives

a× b
b
= c× b

Theb in the numerator of the fraction on the left-hand side cancels with theb in the
denominator to give

a = cb

Hint 5

If you are trying to make a term the subject of an equation and you currently
have an equation for thesquareof that term, take thesquare rootof both sides
of the equation.

To rearrangea2 = b to makea the subject, note that thea is currently squared, and
take the square root of both sides of the equation. This gives

a = ±
√

b

Note the presence of the± sign, indicating that the answer could be either positive
or negative, as discussed inSection 1.1.3. In practice, the reality of the problem we
are solving sometimes allows us to rule out one of the two values.
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Hint 6

If you are trying to make a term the subject of an equation and you currently have
an equation for thesquare rootof that term,squareboth sides of the equation.

To rearrange
√

a = b to makea the subject, note that you currently have an equation
for the square root ofa, and square both sides of the equation. This gives

a = b2

Hints 1 to 6 all follow from a general principle:

To ‘undo’ an operation (e.g.+, −, ×, ÷, square, square root) you should do the
opposite, (i.e.−, +, ÷, ×, square root, square).

The following worked examples use the principles introduced in the numbered hints
above, in the context of equations which are frequently encountered in science.
Worked example 4.1 also involves substituting numerical values and units into the
equation once it has been rearranged.
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Worked example 4.1

As discussed inBox 2.1, mass and weight are not the same. However, the mag-
nitude of the weight,W, of an object at the surface of the Earth and its mass,m,
are related by the equationW = mg. The magnitude of the acceleration due to
gravity,g, can be taken as 9.81 m s−2

A teenager’s weight is 649 N. What is his mass?

Answer

We need to start by rearrangingW = mg to makem the subject of the equation.
It is helpful to start by reversing the order of the equation, i.e. to write it as

mg=W

To isolatem we need to get rid ofg, andm is currentlymultipliedby g so, from
Hint 3 we need todivideby g. Remember that we must do this toboth sides of
the equation, so we have

mg
g
=

W
g

Theg in the numerator of the fraction on the left-hand side cancels with theg in
the denominator to give

m=
W
g
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Substituting values forW andg gives

m=
649 N

9.81 m s−2

Since 1 N= 1 kg m s−2 (from Table 3.2) and

N

m s−2
=

kg��m�
�s−2

��m�
�s−2

we then have

m=
649 kg m s−2

9.81 m s−2
= 66.2 kg

So the teenager’s mass is 66.2 kg
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Worked example 4.2

The timeT for one swing of a pendulum is related to its length,L, by the equa-
tion

T2 =
4π2L

g

whereg is the magnitude of the acceleration due to gravity. Write down an
equation forT.

Answer

T is currently squared, so fromHint 5, we need to take the square root of both
sides of the equation. This gives

T =

√
4π2L

g

SinceT is a period of time, its value must be positive, so we only need to write
down the positive square root.
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Question 4.1

(a) Rearrangev = fλ to makef the subject. Answer

(b) RearrangeEtot = Ek + Ep so thatEk is the subject. Answer

(c) Rearrangeρ =
m
V

to obtain an equation form. Answer
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When rearranging more complicated equations, it is often necessary to proceed in
several steps. Each step will use the rules already discussed, but many people are
perplexed when trying to decide which step to take first. Expertise in this area
comes largely with practice, and there are no hard and fast rules (it is often possible
to rearrange an equation by several, equally correct, routes). However, the following
guidelines may help:

Hint 7

Don’t be afraid of using several small steps to rearrange one equation.

Hint 8

Aim to get the new subject into position on the left-hand side as soon as you can.
(This will not always be possible straight away.) Simply reversing an equation
can sometimes be a helpful initial step.

Hint 9

You can treat an expression within brackets as if it was a single term. This is true
whether the brackets are shown explicitly in the original equation or whether
you have added them (or imagined them) for clarity. If the quantity required
as the subject is itself part of an expression in brackets in the original equation,
it is often best to start by making the whole bracketed term the subject of the
equation.
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Let’s look at these guidelines in the context of a series of worked examples, in-
terspersed with questions for you to try for yourself. Note that although ‘real’
science equations have been used as much as possible in the worked examples and
questions, the symbols have not been explained, and you do not need to know the
meaning of them. This is to allow you to concentrate,for the time being only, on
the algebra rather than getting side-tracked into the underlying science.

You may be able to rearrange the equations in the following worked examples in
fewer steps than are shown, but if you are in any doubt at all it is best to write down
all the intermediate steps in the process.
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Worked example 4.3

RearrangePV = nRT to give an equation forT.

Answer

This example is perhaps more straightforward than it looks, but it is best to
proceed in steps.

The first step is to reverse the equation so that theT is on the left-hand side
(from Hint 8). This gives

nRT= PV

We now need to remove thenR by which theT is multiplied. Dividing both
sides bynRgives

nRT
nR
=

PV
nR

The nR in the numerator of the fraction on the left-hand side cancels with the
nR in the denominator to give

T =
PV
nR
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Worked example 4.4

Rearrangeρ =
m
V

so thatV is the subject.

Answer

The first step is to multiply both sides byV (thus gettingV into the right position,
as inHint 8). This gives

ρV =
mV
V

that is

ρV = m

Then dividing both sides byρ gives

ρV
ρ
=

m
ρ

that is

V =
m
ρ
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Worked example 4.5

Rearrangevx = ux + axt to makeux the subject.

Answer

This equation can be written as

ux + axt = vx

which hasux on the left-hand side (Hint 8).

We can treat the expressionaxt as a single term (by considering there to be
brackets around it, as inHint 9) and subtract it from both sides of the equation
to give

ux + axt − axt = vx − axt

that is

ux = vx − axt
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Worked example 4.6

Rearrangeh = 1
2gt2 to give an equation fort.

Answer

We can consider there to be brackets around (t2) and start by finding an expres-
sion fort2 (Hint 9). The equation can be written as

1
2

gt2 = h

which hast2 on the left-hand side (Hint 8). Multiplying both sides by 2 gives

2×
1
2

gt2 = 2h

that is

gt2 = 2h

Dividing both sides byg gives

gt2

g
=

2h
g

that is

t2 =
2h
g
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Now we can take the square root of both sides to give

t = ±

√
2h
g
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Worked example 4.7

Rearrangevs =

√
µ

ρ
so thatµ is the subject.

Answer

We can consider there to be brackets around

(
µ

ρ

)
and start by finding an expres-

sion for

(
µ

ρ

)
(Hint 9).

The equation can be written as
√
µ

ρ
= vs, which has

µ

ρ
on the left-hand side

(Hint 8).

Squaring both sides gives

µ

ρ
= v2

s

Now we can multiply both sides byρ, to giveµ = v2
s ρ .
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Box 4.1 Interlude: why bother with algebra?

You may have recognized the equation rearranged inWorked example 4.7; it was
the one discussed at the beginning of the chapter. Thinking back to the beginning
of the chapter reminds us of the purpose of what we are doing. The ability to
rearrange equations is useful (arguably the most useful skill developed in this
course), but it’s not something that you should do just for the sake of doing so,
but rather because you want to work something out, and rearranging an equation
is the means to this end. Suppose you have been told that S waves pass through
rocks of densityρ = 3.9× 103 kg m−3 with a speedvs = 3.0× 103 m s−1, and

you want to find the rigidity modulusµ. The equation in the formvs =

√
µ

ρ
is

not much use, but the rearranged form immediately tells us that

µ = v2
s ρ

=
(
3.0× 103 m s−1

)2
×

(
3.9× 103 kg m−3

)
= 3.5× 1010 m2 s−2 kg m−3

= 3.5× 1010 kg m−1 s−2

So the rigidity modulus is 3.5× 1010 kg m−1 s−2.
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Question 4.2

(a) Rearrangeb = c− d + eso thate is the subject. Answer

(b) Rearrangep = ρgh to give an equation forh. Answer

(c) Rearrangev2
esc=

2GM
R

to makeR the subject. Answer

(d) RearrangeE = h f − φ so thatφ is the subject. Answer

(e) Rearrangea =
bc2

d
to give an equation forc. Answer

(f) Rearrangea =

√
b
c

to makeb the subject. Answer
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Question 4.3

The mass,m, speed,v, and kinetic energy,Ek, of an object are linked by the
equationEk =

1
2mv2.

(a) Rearrange this equation so thatv is the subject. Answer

(b) Use your answer to part (a) to estimate (in m s−1 to one signif-
icant figure) the speed needed in order for a tectonic plate of
mass 4× 1021 kg to have a kinetic energy of 2× 103 J.

Answer

(c) Use your answer to part (a) to estimate (in m s−1 to one signif-
icant figure) the speed needed in order for an athlete of mass
70 kg to have the same kinetic energy as the tectonic plate in
part (b).

Answer

The final group of worked examples in this section involve equations which may
appear rather more complex than the previous ones, but they can all be rearranged
using the rules and guidelines already introduced. Some, likeWorked example 4.8,
appear more complex partly because they use symbols that are rather unwieldy.
However, these final worked examples are genuinely more complicated too, and are
best solved by taking a logical stepwise approach (as the early Arab mathematicians
did; seeBox 4.2). Rearranging complicated equations is rather like peeling away
layers of an onion, systematically removing layer by layer in order to get to the part
you want. But that doesn’t mean it should end in tears!
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Box 4.2 Al-Khwarizmi and al-jabr

The techniques of algebra have developed over a period of several thousand
years, but the word ‘algebra’ comes from ‘al-jabr’ in the title of a book written
by Mohammed ibn-Musa al-Khwarizmi in about 830. The book, whose title
Hisab al-jabr w’al muqabela, can be translated as ‘Transposition and reduction’,
explained how it was possible to reduce any problem to one of six standard
forms using the two processes, al-jabr (transferring terms to eliminate negative
quantities) and muqabela (balancing the remaining positive quantities).

Arab mathematicians like al-Khwarizmi did not use symbols in their work, but
rather explained everything in words. Nevertheless, their stepwise approach
was very similar to the one advocated in this course. Al-Khwarizmi is also
remembered for his work on the solution of quadratic equations, discussed later
in this chapter.

A little less working is shown in Worked examples 4.8, 4.9 and 4.10 than previ-
ously, and hints are not explicitly referred to. This has been done so as to make the
working more akin to what you might reasonably write when working through the
questions in this course. You are encouraged to show as many steps as necessary in
your working, and to use words of explanation wherever they help you.
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Worked example 4.8

Rearrange∆G	m = ∆H	m − T∆S	m so that∆S	m is the subject.

(Note:∆G	m, ∆H	m and∆S	m each represent a single physical entity.)

Answer

AddingT∆S	m to both sides of the equation gives

∆G	m + T∆S	m = ∆H	m

Subtracting∆G	m from both sides gives

T∆S	m = ∆H	m − ∆G	m

Dividing both sides byT gives

∆S	m =
∆H	m − ∆G	m

T
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Worked example 4.9

Rearrangesx = uxt + 1
2axt2 to makeax the subject.

Answer

The equation can be written asuxt + 1
2axt2 = sx.

Subtractinguxt from both sides gives

1
2axt

2 = sx − uxt

Multiplying both sides by 2 gives

axt
2 = 2(sx − uxt)

Dividing both sides byt2 gives

ax =
2(sx − uxt)

t2
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Worked example 4.10

RearrangeFg = G
m1m2

r2
to give an equation forr.

Answer

Note thatFg = G
m1m2

r2
can be written asFg =

Gm1m2

r2
(seeSection 3.5.3).

We can get ther2 into position on the left-hand side by multiplying both sides
by r2. This gives

Fgr2 = Gm1m2

Dividing both sides byFg gives

r2 =
Gm1m2

Fg

Taking the square root of both sides gives

r = ±

√
Gm1m2

Fg
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Box 4.3 Using algebra in astronomy

The luminosity of a star (the total rate at which it radiates energy into space, in
all directions),L, is related to its radius,R, and the temperature (measured in
kelvin), T, of its outer layer (called the photosphere) by the equation

L = 4πR2σT4 (4.1)

whereσ (the lower case Greek letter sigma) represents a constant known as
Stefan’s constant, with the valueσ = 5.67× 10−8 W m−2 K−4.

It is impossible to take direct readings for the luminosity, radius or tempera-
ture of distant stars, but indirect measurements can lead to values for photo-
spheric temperature and luminosity.Figure 4.2is a so-called Hertzsprung–
Russell diagram, comparing the photospheric temperatures and luminosity of
different stars. Note that different types of stars appear in distinct groupings on
the Hertzsprung–Russell diagram.

If we know a star’s luminosity and photospheric temperature we can find its
radius from Equation 4.1, but first of all we need to rearrange the equation to
makeR the subject.

Equation 4.1 can be reversed to give

4πR2σT4 = L
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Dividing both sides by 4πσT4 gives

R2 =
L

4σT4

(Note that the same results would have been achieved by dividing by 4,π,σ and
T4 separately.)

Taking the square root of both sides gives

R= ±

√
L

4σT4

SinceR is the radius of a star, we are only interested in the positive value.

The star Alcyone (in the Pleiades) has a photospheric temperature of 1.2× 104 K
and a luminosity of 3.2× 1029 W. So its radius is

R=

√
3.2× 1029 W

4× 5.67× 10−8 W m−2 K−4 ×
(
1.2× 104 K

)4
=

√
3.2× 1029 ��W

4× 5.67× 10−8 ��W m−2�
��K−4 (

1.2× 104)4 ��K4

=
√

2.17× 1019 m2

= 4.7× 109 m
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The radius of Alcyone is 4.7× 109 m.

Notice that in this example, the units of watts cancelled without having to be
expressed in SI base units.

Question 4.4

(a) Rearrangevx = ux + axt so thatax is the subject. Answer

(b) Rearrangevs =

√
µ

ρ
to makeρ the subject. Answer

(c) RearrangeF =
L

4πd2
to give an equation ford. Answer
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4.2 Simplifying equations

Sometimes it is possible (and helpful) to write an algebraic expression in a different
form from the one in which it is originally presented. Whenever possible you should
aim to write equations in their simplest form, i.e. tosimplify them. For example,

you will see in this section that the equationc =
a
4b
+

3a
4b

can be simplified toc =
a
b

;

the latter form of the equation is rather more useful than the former.

In order to simplify equations it is often necessary to apply the rules for the manip-
ulation of fractions and brackets that were introduced in Chapter 1.

4.2.1 Simplifying algebraic fractions

Algebraic fractions can be multiplied and divided in exactly the same way as nu-
merical fractions, using the methods introduced inSection 1.2.4andSection 1.2.5.
So just as

2
3
×

4
5
=

2× 4
3× 5

=
8
15

(multiplying numerators and denominators together)

we can write

a
b
×

c
d
=

a× c
b× d

=
ac
bd
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Similarly, just as

2
3
÷

5
7
=

2
3
×

7
5

(turning the
5
7

upside down and multiplying)

=
2× 7
3× 5

=
14
15

we can write

a
b
÷

c
d
=

a
b
×

d
c

(turning the
c
d

upside down and multiplying)

=
a× d
b× c

=
ad
bc
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Worked example 4.11 illustrates a division in which several of the terms cancel.

Worked example 4.11

Simplify
2ab
c
÷

2
c

Answer

Turning the
2
c

upside down and multiplying gives

2ab
c
÷

2
c
=

2ab
c
×

c
2

We can cancel the ‘2’s and the ‘c’s to give

2ab
c
÷

2
c
=

AA2ab

�c
×

�c

AA2
= ab
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The method described inSection 1.2.2for adding and subtracting numerical frac-
tions can also be extended to algebraic fractions. We need to find a common de-
nominator in a similar way, so, much as we can write

2
3
+

4
5
=

2× 5
3× 5

+
4× 3
5× 3

=
10
15
+

12
15
=

10+ 12
15

=
22
15

where the common denominator is the product of the denominators of the original
fractions, we can also write

a
b
+

c
d
=

ad
bd
+

cb
db
=

ad+ cb
bd

Worked example 4.12

Electrical resistors can be combined together in various ways. You don’t need
to know or understand the scientific details, but when three resistors of resis-
tanceR1, R2 andR3 are combined in a particular way (‘in parallel’) the effective
resistance is given by the termReff in the equation

1
Reff
=

1
R1
+

1
R2
+

1
R3

(4.2)

Rearrange Equation 4.2 to makeReff the subject.

Answer

We need to start by expressing the right-hand side of Equation 4.2 as a single
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fraction. The product ofR1, R2 andR3 will be a common denominator, so we
can write

1
Reff
=

1
R1
+

1
R2
+

1
R3

=
R2R3

R1R2R3
+

R1R3

R1R2R3
+

R1R2

R1R2R3

=
R2R3 + R1R3 + R1R2

R1R2R3

In order to makeReff the subject of the equation, rather than
1

Reff
, we could mul-

tiply and divide both sides of the equations by a series of expressions. However,
it is more straightforward simply to turn the equation upside down, i.e. to take
the reciprocal of both sides. This gives

Reff =
R1R2R3

R2R3 + R1R3 + R1R2

A note of caution when simplifying algebraic expressions

When you simplify an algebraic expression, especially one involving fractions, the
answer you arrive at doesn’t always look very simple! If you are asked to simplify
an expression which is the sum or product of two separate fractions, your answer
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should normally be asinglefraction, but an expression like

Reff =
R1R2R3

R2R3 + R1R3 + R1R2

(the answer to Worked example 4.12) may be the simplest you can give. It can be
very tempting to ‘cancel’ terms incorrectly in an attempt to get to the sort of simple
fraction which is generally achievable when simplifying numerical fractions, but
less likely to be achievable when dealing with symbols.

Question

Express
2c
√

a
(a+ 2)

×
(b+ 2)

2c
√

b
as a single fraction of the simplest possible form.

Answer

We can cancel the ‘2c’s to give

��2c
√

a
(a+ 2)

×
(b+ 2)

��2c
√

b
=

√
a (b+ 2)

(a+ 2)
√

b

=

√
a (b+ 2)
√

b (a+ 2)

It can be tempting to ‘cancel’ the square roots and the ‘+2’s too, but this would
be incorrect:
√

a
√

b
,

a
b

and
(b+ 2)
(a+ 2)

,
b
a
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As discussed inSection 1.2.3, a fraction is unchanged by the multiplication or
the division of both its numerator and denominator by the same amount. How-
ever,all other operations will alter its value.

So

√
a
b

(b+ 2)
(a+ 2)

is as far as it is possible to simplify
2c
√

a
(a+ 2)

×
(b+ 2)

2c
√

b
.

Note however that

√
a
b

is equivalent to

√
a
√

b
, so

√
a
√

b

(b+ 2)
(a+ 2)

can also be written

as

√
a
b

(b+ 2)
(a+ 2)

.
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Question 4.5

Simplify the following expressions, giving each answer as a single fraction.

(a)
µ0

2π
×

i1i2
d

Answer

(b)
3a
2b

/
2 Answer

(c)
2b
c
+

3c
b

Answer

(d)
2ab
c
÷

2ac
b

Answer

(e)
1
f
−

1
f + 1

Answer

(f)
2b2

(b+ c)
÷

2c2

(a+ c)
Answer
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object

u

lens

v

image
of object
 on film

Figure 4.3: The object and image of a simple camera.

Question 4.6 Answer

The distance,u, of an object from a lens (such as the lens in the simple camera
illustrated in Figure 4.3) is related to the distance,v, from the lens to the image
of the object (on the film) and the lens’s focal length,f , by the equation

1
u
+

1
v
=

1
f

Add the fractions 1/u and 1/v and hence rearrange the equation to give an ex-
pression forf .
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4.2.2 Using brackets in algebra

You should be familiar by now with the notion that an operation applied to an
expression in a bracket must be applied toeverythingwithin the bracket, so

(2b)2 = 22b2 = 4b2

(a+ 2b) − (a+ b) = a+ 2b− a− b = b

(a+ 2b) − (a− b) = a+ 2b− a− (−b) = a+ 2b− a+ b = 3b

2(a+ 2b) = (2× a) + (2× 2b) = 2a+ 4b

and

2a(a+ 2b) = (2a× a) + (2a× 2b) = 2a2 + 4ab

If we need to multiply two bracketed expressions, such as (a+b) and (c+d) together,
we need to multiplyeachterm in the first bracket byeachterm in the second bracket
as indicated by the red lines shown below.

(a + b)(c + d)

Multiplying the terms in order gives

(a + b)(c + d) = ac + ad + bc + bd
1

2

3

4

1 2 3 4
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Worked example 4.13

Rewrite the following expressions so that the brackets are removed:

(a) (x− 3)(x+ 5)

(b) (x+ y)(x− y)

(c) (x+ y)2

(d) (x− y)2

Answer

(a) (x − 3)(x + 5) = x 2 + 5x − 3x − 15

= x 2 + 2x − 15

(b) (x + y)(x − y) = x 2 − xy + yx − y2

= x 2 − y2 since xy = yx , so − xy + yx = 0

(c) (x + y)2 = (x + y)( x + y)

= x2 + xy + yx + y2

= x2 + 2xy + y2

(d) (x − y)2 = (x − y)( x − y)

= x2 − xy − yx + y 2

= x2 − 2xy + y2
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An examination of the answers to parts (b), (c) and (d) of Worked example 4.13
serves as a reminder of the fact that

(x+ y)2 , x2 + y2

(x− y)2 , x2 − y2

In other words, remember to watch out for brackets!

Question 4.7

Rewrite the following expressions so that the brackets are removed:

(a)
1
2

(vx + ux) t Answer

(b)
(a− b) − (a− c)

2
Answer

(c) (k− 2)(k− 3) Answer

(d) (t − 2)2 Answer
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So far, this section has discussed removing brackets from expressions, but it can
very often be useful to do the reverse.

The numbers 6 and 4 are described asfactorsof 24 and in general, when speaking
mathematically, ‘factors’ are terms which when multiplied together give the original
expression. Since, for example,

y (y+ 3) = y2 + 3y

we can say thaty and (y+ 3) are factors ofy2 + 3y

Similarly, since

(x + 3)( x − 1) = x2 − x + 3x − 3

= x2 + 2x − 3

we can say that (x+ 3) and (x− 1) are factors ofx2 + 2x− 3.

The verb ‘tofactorize’ means to find the factors of an expression. If you are asked
to factorizey2 + 3y then you should write

y2 + 3y = y(y+ 3)

and if you are asked to factorizex2 + 2x− 3 you should write

x2 + 2x− 3 = (x+ 3)(x− 1)
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Note, fromWorked example 4.13b, that the factors ofx2−y2 are (x+y) and (x−y),
i.e.

x2 − y2 = (x+ y)(x− y) (4.3)

The difference of two squared numbers can always be written as the product of
their sum and their difference.

Question 4.8

Factorize the following expressions:

(a) y2 − y Answer

(b) x2 − 25 (Hint: you may find it helpful to compare this ex-
pression with Equation 4.3, remembering that 52 = 25.)

Answer

Factorizing can be useful when rearranging equations, as Worked example 4.14
illustrates.
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Worked example 4.14

Rearrangeq = mc∆T +mL so thatm is the subject.

Answer

Both terms on the right-hand side of this equation includem, so we can rewrite
the equation as

q = m (c ∆T + L)

This can be reversed to give

m (c ∆T + L) = q

Now we divide both sides by (c ∆T + L) to give

m=
q

c ∆T + L

Question 4.9 Answer

RearrangeEtot =
1
2mv2 +mg∆h to give an equation form.
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An ability to factorize expressions such asy2 + 3y andx2 + 2x− 3 can also help us
to find the solutions of equations such asy2+3y = 0 andx2+2x−3 = 0. Equations
of this form are known as ‘quadratic equations’.

We know from above that

y2 + 3y = y (y+ 3) (4.4)

So if y2+3y = 0, it follows thaty (y+3) = 0 too. Multiplying by zero gives zero (as
discussed inSection 1.1.4). Soy (y+ 3) = 0 implies that eithery = 0 ory+ 3 = 0.

y+ 3 = 0 implies thaty = −3, so the solutions ofy2 + 3y = 0 arey = 0 andy = −3.

We can check thaty = 0 andy = −3 really are solutions of the equationy2+3y = 0,
by substituting each value fory into the left-hand side of the equation and verifying
that it gives 0, as expected.

For y = 0, y2 + 3y = 0+ 0 = 0, as expected.

For y = −3, y2 + 3y = (−3)2 +
(
3× (−3)

)
= 9+ (−9) = 0, as expected.

It is sensible to check your answers in this way:

You should check your answers whenever possible.
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Worked example 4.15

Use the fact that

x2 + 2x− 3 = (x+ 3)(x− 1) (4.5)

to find the solutions of the equationx2 + 2x− 3 = 0.

Answer

If x2 + 2x− 3 = 0 then, from Equation 4.5, (x+ 3)(x− 1) = 0

Thusx+ 3 = 0 or x− 1 = 0, i.e. x = −3 or x = 1.

Checking forx = −3:

x2 + 2x− 3 = (−3)2 + 2(−3)− 3 = 9− 6− 3 = 0, as expected.

Checking forx = 1:

x2 + 2x− 3 = 12 + (2× 1)− 3 = 1+ 2− 3 = 0, as expected.

So the solutions of the equationx2 + 2x− 3 = 0 arex = −3 andx = 1.
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Using factorization to solve quadratic equations relies on us being able to spot the
factors of an expression; this is quite easy for expressions likey2 + 3y (seeEqua-
tion 4.4), but if we had not known or been told thatx2 + 2x − 3 = (x + 3)(x − 1)
(Equation 4.5), finding the factors ofx2+2x−3 would have been largely a matter of
trial and error. An ability to find factors in this way can be developed with practice,
but it remains somewhat tedious and this method for solving quadratic equations
doesn’t work at all unless the solutions are whole numbers or simple fractions. For-
tunately help is at hand in the form of the ‘quadratic equation formula’, described
in Box 4.4.

Box 4.4 The quadratic equation formula

Al-Khwarizmi and other early Arab mathematicians developed general methods
for solving quadratic equations. A quadratic equation of the form

ax2 + bx+ c = 0

will have solutions given by the quadratic equation formula

x =
−b±

√
b2 − 4ac

2a

If b2 > 4ac (i.e. b2 is greater than 4ac) thenb2 − 4ac will be positive, and the
formula will lead to two distinct solutions.

If b2 = 4ac then b2 − 4ac= 0, so the two solutions will be identical
(x = −b/(2a)).
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If b2 < 4ac (i.e. b2 is less than 4ac) thenb2 − 4ac will be negative. This means
that the solutions will include the square root of a negative number. and hence
will involve ‘ imaginary numbers’. Such numbers were mentioned inChapter 1,
but will not be considered further inMaths for Science.

Worked example 4.16 demonstrates the use of the quadratic equation formula in
solving the equation that was solved by factorization in Worked example 4.15.

Worked example 4.16

Use the quadratic equation formula to find the solutions of the equation
x2 + 2x− 3 = 0.

Answer

Comparison of

x2 + 2x− 3 = 0

and

ax2 + bx+ c = 0
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shows thata = 1, b = 2 andc = −3 on this occasion, so the solutions are

x =
−b±

√
b2 − 4ac

2a

=
−2±

√
22 −

(
4× 1× (−3)

)
2× 1

=
−2±

√
4− (−12)
2

=
−2±

√
16

2

=
−2± 4

2

Sox =
−2+ 4

2
= 1

or x =
−2− 4

2
= −3

The solutions can be checked in exactly the same way as in Worked example
4.15.

Once again, we have found that the solutions of the equationx2+2x−3 = 0 are
x = −3 andx = 1.
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Question 4.10

(a) Use your answer toQuestion 4.7 (c)to solvek2 − 5k + 6 = 0
by factorization.

Answer

(b) Use your answer toQuestion 4.7 (d)to solvet2− 4t+ 4 = 0 by
factorization.

Answer

(c) Use the quadratic equation formula to check your answer to
part (a).

Answer

(d) Use the quadratic equation formula to check your answer to
part (b).

Answer

4.3 Combining equations

Consider the equationE = h f . This equation, first proposed by Einstein, links the
energy,E, of light to its frequency,f (h is a constant known as Planck’s constant).
Suppose that you knowh and are trying to findE, but that you don’t knowf . Instead
you know the values ofc (speed of light) andλ (wavelength) in a second equation,
c = fλ. It would be possible to calculate a value forf from the second equation
and then substitute this value in the first equation so as to findE. However, this
approach runs the risk of numerical slips and rounding errors. It is more useful to
do the substitutionalgebraically, in the way shown in the following example.
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Worked example 4.17

Combine the following two equations to find an equation forE not involving f :

E = h f (4.6)

c = fλ (4.7)

Answer

Rearranging Equation 4.7 gives

f =
c
λ

Substituting this expression forf into Equation 4.6 gives

E = h×
c
λ
=

hc
λ

This mathematical technique, sometimes referred to aselimination(because a vari-
able, f on this occasion, is being eliminated), can be used in many situations, as
illustrated in the worked examples throughout this section.
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Worked example 4.18

CombineFg = G
Mm

r2
andFg = mgto give an equation forr not involvingFg.

Answer

Since both equations are already given withFg (the variable we are trying to
eliminate) as the subject, we can simply set the two equations forFg equal to
each other:

mg= G
Mm

r2

We now need to rearrange to give an equation forr. First note that there is anm
on both sides of the equation, so we can divide both sides of the equation bym
to give

g = G
M

r2

Multiplying both sides byr2 gives

gr2 = GM

Dividing both sides byg gives

r2 =
GM

g
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Taking the square root of both sides gives

r = ±

√
GM

g

Question 4.11

(a) CombineEk =
1
2mv2 and p = mv to give an equation forEk

not involvingv.
Answer

(b) CombineE = 1
2mv2 andE = mg∆h to give an equation forv

not involvingE.
Answer

(c) CombineEk = h f −φ andc = fλ to give an equation forφ not
involving f .

Answer
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Two (or more) different equations containing the same two (or more) unknown
quantities are called ‘simultaneous equations’ if the equations must be satisfied
(hold true) simultaneously. It is usually possible to solve two simultaneous equa-
tions by using one equation to eliminate one of the unknown quantities from the
second equation, in an extension of the method discussed above. This is illustrated
in Worked example 4.19.

Worked example 4.19

Find values ofx andy which satisfy both of the equations given below:

x+ y = 7 (4.8)

2x− y = 2 (4.9)

Answer

If we rewrite Equation 4.8 to give an equation fory in terms ofx, then we can
insert this result into Equation 4.9 to give an equation forx alone.

Subtractingx from both sides of Equation 4.8 gives

y = 7− x (4.10)

Substituting fory in Equation 4.9 then gives

2x− (7− x) = 2

i.e. 2x− 7+ x = 2

or 3x− 7 = 2
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Adding 7 to both sides gives

3x = 9, i.e. x = 3

Substitution ofx = 3 into Equation 4.10 shows that

y = 7− x = 7− 3 = 4

So the solution (i.e. the values forx andy for which both of the equations hold
true) isx = 3 andy = 4. We can check this by substituting the values forx and
y into the left-hand side of Equations 4.8 and 4.9.

Equation 4.8 givesx+ y = 3+ 4 = 7, as expected.
Equation 4.9 gives 2x− y = (2× 3)− 4 = 6− 4 = 2, as expected.

We could have arrived at the same result by using Equations 4.8 and 4.9 in a
different order, but there is only one correct answer.
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Worked example 4.19 shows that in order to find two unknown quantities, two
different equations relating them are required. This is always true and by extension:

When you combine equations so as to find unknown quantities, it is always
necessary to have at least as many equations as there are unknown quantities.

Worked example 4.20 shows how four equations can be combined together in a case
where there are four unknown quantities (we are trying to find the total surface area,
S, but the mass,m, and volume,V, of a single particle and the number of particles,
n, are unknown too and so must be eliminated). This worked example concerns the
use of metal particles as catalysts in the chemical industry (see Box 4.5).

Box 4.5 Chemical catalysts

A catalyst is a substance which makes a chemical reaction proceed more rapidly.
The catalyst itself does not undergo permanent chemical change, and it can be
recovered when the chemical reaction is completed. Metal particles can be used
as catalysts. A large number of small particles will have a greater surface area
than a small number of larger particles, and the total surface area,S, of the par-
ticles is of critical importance to the speed of the reaction. In a typical industrial
chemical reactor,S can be approximately 5000 km2; roughly a third the area of
Yorkshire!
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Worked example 4.20

The total surface area,S, of n metal particles of average radiusr is given by the
equation

S = 4πnr2 (4.11)

The number of particles n is linked to the mass of one particle,m and the total
mass of metal,M by the equation

n =
M
m

(4.12)

The massmof one particle is linked to its volumeV and the density of the metal
ρ by the equation

ρ =
m
V

(4.13)

The volumeV of a particle is given by

V =
4
3
π r3 (4.14)

wherer is the radius.

Find an equation forS in terms ofM, ρ andr only.

Answer

Reversing Equation 4.13 gives
m
V
= ρ

Back J I 210



Contents �

Multiplying both sides byV gives

m= Vρ

Substituting forV from Equation 4.14gives

m=
4
3
π r3ρ

Substituting this expression form into Equation 4.12gives

n =
M
m

=
M

4
3π r3ρ

=
3M

4π r3ρ

Substituting this expression forn into Equation 4.11gives

S = 4πnr2

=��4π ×
3M

��4πr�3ρ
× ��r2

=
3M
rρ
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4.4 Putting algebra to work

So far, Chapter 4 has been concerned almost exclusively with symbols. Equations
have been given to you and you have been told to manipulate them in a particular
way. In the real scientific world, you are likely to need to:

1 Choose the correct equation(s) to use or derive equation(s) for yourself.

2 Combine, rearrange and simplify the equation(s) using the skills introduced in
the earlier sections of this chapter.

3 Substitute numerical values, taking care over things like significant figures, sci-
entific notation and units, as you did in Chapter 3.

4 Check that the answer is reasonable.

The final section of this chapter considers these points, combining skills from Chap-
ters 3 and 4, but it starts with a more light-hearted look at the uses of algebra.
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4.4.1 Algebra is fun!

Try this:

• Think of a number.

• Double it.

• Add four.

• Halve your answer.

• Subtract 1.

If you have arrived at an answer of 4, I can tell you that the number you first thought
of was 3; if your answer is 6, the number you first thought of was 5, if your answer is
11, the number you first thought of was 10, and so on. Magic? No, a demonstration
of the power of algebra! We could perform exactly the same operations forany
number; let’s represent the number by the symbolN. Then we have

• Think of a number. N

• Double it. 2N

• Add four. 2N + 4

• Halve your answer. 1
2(2N + 4) = N + 2

• Subtract 1. (N + 2)− 1 = N + 1
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So the final answer will always be one more than the number you first thought of.

Here’s another one for you to try:

• Think of a number.

• Add 5.

• Double the result.

• Subtract 2.

• Divide by 2.

• Take away the number you first thought of.

Whatever number you first thought of, the answer will always be four.

Question 4.12 Answer

Use a symbol of your choice to represent the number in the ‘think of a number’
example immediately before this question and thus show that the answer will be
four, whatever number you choose at the beginning.

You may wonder why a course entitledMaths for Sciencehas suddenly started
discussing number tricks. There is a serious point to this, namely to illustrate how
you can get from an initial problem to a solution by using algebra. Worked example
4.21 illustrates another use of algebra.
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Worked example 4.21

Chris and Jo share a birthday (but are different ages). On their birthday this year
Chris will be five times older than Jo. Their combined age on their birthday last
year was 58. How old was Chris when Jo was born?

Answer

Let C represent Chris’s age in years on her birthday this year andJ represent
Jo’s age in years on her birthday this year.

Since Chris will be five times older than Jo we can say

C = 5J (4.15)

Last year Chris’s age was (C − 1) and Jo’s age was (J − 1), so we can say

(C − 1)+ (J − 1) = 58

i.e. C + J − 2 = 58

C + J = 60 (4.16)

Substituting forC from Equation 4.15 in Equation 4.16 gives

5J + J = 60

i.e. 6J = 60

J = 10
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Thus, from Equation 4.15,C = 5× 10= 50.

Thus Chris will be 50 this year and Jo will be 10. But this wasn’t the question
that was asked! When Jo was born, Chris was 50− 10, i.e. 40 years old.

You may remember questions like Worked example 4.21 from your school days.
Problems like this can seem intimidating, but they are relatively easy to solve once
you have found the equations that describe the problem. Many people struggle with
this first step — they can’t find the equations to use. Look at Worked example 4.21
carefully; all that has been done in order to derive Equation 4.15 and Equation 4.16
has been to study carefully the information given in the question, and to write it
down in terms of symbols. So ‘On their birthday this year Chris will be five times
older than Jo’ has becomeC = 5J. In solving problems, it is almost always helpful
to start by writing down what you already know. Drawing a diagram to illustrate
the situation can help too; you may find this helpful in Question 4.13.

Question 4.13 Answer

Tracey is 15 cm taller than Helen, and when Helen stands on Tracey’s shoulder
she can just see over a fence 3 m tall. Assume that it is 25 cm from Tracey’s
shoulder to the top of her head and 10 cm from Helen’s eyes to the top of her
head. How tall is Helen?
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4.4.2 Using algebra to solve scientific problems

In much the same way as people struggle when trying to derive equations for use
in problems like Worked example 4.21, they often have difficulty deciding which
formulae to use from those given in a book or on a formula sheet. Again, it can
be helpful to draw a diagram and it isalwayshelpful to start by writing down what
you know and what you’re trying to find. This often helps you to decide how to
proceed.

Worked example 4.22 discusses the choice of appropriate formulae for use in an-
swering a particular question. It also works through the other steps you are likely
to follow when using algebra to solve scientific problems.

Worked example 4.22

A silver sphere (density 10.49 g cm−3) has a radius of 2.5 mm. What is its mass?
Use formulae given inBox 3.4.

Which equations shall we use?

We know density (ρ) and radius (r) and are trying to find mass (m), so we need

an equation to link these three variables.Equation 3.9, ρ =
m
V

, links density

and mass, but it also includesvolumewhich isn’t either given or required by
the question. Fortunately help is at hand in the form ofEquation 3.5, V = 4

3π r3

which gives the volumeV of a sphere of radiusr. We should be able to substitute
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for V from Equation 3.5into Equation 3.9. This will give an equation involving
only ρ, r andm, as required, and we can then rearrange it to makem the subject.

Combining and rearranging equations

Substituting forV from Equation 3.5into Equation 3.9gives

ρ =
m

4
3π r3

Multiplying top and botom of the fraction by 3 gives

ρ =
3m

4π r3

Reversing this so thatm is on the left-hand side gives

3m

4π r3
= ρ

Multiplying both sides by 4π r3 gives

3m= 4π r3ρ

Dividing both sides by 3 gives

m=
4
3
π r3ρ
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Substituting numerical values

Note that we have used symbols for as long as possible in this question, so as to
avoid numerical slips and rounding errors. However, we are now almost ready
to substitute the values given forr andρ. First we need to convert the values
given into consistent (preferably SI) units:

r = 2.5 mm= 2.5× 10−3 m

ρ = 10.49 g cm−3 = 10.49× 103 kg kg−3 (1.049× 104 kg kg−3 in scientific no-
tation), converting from g cm−3 to kg m−3 in the way described inSection 3.4.4.
Then

m=
4
3
π r3ρ

=
4
3
π

(
2.5× 10−3 m

)3
× 1.049× 104 kg kg−3

= 6.9× 10−4
��m3 kg���m−3

= 6.9× 10−4 kg

Is the answer reasonable?

It is always worth spending a few minutes checking whether the answer you
have arrived at is reasonable. There are three simple ways of doing this (it is not
normally necessary to use all three methods to check one answer):
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1 We can check the units of the answer. We have given units next to all the
numerical values in the calculation, and the units on the right-hand side of the
equation have worked out to be kilograms, as we would expect for mass.

If we had made a mistake in transposing the formula for mass, and had written
it asm= 4

3π r2ρ by mistake, then the units on the right-hand side would have
been m2 × kg m−3 = kgm−1. These are not units expected for mass by itself,
so we would have been alerted to the fact that something was wrong.

Checking units in this way provides a good way of checking that you have
written down or derived an equation correctly; the units on the left-hand side
of an equation should always be equal to the units on the right-hand side. You
can use this method for checking an equation even if you are not substituting
numerical values into it.

2 We can estimate the value (in the way described inSection 3.3), and compare
it with the answer found on a calculator. In this case

m≈
4
3
× 3

(
3× 10−3 m

)3
× 1× 104 kg m−3

≈
4

��3
× ��3× 33 × 10−9

��m3 × 1× 104 kg���m−3

≈ 4× 27× 10−9+4 kg

≈ 100× 10−5 kg

≈ 1× 10−3 kg
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This is the same order of magnitude as the calculated value, so the calculated
value seems reasonable.

3 We can look at the answer and see if it is what common sense might lead us
to expect. Obviously this method only works when you are doing a calcula-
tion concerning physical objects with which you are familiar, but it gives a
sensible check for worked examples like the one we are considering. It seems
reasonable that a silver sphere with a diameter of 0.5 cm might have a mass
of something less than a gram. If you’d arrived at an answer of 1.1× 102 kg
(by forgetting to cube the value given forr) you might have thought that this
mass (equivalent to more than 100 bags of sugar!) was rather large for such a
small sphere.

Note that checking doesn’t usually tell you that your answer is absolutely
correct — none of the methods described above would have spotted small
arithmetic slips — but it does frequently alert you if the answer is wrong.
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Tips for using algebra to solve scientific problems

1 Start by writing down what you know and what you’re trying to find, and use
this information to find appropriate equations to use.

2 Combine, rearrange and simplify the equations, using symbols for as long as
possible so as to avoid numerical slips and rounding errors.

3 When you substitute numerical values, take care with units, scientific notation
and significant figures.

4 Check that your final answer is reasonable, by asking yourself the following
questions:

(a) Are the units what you would expect?

(b) Is the answer similar to the one you have obtained by estimating?

(c) Is the answer about what you would expect from common sense?

Worked example 4.23 shows the use of these tips in solving a different problem,
concerning the conservation of energy. This worked example uses formulae in-
troduced in Box 4.6; you may also find these formulae useful when answering
Question 4.14.
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Box 4.6 The conservation of energy

Energy can never be destroyed, but it is frequently converted from one form to
another. As a child climbs the steps of a slide, he or she gains in gravitational
potential energy; as he or she slides down the slide this energy is converted into
kinetic (movement) energy. As a kettle boils, the electrical energy increases the
energy of the water molecules and so raises the temperature of the water. In both
cases some energy is ‘lost’ to other forms (such as heat to the surroundings and
sound) but very often you can assume that all of the energy initially in one form
is converted to just one other form, and so equate formulae (such as those given
below) for different forms of energy. All forms of energy should be quoted using
the SI unit of energy which is the joule (J), where 1 J= 1 kg m2 s−2.

The kinetic energy (energy of motion),Ek, of an object with a massm moving
at speedv is given by

Ek =
1
2mv2 (4.17)

The gravitational potential energy,Eg, of an object of massm at a height∆h
above a reference level is given by

Eg = mg∆h (4.18)

whereg is the acceleration due to gravity.
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The energy,q, needed to raise the temperature of a massm of a substance of
specific heat capacityc by a temperature∆T is given by

q = mc∆T (4.19)

Worked example 4.23

A lump of putty is dropped from a height of 4.8 m. The putty’s gravitational
potential energy is all converted into kinetic energy as it falls. If, on impact, all
of this kinetic energy is used to raise the temperature of the putty, by how much
does the temperature of the putty rise? Assume that the specific heat capacity
of the putty is 5.0× 102 J kg−1 K−1 and that the acceleration due to gravity is
9.81 m s−2.

Which equations shall we use?

It is tempting to involveEquation 4.17, as the question talks about the putty’s
kinetic energy, but closer inspection of the question reveals that we can assume
that all the gravitational potential energy becomes kinetic energy as the putty
falls, and that all the kinetic energy is transferred to heat energy in the putty on
impact. So we can say that all the gravitational potential energy is transferred to
heat energy; we simply need to setEquations 4.18and 4.19 equal to each other.
We have not been told the mass of the putty, but since the termmappears in both
Equation 4.18 and Equation 4.19 we will be able to cancel this term, which will
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leave us with an equation linkingg, ∆h, c and∆T. We knowg, ∆h andc and are
trying to find∆T.

Combining and rearranging equations

Since we can assume that all the gravitational potential energy,Eg, is transferred
to heat energy,q, we can setEquation 4.18andEquation 4.19equal to each
other.

mc∆T = mg∆h

There is anm on both sides, so we can divide bym to give

c∆T = g∆h

Dividing both sides byc gives

∆T =
g∆h

c

Substituting numerical values

g = 9.81 m s−2

h = 4.8 m
c = 5.0× 102 J kg−1 K−1
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so

∆T =
g∆h

c

=
9.81 m s−2 × 4.8 m

5.0× 102 J kg−1 K−1

=
9.81× 4.8��m�

�s−2 × ��m

5.0× 102
��kg��m2

�
�s−2

���kg−1 K−1

= 0.094 K to two significant figures.

Is the answer reasonable?

In a real question you probably wouldn’t use all the checks described in theblue-
toned boxafter Worked example 4.22, but the answer seems about the size you
might expect (you wouldn’t expect a big temperature rise) and the units have
worked out to be kelvin, as expected for a change in temperature.

Alternatively we can estimate the answer to be

∆T ≈
10 m s−2 × 5 m

5× 102 J kg−1 K−1
≈ 10−1 K

This is the same order of magnitude as the calculated value, so the calculated
value seems reasonable.
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Question 4.14 Answer

A child climbs to the top of a 1.8 m slide and then slides to the ground. As-
suming that all of her gravitational potential energy is converted into kinetic
energy, find her speed as she reaches the ground. Takeg = 9.81 m s−2 and use
appropriate formulae fromBox 4.6.

In Worked example 4.24, the final worked example in Chapter 4, we return to a dis-
cussion of seismic waves travelling through the Earth’s crust (as introduced inBox
3.1). In this example there are three unknown quantities (the distance,d, from the
earthquake, the time,tp, taken for P waves to reach the seismometer and the time,
ts, taken for S waves to reach the seismometer) so we need to combine three equa-
tions to find any of the unknown quantities. You will not be expected to combine
more than two equations together in any questions associated with this course, but
Worked example 4.24 has been included because it summarizes much of what has
been discussed in Chapter 4, and also because it illustrates the usefulness of algebra
in science.

Box 4.7 Locating an earthquake

Figure 4.4shows a seismogram recorded at the British Geological Survey in Ed-
inburgh on 12 September 1988. It is possible to see the points at which P waves
and S waves first reached the seismometer. We can assume that these seismic
waves originated in an earthquake somewhere. But where was the earthquake
and when did it occur? (although the recording was made at 2.23 p.m., it does
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not tell us the time at which the earthquake occurred, since the waves will have
taken some time to reach the seismometer from the point of origin or focus of
the earthquake).

Figure 4.4shows that the P waves reached the seismometer 20 seconds before
the S waves.

We assume that the P waves travelled with an average speed,vp = 5.6 km s−1

and that the S waves travelled with an average speedvs = 3.4 km s−1 (these val-
ues are typical for the rocks of the Earth’s crust, through which the waves will
have been travelling).

average speed=
distance travelled

time taken

so vp =
d
tp

(4.20)

and vs =
d
ts

(4.21)

whered is the distance from the earthquake,tp is the time taken for P waves to
travel to the seismometer andts is the time taken for S waves to travel to the
seismometer.
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Worked example 4.24

Use the information given inBox 4.7to find the distance from Edinburgh to the
focus of the earthquake recorded on the seismogram shown inFigure 4.4.

Which equations shall we use?

We know thatvp =
d
tp

(Equation 4.20) and vs =
d
ts

(Equation 4.21), where

vp = 5.6 km s−1 andvs = 3.4 km s−1, but d, tp and ts are all unknown, so we
need another equation.

Although we don’t know the travel time of the two types of wave, we know that
the difference in the arrival time of the two waves is 20 seconds, so we can write

t = ts− tp (4.22)

wheret = 20 s.

Equations 4.20, 4.21 and 4.22 give us three equations containing the three un-
knownsd, tp and ts and we need to combine and rearrange them to give an
expression ford.

Combining and rearranging equations

Multiplying both sides ofEquation 4.20by tp gives

tpvp = d
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Dividing both sides byvp gives

tp =
d
vp

Similarly, fromEquation 4.21,

ts =
d
vs

Substituting forts andtp in Equation 4.22gives

t = ts− tp

=
d
vs
−

d
vp

= d

(
1
vs
−

1
vp

)
Combining the fractions by makingvsvp a common denominator (Section 4.2.1)
gives

t = d
(vp − vs)

vsvp

Reversing the equation so thatd is on the left-hand side gives

d
(vp − vs)

vsvp
= t
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Multiplying both sides byvsvp gives

d (vp − vs) = t vsvp

Dividing both sides by (vp − vs) gives

d =
t vsvp

vp − vs

Substituting numerical values

Substitutingt = 20 s,vp = 5.6 km s−1 andvs = 3.4 km s−1 gives

d =
20 s× 3.4 km s−1 × 5.6 km s−1(

5.6 km s−1 − 3.4 km s−1)
=

20 s× 3.4 km s−1 × 5.6 km s−1

2.2 km s−1

= 1.7× 102 km to two significant figures

The units work out to be kilometres since�s× km�
�s−1 ×��km�

�s−1

��km�
�s−1

= km

Is the answer reasonable?

The units have worked out to be kilometres as expected for a distance. If we had
converted the speeds to values in ms−1, we would have obtained a value ford in
metres (d = 1.7× 105 m).
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In this case it is easy to check that the answer is reasonable; many members of
the public reported a small earthquake on that day in Ambleside in Cumbria.
Ambleside is 170.5 km from Edinburgh!

In general, to use this method to uniquely identify the location of an earthquake
you need to repeat the exercise using data received at other seismometers else-
where on the Earth’s surface.
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4.5 Learning outcomes for Chapter 4

After completing your work on this chapter you should be able to:

4.1 demonstrate understanding of the terms emboldened in the text;

4.2 rearrange an algebraic equation to make a different variable the subject;

4.3 simplify an algebraic expression;

4.4 add, subtract, multiply and divide algebraic fractions;

4.5 re-write an algebraic expression so that the brackets are removed;

4.6 factorize a simple algebraic expression;

4.7 eliminate one or more variables so as to combine equations together;

4.8 check the answer to a problem by checking units, estimating an answer, or
comparing the answer with what would be expected from common sense.
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Using Graphs 5
The well-known saying that a picture is worth a thousand words reflects the fact
that human beings can derive a lot of information from pictorial representations of
a situation. When scientists want to condense data into a visual form that conveys
information at a glance, they most often turn to a graphical representation. Graphs
are essential tools for scientific work: they can illustrate clearly the nature of the
relationship between different quantities, they make it easy to see variations and
trends and sometimes they can be used to derive other interesting quantities or even
equations.

This chapter is mainly about the use and interpretation of graphs, rather than tech-
niques for plotting them (which are more the province of courses in practical sci-
ence). However, an understanding of the kind of information that can be derived
from different types of graph will be of considerable help when you do come to plot
your own data in the future.
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5.1 Graphical representations

Although all graphs share certain characteristics, there are nevertheless a number
of different ways in which data may be presented graphically. Let us start by con-
sidering some specific examples and the features they illustrate.

5.1.1 Bar charts and histograms

‘Bar charts’ are commonly used to summarize data that require immediate com-
parison between various discrete categories. Examples of discrete categories are
human eye colour, blood group, countries and planets. The categories are listed
along a reference line, usually a horizontal one (the so-called horizontalaxis). The
number or percentage of things or events falling into each category is represented
by a bar; the scale for these bars, most commonly expressed either as a number
or a percentage, is given on a second reference line, at right angles to the first. If
the categories are listed along the horizontal axis, the bars will therefore be scaled
along the vertical axis.Figure 5.1in Box 5.1 is an example of how ecological data
might be presented in the form of a bar chart.
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Figure 5.1: Bar chart showing the number of
herbivorous insect species supported by some
native and introduced tree species in the UK.

Box 5.1 Insects and trees

Figure 5.1 shows the number of species of herbiv-
orous insects associated with eight different types
of native and introduced tree. Tree species that
have been present in the country for a long time
and are widely distributed often support the largest
variety of insects.

Question

Roughly how many species of insect are as-
sociated with hawthorn?

Answer

About 220.

The willows and oaks, which are among the com-
monest tree species in the UK, can support over
400 insect species. Sycamore, which is just as
widely distributed but came to this country more
recently, supports only around 50 species, and
the evergreen holm oak, which was introduced a
mere 400 years ago, supports fewer than 10 insect
species. However, one should not generalize too
far from these examples. There are other native trees, such as holly and yew, which also support very
few insect species, many of which are specialist feeders not found on other trees.
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Figure 5.2: Histogram representing the heights
of 100 of the same variety of iris. The hori-
zontal axis is divided into intervals to represent
different height groups.

A histogramis similar to a bar chart in that numbers or
percentages are again commonly plotted vertically, but
on a histogram the horizontal axis is used to represent a
continuously variable quantity such as height or mass.
The purpose of a histogram is to show how the data are
distributed into groups across a continuous range. Fig-
ure 5.2 shows a histogram which presents the results of
measurements taken of the height of 100 irises. In prin-
ciple, a plant selected at random could be of any height.
Of those measured, a few specimens are particularly tall
and a few are particularly short, but the majority are of
intermediate height. This is typical of the natural varia-
tion in populations, and Chapters 8 and 9 deal with the
statistical techniques that are required to analyse such
variations. Comparing Figure 5.2 withFigure 5.1, you
will notice that on the bar chart the bars do not touch
(because they refer to different categories), whereas on
the histogram the columns do touch, because all possi-
ble heights are represented within the groups marked on
the horizontal axis. In Figure 5.2 the groups are of equal
intervals, and this is common practice (though there are
also ways of constructing histograms using unequal intervals). Note that the whole
range of possible heights is covered, whether or not any of the measured plants
actually fell into a particular group.
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5.1.2 Graphs
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Figure 5.3: Annual fluctuations in the population of Winter
Moth (Operophtera brumata) caterpillars feeding on oak trees in
Wytham Wood near Oxford.

On a histogram, the horizontal axis is
divided into intervals. On agraph, in
contrast, the horizontal axis is scaled
to represent a continuum. In Figure
5.3, for example, time is plotted along
the horizontal axis, with the years be-
ing evenly spaced. This graph clearly
shows the large variation in caterpil-
lar numbers that can occur from year
to year, though no overall trend can
be discerned. It is not necessary to
join the data points on a graph of this
type; if this is done, as here, the lines
have no significance beyond simply
emphasizing the downturn or upturn
in the numbers between one year and
the next.
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Figure 5.4: Average monthly temperatures for
(a) Irgiz, Kazakhstan, and (b) Paris.

Figure 5.4a illustrates that negative, as well as positive numbers can be plotted on
a graph; in this case the vertical axis covers temperatures from−20 ◦C to+25 ◦C.
The data points have been joined, but the lines are only indicators of rises or falls
in average temperature between one month and the next; they could not be used to
predict the temperature on any particular day.

The vertical axis of Figure 5.4a is labelled to show that the quantity plotted is the
average temperature measured in◦C. Whatever the variable we want to display
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graphically, we always have to take account of its units in such a way as to plot
a pure number(i.e. a number without units) on the graph. The labelling on the
vertical axis of Figure 5.4a could have been written more succinctly as ‘average
temperature/◦C’, and this form of labelling has been used on the vertical axis in
Figure 5.4b. The temperature values are divided by their unit (◦C), to give pure
numbers that can be plotted on the graph:

e.g.
2.3��

◦C

��
◦C

= 2.3

It is conventional always to use ‘quantity divided by its units’ (usually in the
form ‘quantity/units’) in labelling the axes of graphs.

Box 5.2 Atmospheric pollution

In industrialized countries, air pollution was historically associated mainly with
emissions of smoke and sulphur dioxide arising from the combustion of fossil
fuels (chiefly coal) for domestic heating and industrial purposes. The resulting
‘smogs’ that occurred in Northern European cities for several centuries were
the result of this kind of pollution. The problem became particularly acute in
London in the 1950s, leading to the UK Clean Air Act of 1956. Subsequent Eu-
ropean directives have further reduced emission limits and national emissions of
sulphur dioxide have fallen dramatically — by about 80% since 1962. Figure

Back J I 240



Contents �

5.5 shows air quality data recorded in the Tameside district of Greater Manch-
ester between 1963 and 2000.
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Figure 5.5: Average annual concentrations of sulphur dioxide in Tameside,
Greater Manchester, 1963–2000.

Note how the vertical axis in Figure 5.5 is labelled. Concentrations have been ex-
pressed in micrograms per metre cubed (µg m−3), so the quantity represented along
the vertical axis has beendividedbyµg m−3, in the same way as the temperature in
Figure 5.4bwas divided by◦C. But in Figure 5.5, the quantity has been divided not
only by its units but also by a power of ten. This can be a useful strategy in graph
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plotting because it allows manageable numbers to be used in labelling the divisions
on the axis. To obtain the actual value of a quantity corresponding to a particular
tick mark on the axis, we have to multiply the value given at the mark by the power
of ten and by the units. For example, the mark labelled 1.5 represents:

1.5× 102 µg m−3 = 150µg m−3

Another way of looking at this is to say that a measured concentration has first been
expressed in scientific notation:

150µg m−3 = 1.5× 102 µg m−3

and then reduced to a pure number by dividing it by the power of ten and the units:

1.5×�
�102

��µg���m−3

�
�102

��µg�
��m−3

= 1.5

Figure 5.5gives a clear visual image of a downward trend in sulphur dioxide con-
centration, but occasional blips such as occurred in 1990 mean that it is still not pos-
sible to use earlier data to predict future concentrations with any certainty. There
are simply too many variables that can affect the concentration of atmospheric sul-
phur dioxide. In other circumstances, for instance when the two quantities plotted
are linked by an equation, itis possible to use a graph for predictive purposes.

As an example of linked quantities, consider the data inTable 5.1relating the mass
of a series of aluminium spheres to their diameter. The data are plotted inFig-
ure 5.6. Notice that the columns of the table have been labelled according to the
same convention used to label the axes of the graph.
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Diameter/10−2 m Mass/10−3 kg

0.4 0.1

0.5 0.2

0.7 0.5

1.0 1.4

1.3 3.1

1.5 4.8

1.8 8.2

2.0 11.4

Table 5.1: Masses of aluminium spheres
of different diameters
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Figure 5.6: Graph of the masses of aluminium
spheres of different diameters.
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Question

What is the diameter in centimetres of the smallest sphere?

Answer

The diameter of the smallest sphere is obtained by multiplying 0.4 by the power
of ten and the units:

diameter= 0.4× 10−2 m = 0.4 cm

In fact, the massM of a sphere of diameterd, made of material of densityρ, is
given by the equationM = πρd3/6. The data have been calculated and the graph
constructed using this formula, so all the points lie on a smooth curve. When the
axes of a graph represent quantities that are connected by an equation, the data
points should never be joined in the jagged point-to-point way used inFigure 5.3
andFigure 5.4. Instead, a smooth line should be drawn through them. As you will
see later in this chapter, a line described as ‘smooth’ may be straight, or may be
curved in any direction, or may have humps and dips. Smoothness depends on the
absence of abrupt changes in direction, not on shape.

Once the line has been drawn onFigure 5.6, we can use the graph to find interme-
diate values. This graph has been drawn on graph paper to make it easier to read
values from it. You should start by working out the scale used on each axis. On this
occasion tick marks have been drawn every 0.5× 10−2 m on the horizontal axis, so
each feint grid line represents 0.05× 10−2 m; on the vertical axis the tick marks are
every 2.0× 10−3 kg so each feint grid line represents 0.2× 10−3 kg.
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Question

What would be the mass of an aluminium sphere of diameter 1.6 cm?

Answer

To find the mass corresponding to a diameter of 1.6 cm (i.e. 1.6× 10−2 m) we
need to find the point on the horizontal axis representing this diameter and draw
a line vertically upwards from there until it meets the curve. We then draw a
line horizontally from that intersection to meet the vertical axis and read off the
corresponding mass. PrintFigure 5.6and draw these lines directly on to it using
the grid lines on the graph paper to help you. You should find that the mass
corresponding to a diameter of 1.6 cm is 5.8× 10−3 kg (i.e. 5.8 g).

This process of readingbetweenpoints plotted on a graph, in order to find corre-
sponding intermediate values of the plotted quantities, is calledinterpolation.

Provided we are sure that the equation connecting the two quantities is valid even
outside the plotted range, we can also extend the line on the graph to determine
corresponding values of the quantities that are larger or smaller than those plotted.

Back J I 245



Contents �

Question

What would be the mass of an aluminium sphere of diameter 2.1 cm?

Answer

To find the mass corresponding to a diameter of 2.1 cm (i.e. 2.1× 10−2 m) we
need to find the point on the horizontal axis representing this diameter and draw
a line vertically upwards from there. Then (and this is the difficult bit!) we
have to extend the curve until it meets this vertical line. We then draw a line
horizontally from that intersection to meet the vertical axis and read off the
corresponding mass. PrintFigure 5.6and try drawing the lines. If your drawing
skills are high, you should obtain a mass of 13.1× 10−3 kg, but most people find
it extremely difficult to draw smooth curves freehand, so if you obtain a value
between 12.8× 10−3 kg and 13.4× 10−3 kg you have done well.

This process of extending a graph beyond the highest or lowest data points, in order
to find corresponding values of the plotted quantities outside the original range, is
calledextrapolation. Extrapolation is always particularly difficult in regions where
graphs curve, or have very steep or very shallow slopes. The latter situation applies
to Figure 5.6 in the region where the diameter becomes very small. It would be
practically impossible to determine by extrapolation the mass corresponding to a
diameter of, say, 0.2 cm. All we can legitimately say is that if the diameter is zero,
the mass will also be zero, so the curve must go through the point at which the axes
meet. On any graph the point at which both plotted quantities are equal to zero is
called theorigin.
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The fact that the graph in Figure 5.6 is curved makes both interpolation and ex-
trapolation more uncertain than they would be if the graph was a straight line. In
Question 5.1 you can practice these processes using a graph that is easier to deal
with.

Question 5.1 Answer

Five measurements have been made to inves-
tigate the way in which the voltage across the
terminals of a power supply varies according
to the current flowing in the circuit. The data
are plotted on Figure 5.7. (The SI unit of
voltage is the volt, symbol V; the SI unit of
electric current is the ampere, symbol A.)

(a) What is the value of the voltage when the
current is 1.5 A?

(b) What is the value of the voltage when the
current is zero?

(c) What is the value of the current when the
voltage is zero?
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Figure 5.7: Measurements of voltage against current
for the circuit in Question 5.1.
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5.2 Straight-line graphs

As you have seen, it is possible to obtain useful insights and information from
curved graphs such as the one in Figure 5.6, and we will return to the interpretation
of curved graphs in Section 5.4. However, if data can be presented in the form of
a straight-line graph, the analysis becomes more straightforward. As you will have
discovered for yourself by doing Question 5.1, if you need to determine the values
of quantities lying between those that were actually measured, it is slightly easier
to perform the interpolation on a straight line than on a curve. And if you need to
estimate values of quantities outside the original range of measurements, it iscon-
siderablyeasier to extrapolate a straight line than a curve. Furthermore, it is often
possible to use a straight-line graph to obtain additional quantities, other than those
measured. For example, the range of speeds at which the Earth’s tectonic plates
move was given inBox 3.1, but it is not possible to make a direct measurement
of these speeds. Scientists have to deduce them by measuring other quantities and
plotting graphs of their results.
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5.2.1 The gradient of a straight-line graph

Age of rock/Ma Separation distance/km

0.78 17
0.99 18
1.07 21
1.79 32
1.95 39
2.60 48
3.04 58
3.11 59
3.22 62
3.33 65
3.58 68

Table 5.2: Positions of some dated areas either
side of the mid-Atlantic ridge south-west of Ice-
land

Box 5.3 gives a brief outline of the phenomenon of
sea-floor spreading, the action of which is to split the
Earth’s surface and move sections of the crust apart. In
order to work out the rate at which the separation takes
place, Earth scientists date the rocks and measure the
separation of rocks of the same age.

Table 5.2 shows some typical data. (Remember from
Section 2.2 that Ma is the abbreviation for ‘million
years’.)

As discussed inSection 5.1.2, labelling the left-hand
column as ‘Age of rock/Ma’, and the right-hand column
as ‘Separation distance/km’, means that pure numbers
can be entered in each row of the table.
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Figure 5.9: Graph of data in Table 5.2. The black
line represents the ‘best-fit’ to the data. The red lines
show that ocean crust of age 3.4 Ma has separated by
65 km.

Figure 5.9 shows a graphical representation of
the data fromTable 5.2. Although it is obvious
just from the table that the separation distance
increases with age, the graph immediately gives
more information. First, it tells us about the rela-
tionship between the quantities plotted: the points
lie pretty much on a straight line. The relationship
between the age and the distance is thus said to be
linear. Secondly, the graph provides a good test
of the reliability of the data. It is clear that there
are no ‘rogue points’ lying well off the straight
line. However, the points do not all lieexactly
on a single line. The black line that has been
drawn through them is the ‘best-fit line’ — i.e.
the line that is most representative of the data as
a whole. Best-fit lines usually only go through
some of the data points (and need not necessarily
go through any); there should be approximately
the same number of points above and below the
line. The line has also been drawn to go through
the origin, the point at which age is 0 Ma and
distance is 0 km. This has been done because
it is clear that newly-formed crust will not have
moved any distance.
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The aim of collecting the data for age and separation distance was to calculate
the rate of sea-floor spreading and this calculation can be made directly from the
graph. For an object moving at a steady rate, the speedv is related to the distanced
travelled in a timet by the equation:

v = d/t

The red lines onFigure 5.9show that, according to the best-fit to the data, ocean
crust of age 3.4 Ma has separated by 65 km. So the average spreading rate is:

vav = 65 km/3.4 Ma= 19 km Ma−1 (to 2 significant figures)

Now you could of course carry out similar calculations using any of the individual
data pairs in Table 5.2. For example from the first data pair:

v1 = 17 km/0.78 Ma= 22 km Ma−1

and from the fourth pair:

v4 = 32 km/1.79 Ma= 18 km Ma−1

The first pair corresponds to a point that lies above the best-fit line and therefore
gives a value ofv that is higher than that calculated from the graph, while the point
corresponding to the fourth data pair lies below the line and consequently gives
a value ofv that is lower than that calculated from the graph. If we wanted to
calculate the average spreading rate directly from the tabulated data, the best we
could do would be to calculate values from each of the eleven data pairs in the table
(i.e. v1 to v11) and then average all these speeds. Plotting a graph therefore saves a
tedious amount of calculation: using the best-fit line allowsvav to be calculated in
a single step. In other words, a graph provides a reliable way of averaging results.
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Question

What can you deduce from the fact that all the data points are close to the best-fit
straight line, with some points lying above and others below the line?

Answer

The rate of spreading has remained roughly constant over time. Again the graph
provides this information at a glance, whereas it would require a lot of calcula-
tion to deduce it from the raw data in Table 5.2.

‘rise’
= 100m

‘run’ = 300m

Figure 5.10: Vertical cross-section
through a road. The gradient of
this road is given by: ‘rise’/‘run’ =
100 m/300 m,
i.e. gradient is 1/3 or 33%.

Another way of describing this process of calculating the spreading
rate from the distance–time graph is to say that we have determined
the ‘slope’ orgradientof the best-fit line. Figure 5.10 shows the
analogy with the gradients used to characterize steep hills, which
you may have seen on road signs. The gradient is defined in this
context as the ‘rise’ (the total change in vertical distance) divided
by the ‘run’ (the total change in horizontal distance). It is important
to remember that the actual distance travelled along the road is not
involved in the calculation. Note that in this particular case the
gradient has no units, because it is calculated by dividing a length
by another length. In general, however, gradients must, as with the
example of Figure 5.9, be given their correct units. In the case of
a road, it is common to quote the gradient in the form of a percentage (33% in the
case of Figure 5.10). With a graph it is more usual to quote the gradient as a single
number.
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The gradient of a straight line is the same
all the way along it, so any two points on
the graph can be used to define the rise
and the corresponding run. If, as is the
case in Figure 5.11a, a graph goes through
the origin, it may be convenient to use that
fact in calculating the gradient; here the
rise is (y2 − 0) and the run is (x2 − 0), so
there are no subtractions to do. This was
effectively the technique used in calculat-
ing the sea-floor spreading rate from Fig-
ure 5.9, when just one point on the best-fit
line was chosen from which to calculate
the speed.

rise
=y2 – 0

run =x2 – 0

y

y2

x2

0 x

Figure 5.11a: This straight line goes through the origin, so

its gradient=
y2 − 0
x2 − 0

=
y2

x2
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However, not all graphs go through the
origin, so the method illustrated by Fig-
ure 5.11a is not always applicable. Figure
5.11b shows the most general method of
determining the gradient of a straight-line
graph, which can be used whether or not
the line goes through the origin.

For a straight-line graph in which the
value y2 on the vertical axis corre-
sponds to a valuex2 on the horizon-
tal axis, and a valuey1 on the vertical
axis corresponds to a valuex1 on the
horizontal axis:

gradient=
rise
run
=

y2 − y1

x2 − x1

rise
=y2 – y1

run =x2 – x1

y

y2

x20 x1

y1

x

Figure 5.11b: For any straight line, the gradient=
y2 − y1

x2 − x1

Whatever points are chosen for determining the rise and run, it is always a good
idea to choose ones that are easy to read on at least one axis and preferably on both
axes! It is also good practice to choose points as widely separated as possible.
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Worked example 5.1

When light is shone onto certain metals, electrons are emit-
ted from the metal. This phenomenon is called the photo-
electric effect, and will be described in more detail in Box
5.4. Figure 5.12a shows a graph arising from a photoelec-
tric experiment on a particular metal, relating the energy of
the ejected electrons to the frequency (i.e. the colour) of
the light falling upon the metal. The energy is measured in
joules (symbol J) and the frequency in units of s−1 (which
are better known as hertz). What is the gradient of this
graph?

Answer

It is clear that even if the line were to be extrapolated to
smaller values of energy and frequency it would not go
through the origin, so the method shown inFigure 5.11b
is the appropriate one to use in calculating the gradient.
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Figure 5.12a
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From the lines drawn on Figure 5.12b,

gradient=
(9.2× 10−19 J)− (2.6× 10−19 J)

(2.0× 1015 s−1) − (1.0× 1015 s−1)

=
(9.2− 2.6)× 10−19 J

(2.0− 1.0)× 1015 s−1

=
6.6× 10−19 J

1.0× 1015 s−1

= 6.6× 10(−19−15) J

s−1

= 6.6× 10−34 J s (remembering that
1

s−1
= s)

Note that on this occasion the line drawn passes through,
or very close to, all the data points. If the best-fit linedoes
not go through all the data points, care must be taken to
calculate the gradient of the graph from the line rather than
from just two data points.
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Figure 5.12b
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Question 5.2 Answer

The speed of seismic waves (seeBox 3.1) may be calculated by measuring the
time for the waves to reach measuring instruments at different distances from
the epicentre of the earthquake. Some typical data from such a series of mea-
surements on P waves are plotted in Figure 5.13. Use the graph to calculate the
average speed of the P waves.
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Figure 5.13: Graph showing how long it takes for P waves from a shallow-focus
earthquake to reach three detectors at different distances from the epicentre. (Note
that the focus is the point within the Earth at which the seismic event takes place,
and the epicentre is the point on the Earth’s surface vertically above the focus.)
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5.2.2 Dependent and independent variables

In Figure 5.13, the time was deliberately plotted on the horizontal
axis and the distance travelled on the vertical axis, so that the gra-
dient would be equivalent to the seismic wave speed. However,
for this particular example, plotting the graph this way round is
not standard practice. The convention that scientists follow is to
plot on thehorizontalaxis the variable that is under their control.
Because they can choose the values of this quantity, it is called the
independent variable. In the case of the measurements described
in Question 5.2, there is a choice (within reason) of where the
seismic wave detectors are located; therefore distance from the
epicentre is the independent variable. The time taken for the P
waves to arrive depends on where the detectors have been posi-
tioned, so this is called thedependent variable. According to the
convention, the dependent variable is plotted on thevertical axis.
Figure 5.14 shows the same data as Figure 5.13, but replotted so
that the convention is followed. The three points correspond to
those on Figure 5.13 and a best-fit line has again been drawn.

The seismic wave speed can be calculated equally well from Fig-
ure 5.14 as from Figure 5.13.
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Figure 5.14
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Question

What will be units of the gradient of the graph inFigure 5.14?

Answer

The gradient will have units of seconds divided by kilometres, which can be
written either as s/km or as s km−1.

Question

In Question 5.2, you calculated the speed of the seismic wave in units of km/s
(or km s−1). How are the units s km−1 related to these units of speed?

Answer

The units s km−1 and km s−1 are reciprocals: i.e.
1

s km−1
= km s−1.

Therefore to calculate the speed of the P waves from the time against distance graph
of Figure 5.14, we need to determine the gradient and then take its reciprocal.

Question 5.3 Answer

UseFigure 5.14to determine the average speed of the seismic waves. Remem-
ber to use the correct units at each stage of your calculation. Does your final
answer agree with the value you obtained inQuestion 5.2?
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5.2.3 Interpreting straight-line graphs and gradients

The graphs we have looked at so far in this section
have all sloped up from left to right. But graphs
can slope the other way too. Figure 5.15 shows
the result of measuring the depth of snow in a par-
ticular location over a period of time, plotted on a
graph of depth against time.

When describing a graph, the convention is to
state the dependent variable first; a graph of
‘depth against time’ therefore plots depth on
the vertical axis and time on the horizontal axis.

For the line drawn in Figure 5.15, gradient is given,
as before, by:

gradient=
rise
run
=

y2 − y1

x2 − x1

time/hours

5

0 1 2

d
e

p
th

/c
m

3 4 5

10

15

20

25

Figure 5.15: Depth of snow measured over a five-
hour period.

If x1 is 1 hour andx2 is 4 hours, the correspondingy values arey1 = 20 cm and
y2 = 5 cm, i.e.x2 is greater thanx1 buty1 is greater thany2. This means that:

gradient=
(5− 20) cm
(4− 1) hours

=
−15 cm
3 hours

= −5 cm hour−1

In other words, the gradient is negative.
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Question

What physical meaning do you attach to the gradient in this context?

Answer

The graph shows that depth is decreasing with time — in other words the snow
is melting. The negative value of the gradient conveys this same information.
The gradient is constant over the time during which the measurements have been
made, so the snow is melting at a steady rate.

Now look at Figure 5.16, which shows the variation of distance from
a given point with time, for four objects A to D moving in a variety
of situations. A scientific way to say this is that the graphs all show
distance ‘as afunctionof’ time, or d as a function oft.

In general, it is the dependent variable (which by convention is plot-
ted along the vertical axis) that is described as being a function of
the independent variable (which is plotted along the horizontal axis).

So in the situations shown in Figure 5.16, time is the independent vari-
able: the experimenter has chosen specific times at which to make the
measurements and has recorded the position of the object at those times.

As withFigure 5.13, the gradient of each line gives the speed with which
that particular object is moving.

0 t

d

A

B

D

C

Figure 5.16
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Question

Which, if any, objects are moving with constant speed? Of these,
which is travelling the most quickly?

Answer

The gradients of the distance–time graphs for objects A and C are
constant, so their speed is constant. The gradient of the line for
object A is greater (i.e. the distance–time graph is steeper) than that
for object C, so A is moving at a higher speed than C.

Question

What is happening to object B? What is the gradient of the line for
object B on the graph?

Answer

For object B the distance travelled is not changing with time. The
most likely explanation of this is that the object is stationary. On
the graph for this object, the rise is always zero, so the gradient of
the graph is also zero. This is simply another way of saying that its
speed is zero.
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Figure 5.16
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Question

What is happening to object D?

Answer

The gradient for object D gradually decreases (i.e. gets less steep). In other
words the object is slowing down.

Question 5.4 Answer

The lowest level of the Earth’s atmosphere is called the
troposphere. Figure 5.17 shows the variation in temper-
ature of the troposphere from sea-level to an altitude of
about 2.5 km. Estimate to two significant figures the
gradient of this graph. (Because you are only being
asked for an estimate, you do not need to attempt great
precision in reading values off the graph, but you should
be careful over signs and units.) Describe clearly, in one
sentence, what your result means. altitude/km
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Figure 5.17
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Question 5.5 Answer

At higher levels in the troposphere, the tempera-
ture drops still further. Figure 5.18 shows the vari-
ation in temperature for altitudes between 4 km
and 11 km above sea-level. Estimate to two sig-
nificant figures the gradient of this graph. Does
your answer agree with that forQuestion 5.4?
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Figure 5.18
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5.3 The equation of a straight line

In the preceding sections, you saw how useful information can be derived from a
straight-line graph by interpolation, extrapolation or calculation of the gradient. But
this does not exhaust the potential of a graph as a tool: it becomes even more useful
when it can be matched to an equation.

5.3.1 Proportional quantities

Two quantities are said to beproportionalto each other, or more precisely to be
directly proportionalto each other, if multiplying (or dividing) one by a certain
amount automatically results in the value of the other being multiplied (or divided)
by the same amount. If I buy 500 litres of heating oil I pay twice as much as if I had
bought 250 litres, but one-half as much as if I had bought 1000 litres — assuming
that on such amounts there is no bulk discount. The cost is directly proportional to
the volume. We can write this succinctly in the form:

total cost∝ volume

where the symbol∝ stands for ‘proportional to’. To determine the total cost of
something we multiply the number of items we are buying by the price per item, so
we can turn our original proportionality relationship into an equation of the form:

total cost= (cost per litre)× (volume in litres)
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We are assuming that the cost per litre is constant however big the delivery. This
constant factor, which is required to turn the proportionality into an equation, is
called theconstant of proportionality.

Now consider how this relationship between cost and volume appears on a graph,
such as that plotted in Figure 5.19. If I don’t buy any oil, the cost is zero (but the
heating doesn’t work!), so the graph must go through the origin. If I buy 500 litres
it costs £100, and 1000 litres cost £200.
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Figure 5.19: The cost of heating oil.
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Question

What is the gradient of this graph? What does that value represent?

Answer

The gradient is
£(200− 0)

(1000− 0) litre
=

£200
1000 litre

= £0.20/litre = 20 pence/litre

In other words the gradient represents the cost per litre. The gradient of the
graph is the constant of proportionality between total cost and volume of oil.

Generalizing from this example:

if y = kx, wherey andx are variables andk is a constant,

theny is said to be directly proportional tox,

i.e. y ∝ x.

A graph of y againstx will go through the origin and have
gradientk, as illustrated in Figure 5.20.

Graphs like Figure 5.20, that by their shape show the nature of
the relationship between quantities but do not have scales marked
on the axes, are called ‘sketch graphs’. They can be very use-
ful for illustrating ideas, without the need for accurate plotting or
drawing.

y = kx

gradient = k

y

x0

Figure 5.20: A graph ofy = kx
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Question 5.6 Answer

Figure 5.21 shows the graphs corresponding to two dif-
ferent relationships between a variablev and another
variablez. The quantitiesr ands are constants. Which
is larger,r or s?

v = rz

v

z0

v = sz

Figure 5.21: Two proportional relation-
ships:v = rz andv = sz.
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Question 5.7 Answer

Figure 5.22 shows three sketch graphs. Which of them represents a relationship
between directly proportional quantities?

f

0 g

(a)

a

0 b

(b)

u

0 z

(c)

Figure 5.22: Sketch graphs for use with Question 5.7.
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5.3.2 A general equation for a straight line

Returning to the example of the oil delivery, suppose a different company decided
that it would sell at a lower cost per litre, but would impose a fixed delivery charge
in addition to the price of the oil. This situation is represented by an equation of the
form

total cost= (cost per litre× volume in litres)+ delivery charge

and this is plotted on the graph in Figure 5.23.
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Figure 5.23: Graph of the cost of heating oil as a function of volume delivered.
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Question

FromFigure 5.23, estimate both the price per litre and the delivery charge.

Answer

The cost per litre is still given by the gradient of the graph, which is this case is
approximately

£(200− 25)
(1000− 0) litre

=
£175

1000 litre
= 17.5 pence/litre

The fixed charge can be estimated from the point at which the line crosses the
vertical axis: at this point, there is no charge for oil (since the volume is zero) so
the fixed charge represents the only contribution to the total cost. The delivery
charge is therefore £25.

Note that what this company is effectively doing is giving a discount for bulk
buying compared to the arrangement described by the graph ofFigure 5.19. For
a delivery of 1000 litres, the cost is identical whichever company is used. For
less than 1000 litres, it would be cheaper to buy from the first company. For
volumes larger than 1000 litres the second company offers the better deal.
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Generalizing from this example, if two quantitiesy andx are re-
lated by an equation of form

y = mx+ c (5.1)

wherem andc are constants, then a graph ofy againstx will be
a straight line that does not go through the origin. The graph will
have gradientm. And whenx = 0, theny = c, so the graph crosses
the vertical axis atc. The point at which a line on a graph crosses
an axis is called theinterceptof the line with that axis. This is
illustrated in Figure 5.24.

The equation of a straight line is commonly written in the form

gradient of line

intercept of line
with vertical axis

plotted on
vertical axis

plotted on
horizontal axis

y = mx + c

y = mx + c

gradient = m

y

x0

c

Figure 5.24: A straight-line graph
with gradientm and interceptc on
the vertical axis.
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Although the general equation of a straight line is most usually written in the form
y = mx+c, it is important to remember that the letters used and their order are quite
arbitrary:v = u+at is also the equation of a straight line. Also, althoughy = mx+c
does not contain any minus signs, both the gradientmand the constantc might have
a negative value.

Question

If v = u + at andv is plotted againstt what, in terms of the symbols in the
equation, are the values of the gradient of the graph and the intercept on the
vertical axis?

Answer

v = u + at can be rearranged asv = at + u. Comparison with the standard
equation of a straight line

=               +

gradient

=               +

intercept

y m x c

v uta

shows that the gradient of a plot ofv againstt is a and the intercept with the
vertical axis isu.

An example of how the gradient and intercept of a straight line may be used to
derive quantities of real interest to scientists is given in Box 5.4.
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Box 5.4 Einstein’s photoelectric equation

When light of particular colours is shone onto certain
metals, electrons are emitted from the metal, as shown
diagrammatically in Figure 5.25. Some of the energy
of the light is used to remove the electrons from the
metal; the amount of energy required to do this varies
from metal to metal, and is called the ‘work function’
φ of the metal. Any energy left over is given to the
escaping electrons:

energy of
incident
light

 =

energy required to
remove electrons
from the metal

 +

energy of
ejected
electrons


This word equation can be rearranged as:

energy of
ejected
electrons

 =

energy of
incident
light

 −

energy required to
remove electrons
from the metal



emitted
electrons

metal

Figure 5.25: The photoelectric effect.
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The colour of light is characterized by a quantity called its frequencyf ,
and the energy of the incoming light is then given byh f , whereh is a
constant called Planck’s constant. So the word equation above can be
rewritten in the form:

E = h f − φ

where the work functionφ is a positive constant for any given metal.
You saw inFigure 5.12a typical graph of energy,E, against frequency,
f . Comparison with the standard equation for a straight line shows how
such a graph could be used to determine bothh andφ. (Notice that
the photoelectric equation contains a minus sign and therefore has to be
slightly rearranged to allow direct comparison.)

=               +

gradient

=               +

intercept

y m x c

E h f (−φ)

The gradient calculated inWorked example 5.1(i.e. 6.6× 10−34 J s) is
therefore the value of Planck’s constanth, and extrapolation of the line
in Figure 5.12to its intersection with the vertical axis could be used to
determine the work function of the metal.
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5.4 Graphs of different shapes

The previous section showed that it is a relatively straightforward
matter to deduce the equation linking two variables when their
relationship can be represented by a straight-line graph. But of
course not all the quantities of interest in science are linearly
related to one another. Suppose you were to plot one variable
against another and obtained not a straight line but a curve. How
could you then determine the relationship between the variables?

Imagine for example that you had taken a set of circular objects
with radii 1, 2, 3, . . . 6 cm and measured their respective areas.
Had you plotted the areaA as a function of radiusr you would
have obtained a graph like that in Figure 5.26.
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Figure 5.26: AreaA of circles plot-
ted as a function of their radiir.

Question

What is the equation relating the areaA of a circle to its radiusr?

Answer

A = πr2

This equation shows thatA is not directly proportional tor, so you should not have
been surprised that plottingA againstr did not give a straight line. In fact, the
curved shape of Figure 5.26 is characteristic of a relationship involving the square
of one of the quantities plotted. This particular shape is called aparabola.
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Figure 5.27: AreasA of circles plot-
ted as a function of the squares of
their radiir2

Because in this case we know the equation relatingA and r, it is
quite easy to see how the curve of Figure 5.26 can be ‘transformed’
into a straight-line graph.A is equal tor2 multiplied by a constant
π. So althoughA is not directly proportional tor, it is directly
proportional tor2:

A ∝ r2

Therefore the result of plottingA againstr2 is a straight line, as
illustrated in Figure 5.27.

Question

Without measuring anything on the graph itself, can you state
the value of the gradient of the line in Figure 5.27?

Answer

Comparison with the standard equation for a straight line shows
that

    y =     m       x + c

    A =     π       r2    (+ 0 )

so the gradient of the line isπ.
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Worked example 5.2

The relationship between the distances travelled by an object which has been
dropped from a height and the timet for which it has been falling is

s= 1
2gt2

whereg is a constant (the magnitude of the acceleration due to gravity). If you
had measured the time as the object passed various points on the way down, how
would you use a graph to determine the value ofg from your data?

Answer

Sinces is directly proportional tot2, these are the variables to plot. The descrip-
tion of the experiment shows thats is the independent variable, which according
to convention should be plotted on the horizontal axis.

We could rearrange the equations= 1
2gt2 to give

t2 =
2s
g

So if t2 is plotted againsts, comparison with the standard equation for a straight
line shows that

=               +

=               +y m

t
2 s ( 0  )

2
g

x c

Back J I 278



Contents �

so the gradient of the line=
2
g

and

g =
2

gradient

{If you chose to plots againstt2, then the gradient would be
g
2

, in which case

g = 2× gradient.}

Question 5.8 Answer

Table 5.1showed the mass of a number of aluminium spheres as a function of
their diameters. When mass was plotted as a function of diameter, a curved
graph (Figure 5.6) was obtained. The massM of a sphere of diameterd, made
of material of densityρ, is given by the equationM = πρd3/6.

What quantities would you plot in order to obtain a straight-line graph from the
data in Table 5.1?

What expression would be given by the gradient of the line?
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Question 5.9 Answer

If you have ever regulated a long-case (grandfather) clock, you will know that
the length of the pendulum,L, determines the periodT (the time for one com-
plete swing) and hence affects the accuracy with which the clock keeps time.
For a simple pendulum, the period is given by

T = 2π

√
L
g

where, as inWorked example 5.2, g is a constant (the magnitude of the acceler-
ation due to gravity). If you had measuredT for various values ofL, how would
you use a graph to determine the value ofg from your data?

{ Hint: you may find it helpful to manipulate the equation so as to get rid of the
square root.}

The trick of plotting quantities in such a way as to obtain a straight line is very
useful when you want to discover the relationship between experimentally mea-
sured quantities. With practice, one can come to recognize curved graphs of vari-
ous shapes, and this helps considerably in deciding how to transform the original
data so as to obtain a straight-line plot. For example, if the result of plotting one
quantity against another is a parabolic curve, this is an immediate indication that
one of those quantities is proportional to the square of the other.
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piston

gas

heat bath

pressure P

temperature T

volume V

Figure 5.28: An apparatus for measuring
how the volume of a sample of gas varies
with the pressure at constant temperature.

The rest of this section will simply introduce you to a few
curves of different shapes and the equations to which they
correspond. (An explanation of the techniques by which one
can most easily take scientific data and discover what powers
of the variables should be used in order to get a linear plot
will come in Chapter 7.)

A completely different sort of curve is generated from experi-
ments using the apparatus in Figure 5.28. This piston arrange-
ment is designed for the study of a sample of gas. A pressure
P can be applied to the piston and as the pressure increases so
the volumeV of the gas in the chamber will decrease. Con-
versely, if the pressure is reduced, the gas in the chamber will
expand. If you have ever pumped up a bicycle tyre, you have
probably noticed that when a gas is compressed it heats up,
so in order to be sure that pressure and volume are the only
variables involved in this particular experiment, it is impor-
tant to ensure that each time the pressure is changed the gas
is allowed to return to its original temperatureT before the
volume is measured. This temperature is maintained by the
heat bath.
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V

P
0

Figure 5.29: A graph of volume as
a function of pressure for a fixed
amount of gas at constant temper-
ature.

A sketch graph showing the shape of a plot ofV againstP resulting
from such an experiment is shown in Figure 5.29. A plot of this
shape is called ahyperbola. A characteristic feature of the hyper-
bola is that as the variable on one axis approaches zero, the curve
approaches more and more closely to the other axis but never actu-
ally touches it.

A hyperbola arises from plotting two quantities that are linked by
one being directly proportional to the reciprocal of the other. In this
case,

V ∝
1
P

This could also be expressed in words by saying that ‘V is directly
proportional to one overP’ but it is more usual to say thatV is
inversely proportionalto P.
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In order to obtain a straight-line plot, we would therefore have to plotV against
1/P, as illustrated by the sketch graph in Figure 5.30. In practice the volume of a
real gas can never fall to zero, but if the line were extrapolated it would go through
the origin.

0

V

1/P

Figure 5.30: At constant temperature, the volume of a fixed amount of gas is in-
versely proportional to the pressure.
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Question

If you wanted to plot a graph using measured values ofP
andV, but with P as the dependent variable, what would
you have to plot on the horizontal axis in order to obtain a
straight line?

Answer

We know thatV ∝
1
P

, i.e. thatV =
k
P

, wherek is a constant.

Rearrangement givesP =
k
V

, i.e. P ∝
1
V

.

So a graph ofP against 1/V would also be a straight line, as
illustrated in Figure 5.31.

Note that graphs of 1/V againstP and 1/P againstV would
also be straight lines.

P

0
1/V

Figure 5.31: At constant tempera-
ture, the pressure of a fixed amount
of gas is inversely proportional to
the volume.

So far we have been primarily interested in the relationship between the pressure
and the volume of the sample of gas, so the sketch graphs of Figures 5.29 to 5.31
correspond to a situation in which the temperature has been held constant. How-
ever, it would be equally possible to use the apparatus illustrated inFigure 5.28to
measure the volume of the gas sample as a function of temperature. Such measure-
ments are the basis of the SI (kelvin) scale of temperature, which is discussed in
Box 5.5.
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Box 5.5 The absolute zero of temperature

Figure 5.31shows that the pressure and volume of a fixed amount of gas at
constant temperature are related by an equation of formP = k/V wherek is a
constant, i.e.

PV = k (at constant temperature).

This equation is a particular case of a more general equation which was intro-
duced in Box 3.4, namely

PV = nRT (3.12)

wheren is the number of moles of gas,R is the so-called gas constant, andT
is the temperature (measured in kelvin).

Equation 3.12 can be rearranged to give

V =
nR
P

T

and if P is held constant then

volume= C × temperature

whereC is a constant equal tonR/P.
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The value ofC will depend on the value ofP chosen, so if the volume of the
sample of gas is measured as a function of temperature in three separate experi-
ments, each one at a different constant pressure, three separate straight-line plots
will be obtained, each with a different gradient. The larger the value ofP chosen,
the smaller the gradient will be.

Figure 5.32a shows how the volume of the
sample of gas measured at three different
pressures, varies over the temperature range
0 ◦C to 100◦C (note that the temperatures
here are given in degrees Celsius). The re-
ally interesting aspect of the graph is that
if the lines are extended to lower and lower
temperatures, as shown in Figure 5.32b, they
all meet at the same point on the horizon-
tal axis, corresponding to a temperature of
−273.15 ◦C, and to a volume of zero. Ex-
trapolation beyond this point would imply
a negative volume, which is impossible, so
−273.15 ◦C is the lowest possible tempera-
ture. It is therefore known as theabsolute
zeroof temperature. The SI (kelvin) scale of
temperature sets this lowest possible temper-
ature at 0 K.

(a)

v
o

lu
m

e

0 100

temperature/°C
(b)

v
o

lu
m

e

100

temperature/°C
−273.15

P 1

P 2
P 3

P 1

P 2
P 3

0

Figure 5.32: (a) At constant pressure, the volume of
a fixed amount of gas is clearly related to the temper-
ature. HereP1 < P2 < P3. (b) Extrapolation shows
that when the volume is zero then the temperature is
−273.15 ◦C.

Back J I 286



Contents �

Temperatures may be converted from degrees
Celsius to kelvin and vice versa using the word
equation:temperature

in kelvin

 =

temperature
in degrees
Celsius

 + 273.15

Figure 5.32bis a reminder that at−273.15 ◦C
(i.e. at 0 K) the volume is zero.

When T is expressed in kelvin,V is directly
proportional toT, so the lines in Figure 5.33
go through the origin.

V

0
T /K

P1

P2

P3

Figure 5.33: IfT is measured on the kelvin scale, then
V ∝ T.
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Yet another type of curved graph is obtained when
the activity of a radioactive sample is monitored over
time. The atoms of radioactive elements ‘decay’ by
emitting small particles from their nuclei, thereby
transforming themselves into atoms of quite different
elements. These other elements may themselves be
radioactive, or they may be stable. Radioactive de-
cay is a random process, in that, although the total
activity of a sample is predictable, one can never pre-
dict which individual nuclei are going to decay at any
particular time. One form of polonium, the element
named after the Polish homeland of Marie Curie, de-
cays to leave stable atoms of lead. The activity of a
sample of polonium is plotted as a function of time in
Figure 5.34; the unit of activity is the bequerel (Bq),
equal to 1 disintegration per second. Because disinte-
gration of a polonium nucleus produces a stable lead
nucleus, the number of unstable nuclei in the sample
— and hence the activity — falls as time goes on.

a
c
ti
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y
/k

B
q

80
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20

10

0 100 200 300 400 500

time/days

Figure 5.34: The activity of a sample of polo-
nium as a function of time.

Back J I 288



Contents �

Question

How long does it take for the activity of the polonium sample inFigure 5.34to
drop to

(a) 40 kBq

(b) 20 kBq

(c) 10 kBq

Answer

Reading fromFigure 5.34,

(a) the activity has dropped to 40 kBq after 140 days

(b) the activity has dropped to 20 kBq after 280 days

(c) the activity has dropped to 10 kBq after 420 days

A little further analysis shows that the time taken for the activity to drop:

• from 80 kBq to 40 kBq= 140 days

• from 40 kBq to 20 kBq= (280− 140) days= 140 days

• from 20 kBq to 10 kBq= (420− 280) days= 140 days

This result demonstrates a very important property of the curve plotted inFigure
5.34; whatever value of the quantity plotted on the vertical axis is chosen, the time
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taken for the quantity to fall to exactly one-half that value is a constant. This con-
stant interval of time is known as thehalf-life, and curves that display this property
are called ‘exponential decays’. To the precision to which it is possible to read
Figure 5.34, the half-life of the polonium sample is 140 days.

In radioactive decay, the activity is dependent on the number of radioactive nuclei
present, which is usually denoted by the letterN. Figure 5.35shows that ifN0

radioactive nuclei are present when timing starts (i.e. at timet = 0), then

• after one half-lifeN = N0 ×
1
2

• after two half-livesN =
(
N0 ×

1
2

)
× 1

2 = N0

(
1
2

)2

• after three half-livesN = N0

(
1
2

)2
× 1

2 = N0

(
1
2

)3

• so aftern half-livesN = N0

(
1
2

)n

After a long time, and many half-lives,N will approach, though it will never reach,
zero.

The equation describing the exponential decay shown inFigure 5.35involves a
special number, e. Likeπ and

√
2, e is an irrational number and to four significant

figures its value is 2.718. The equation describing Figure 5.35 is

N = N0 e−λt (5.2)

whereλ is a positive constant. In Chapter 7, you will discover the relationship
betweenλ and the half-life for the decay,t1/2. Then in Chapter 10 you will find that
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exponentials have another characteristic and defining property.

Question 5.10 Answer

Radium has a half-life of 1600 years. How long will it be before the number of
radioactive atoms in a sample is reduced to1

16 of the number there are today?

Box 5.6 Dating meteorites and Moon rock

The age of many different natural materials can be determined from their ra-
dioactivity. Potassium is one element that is used to date rocks; potassium-40
has a half-life of 1.3×109 years, and decays to leave argon, an inert gas that does
not combine with other elements. When rocks first form, they are molten, so any
argon they might contain would simply escape into space. However, once the
rocks solidify, any argon resulting from the radioactive decay of potassium-40
remains trapped. Geochemists can analyse the composition of a rock to deter-
mine the ratio of potassium to argon, and hence estimate a rock’s age.

Dating using potassium and other radioactive elements has shown that almost
all known meteorites are 4.6× 103 Ma old, so their formation was contempora-
neous with the formation of the Solar System. The oldest known Moon rock is
4.48× 103 Ma old.
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It is sometimes reported in the media that something is exhibiting
‘exponential growth’. In fact, true exponential growth, in which
the quantity being measured is multiplied by a constant factor over
a given period of time, is a rather unusual phenomenon although it
does occur. A general equation for exponential growth, analogous
to Equation 5.2for exponential decay, is

n = n0 eat (5.3)

wheren0 is the starting value of the quantity,n is its value after
time t anda is a positive constant. Exponential growth is some-
times used as a model by biologists interested in the populations
of organisms. Figure 5.36 illustrates the theoretical increase of
yeast cells according to such a model. In practice, the death of
organisms, as well as the influence of factors relating to over-
crowding, will also affect the population, so that the increase in
the number of organisms will not lie on a true exponential growth
curve.
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Figure 5.36: Model for the growth
of yeast cells. The population con-
sists of just two cells at timet = 0,
and it is assumed that once in every
four-hour period each cell divides
into two cells, (i.e. the multiplying
factor is 2).
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5.5 Learning outcomes for Chapter 5

After completing your work on this chapter you should be able to:

5.1 demonstrate understanding of the terms emboldened in the text;

5.2 correctly interpret conventional labelling on graph axes or table columns, so
as to deduce the power of ten and the units associated with a plotted or
tabulated quantity;

5.3 use the processes of interpolation and extrapolation to read values from a
graph;

5.4 calculate the gradient of a straight-line graph;

5.5 deduce the gradient and intercept of a straight-line graph from the equation of
the line, and vice versa;

5.6 draw and interpret sketch graphs;

5.7 given the equation involving quantities raised to a power, decide what variable
should be plotted in order to obtain a straight-line graph.
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Angles and trigonometry 6

Figure 6.1: Chapter 6 will show how to use angles to
find the height of a tree

It is relatively easy to measure the distance along
the ground from an observer to an object such as
a tree, but measuring the height of the tree itself is
rather less straightforward. Similarly, it is possi-
ble to find the distance from the Earth to the Moon
by measuring the time taken for a laser beam to
travel to the Moon and back, but this method can-
not be used to find the Moon’s diameter. Fortu-
nately help is at hand in both cases; we can mea-
sure angles and use these to calculate the values
we require. In the case of the tree, the angle used
is the angle between the ground (assumed to be
horizontal) and a straight line drawn to the top of
the tree; this angle is markedθ (the Greek letter
theta) in Figure 6.1.

Remember that a list of Greek letters and their pronunciation is given inTable 3.1.
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Figure 6.2: Chapter 6 will show how to use angles to find the diameter of the Moon

In the case of the Moon the angle is the onesubtended(i.e. swept out) as a straight
line drawn from an observer on the Earth moves from one side of the Moon to the
other; this angle is labelledφ (the Greek letter phi) in Figure 6.2.

Section 6.1 describes two different systems used for measuring angles and, after a
brief look at some of the properties of triangles, the rest of the chapter shows how
angles can be used in scientific calculation to determine things such as the height of
a tree and the diameter of the Moon.
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6.1 Measuring angles: degrees and radians

You are probably familiar with the use of a protractor to measure angles shown on
diagrams; this gives a result indegrees(represented by the symbol◦, and sometimes
known as ‘degrees of arc’ to make it clear that the degrees used to measure angles
have nothing whatsoever to do with the degrees used when measuring temperature
on the Celsius scale). Figure 6.3 shows that angleθ from Figure 6.1 is about 36.5◦.

Figure 6.3: Measuring an angle with a protractor.
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45°

90°
135°

180°

225°

360°

direction
of rotation

starting
position

Figure 6.4: Angles encountered in turning through a circle.

If you stand facing in a particular
direction then turn through a com-
plete revolution, you will have gone
through 360◦. The use of 360◦ to rep-
resent a complete turn is believed to
date back to the ancient Babylonian
civilization; 360 subdivisions were
used because 360 is close to 365, the
number of days in a year. Figure 6.4
illustrates various angles encountered
in turning through a circle. Note in
particular that aright angle(the angle
between two directions that are per-
pendicular to each other) measures
90◦.

Box 6.1 on the next page describes
the use of angles to define lines of
longitudeandlatitudeon the Earth’s
surface, and hence to specify posi-
tions on the surface of the Earth.
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Box 6.1 Lines of longitude and latitude

The surface of the Earth is conventionally marked with two sets of imaginary
lines, as shown in Figure 6.5. The blue lines running from left to right in Fig-
ure 6.5 are lines of latitude, the Equator being one such line, and the red lines
running from one pole to the other are lines of longitude.

Figure 6.5: A model of the Earth viewed from above the Equator, showing lines
of latitude and longitude.
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In Figure 6.6, which is the view from above the North Pole, the circles are the
lines of latitude and the lines radiating out from the pole are lines of longitude.
It is easy to see, from Figure 6.6, how angles of longitude can be labelled using
degrees. A line running through Greenwich in east London, and known as the
Greenwich Meridian, is defined to be 0◦ longitude, and other lines are labelled
by measuring the angles to the east or west of the Greenwich Meridian.

Figure 6.6: A model of the earth viewed from above the North Pole, showing
lines of latitude and longitude.
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Figure 6.7 shows how angles can be used to label lines of latitude too.

Figure 6.7: Using angles to label lines of latitude.

Figures 6.5, 6,6 and 6.7 show lines of longitude and latitude at 15◦ intervals only,
but in reality the lines can be drawn as close together as required, and so can be
used to specify a location very precisely. In order to specify a precise location, we
need to subdivide degrees of longitude and latitude in some way. Historically this
was done by dividing each degree into 60minutes(or ‘minutes of arc’) in the same
way as each hour is divided into 60 minutes (of time). The symbol ‘′ ’ is used to
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represent minutes of arc. The longitude of Heathrow Airport (approximately 30 km
west of Greenwich) is 0◦27′ W and both Greenwich and Heathrow have a latitude
of about 51◦28′ N.

Minutes of arc are rarely used in modern science; small angles are usually expressed

in decimal notation. Since 28′ is 28 sixtieths of a degree and
28
60
= 0.47 to two

significant figures, 51◦28′ can be written as 51.47◦. However, astronomers continue
to use a further extension of the ‘degrees and minutes’ notation, simply because
the angles they are measuring are frequently very small (since the objects they are
measuring are such a long way from Earth). In order to measure such small angles,
minutes of arc are further divided into 60secondsof arc, orarcsecs(in the same
way as minutes of time are subdivided into 60 seconds). So

1 arcsec=
1
60

minute of arc=
1
60
×

1
60

degree=
1

3600
degree

As the Earth orbits the Sun, the next nearest star, Proxima Centauri, appears to

move through an angle of 0.772 arcsecs across the sky; this is a mere
0.772
3600

of a

degree, i.e. 2.14× 10−4 degrees.
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θ

r

r

s

Figure 6.8: An arc of lengths subtended
by the angleθ in a circle of radiusr.

Angles in science are frequently measured inradiansrather
than in degrees and subdivisions of degrees. Consider the
circle shown in Figure 6.6. A part of the circumference, such
as that between point X and point Y, is known as anarc, and
in this case the arc subtends an angleθ. The length of the arc
between X and Y iss and the radius of the circle isr. The
radian is defined with reference to arc length and radius.

The size in radians of the angle,θ, subtended by an arc
is defined to be arc length,s, divided by radius,r, thus

θ (in radians)=
s
r

(6.1)
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Question

What is the size in radians of the angle subtended by an arc of length 3.0 cm in
a circle of radius 2.0 cm?

Answer

FromEquation 6.1the angle is given by:

θ in radians=
s
r

=
3.0 cm
2.0 cm

= 1.5

So the size of the angle is 1.5 radians.

Note that since we have divided a length in centimetres by another length in cen-
timetres, it could be argued that the answer should have no units. However, this
course will adopt the common practice of writing the word ‘radians’ next to an-
gles given in this measuring system, to distinguish them from angles measured in
degrees or in any other system of angular measure.

An angle subtended by a longer arc in a circle of the same radius will be larger, as
expected. In the above example, an arc of length 5.0 cm would subtend an angle of
5.0 cm
2.0 cm

, i.e. 2.5 radians.
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Figure 6.9: Two concentric circles.

Note, however, that it is theratio of arc length to radius which
is important in the definition of radian. This is illustrated in
Figure 6.9, which shows twoconcentriccircles (i.e. two cir-
cles with their centres at the same point).

The smaller circle has radiusr, and an arc of lengths (sub-
tended by angleθ) is shown. In the larger circle, of radius
r ′, the same angleθ is subtended by an arc of lengths′. The
superscript ‘′ ’ is used to indicate that the lengthsr ′ and s′

(said as ‘r-prime ands-prime’, or ‘r-dash ands-dash’) both
relate to the same circle. The lengthss′ andr ′ are bigger than

the values ofs and r, as you would expect, but the ratios
s
r

and
s′

r ′
areequal, and the angle subtended in radians is

θ =
s
r
=

s′

r ′
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θ
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(a)

θr

(b)

s

Figure 6.10: The angle subtended
when (a) arc length is equal to ra-
dius, and (b) arc length is equal to
circumference.

Let’s now consider two special cases. In the first, the arc length is
exactly equal to the radius, as shown in Figure 6.10a, i.e.s = r.
This means that

θ (in radians)=
s
r
=

r
r
= 1

i.e. the angle subtended is one radian.

In the second special case, illustrated in Figure 6.10b, the arc length
is a complete circumference. For all circles, the circumference,C,
is linked to the radius,r, by the formulaC = 2π r (this formula,
given inBox 3.4, follows directly from thedefinition ofπ, given in
Section 1.1.1 as circumference divided by diameter). So when the
arc length,s, is equal to the whole circumference,C, s= 2π r so

θ (in radians)=
2π r

r
= 2π

Thus the angle subtended by a complete revolution is 2π radians,
i.e. 2π radians= 360◦.
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This gives us an easy way of converting between degrees and radians.

Since 2π radians= 360◦,

1 radian=
360◦

2π

=
180◦

π

≈ 57.3◦

where the symbol ‘≈’ means ‘is approximately equal to’, as in Chapter 3.

Similarly, since 360◦ = 2π radians,

1◦ =
2π
360

=
π

180
≈ 0.0175 radians

Note that the numerical conversion factors between radians and degrees are only
approximate (they have been given to three significant figures), so when converting
from radians to degrees or vice versa it is best to go back to first principles in
each case, remembering that a complete revolution can be represented by either
2π radians or 360◦.
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It is also worth remembering that angles in radians are frequently expressed as
multiples or fractions ofπ so, for example,

45◦ = 45×
2π
360

radians

=
π

4
radians

An angle of exactly 45◦ is equal toexactly
π

4
radians.

Worked example 6.1

Express
π

6
radians in degrees.

Answer

2π radians= 360◦ soπ radians= 180◦.

π

6
radians=

180◦

6
= 30◦.
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Worked example 6.2

The angle subtended as a straight line drawn from an observer on the Earth
moves from one side of the Moon to the other is 0.519◦. (This is angleφ in
Figure 6.2, but remember that the figure is not drawn to scale). Express this
angle in radians.

Answer

360◦ = 2π radians so 1◦ =
2π
360

radians

0.519◦ = 0.519×
2π
360

radians

= 9.06× 10−3 radians to three significant figures.

Question 6.1

Convert the following from radians to degrees:

(a) 0.123 radians Answer

(b)
2π
3

radians Answer

(c)
3π
2

radians Answer
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Question 6.2

Convert the following from degrees to radians:

(a) 36.5◦ (angleθ in Figure 6.1) Answer

(b) 90◦ Answer

(c) 210◦ Answer

6.2 A quick look at triangles

Note the labelling system used for angles in Figure 6.11. Angle
α could also be identified as angle BAC,∠BAC or Â, but in this
course angles will be labelled on theinside in the way anglesα,
β andγ have been labelled in Figure 6.11. If you measure the
size of the angles inside the triangle shown in Figure 6.11 with a
protractor, you will find thatα = 80◦, β = 60◦ andγ = 40◦. Thus

α + β + γ = 80◦ + 60◦ + 40◦ = 180◦

This result is true for all triangles, i.e.

For all triangles, the internal angles add up to 180◦.

β γ

α

A

B C

Figure 6.11: The angles inside a tri-
angle.
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If you wish, you can check that this result holds for all of the triangles shown in
Figure 6.12, irrespective of the shape of the triangle.Figure 6.12eandFigure 6.12f
illustrate two triangles of a particular type; each has one internal angle equal to
90◦, i.e. a right angle, so they are known asright-angled triangles. Note that the
right angles have been labelled in the conventional way, with a square corner. In a
right-angled triangle, since the internal angles must total 180◦ and one of the three
angles is 90◦, it follows that the other two angles must add up to a total of 90◦ too.
This result means that if you know that a triangle is right-angled, and you know one
of the other angles, you can find the remaining angle without needing to measure
it. In Figure 6.12e, α = 30◦, soβ = 90◦ − 30◦ = 60◦.

Pythagoras’ Theorem, whose proof is accredited to the Greek philosopher Pythago-
ras or one of his followers about 2500 years ago, but which was probably known
even earlier, gives us a way of calculating the length of a third side of a right-angled
triangle from a knowledge of the lengths of the other two sides.

The side opposite the right angle in a right-angled triangle is known as thehy-
potenuse, and Pythagoras’ Theorem is commonly stated as

The square of the hypotenuse of a right-angled triangle is equal to the sum of
the squares of the other two sides.
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a

b
h

Figure 6.13: A right-angled
triangle.

In the triangle shown in Figure 6.13, the hypotenuse has a lengthh and
the other two sides have lengthsa andb. Thus

h2 = a2 + b2 (6.2)

We are only interested in the positive square root, so

h =
√

a2 + b2

If a = 3 cm andb = 4 cm in a right-angledtriangle, then

h =
√

a2 + b2 =
√

(3 cm)2 + (4 cm)2 =
√

9 cm2 + 16 cm2

=
√

25 cm2 = 5 cm

If h = 9.1 m anda = 5.1 m in a different right-angled triangle, then
h2 = a2 + b2 can be rearranged to giveb2 = h2 − a2 so

b =
√

h2 − a2 =
√

(9.1 m)2 − (5.1 m)2 =
√

82.81 m2 − 26.01 m2

=
√

56.80 m2 = 7.5 m to 2 significant figures.
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Question 6.3

The base of ladder of length 4.50 m is placed on level ground at a distance of
1.15 m from a vertical wall, and the top of the ladder leans against the wall. The
angle between the ground and the ladder is found to be 75.2◦. Calculate

(a) the height that the ladder reaches up the wall; Answer

(b) the angle between the wall and the top of the ladder. Answer

Hint: you may find it helpful to start by drawing a diagram of the situation.

Pythagoras’ Theorem provides us with a way of finding unknown lengths from
known lengths; the fact that the internal angles in any triangle add up to 180◦ pro-
vides us with a way of finding unknown angles from known angles. Trigonometry,
discussed in Section 6.3, takes us one stage further by providing a way of finding
unknown lengths from known angles and unknown angles from known lengths.

6.3 Calculating with angles: trigonometry

Trigonometryis the branch of mathematics that deals with the relationships be-
tween the sides and angles of triangles. The Greek astronomer Hipparchus is cred-
ited with its invention, but the principles involved were almost certainly in use even
earlier by the ancient Egyptians surveying the land surrounding the Nile. Despite
its ancient origins, trigonometry plays an important part in modern science.
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Look at the three right-angled triangles shown inFigure 6.14. These triangles are
similar, i.e. they have the same shape (although their sizes are different); note in
particular that the angleθ is exactly the same in each of the three triangles.

The superscript symbols ‘′ ’ and ‘ ′′ ’ (‘prime and double-prime’ or ‘dash and
double-dash’) indicate lengths relating to the second and third triangles respectively.

As you look atFigure 6.14from left to right, you will see that the triangles have
sides of increasing length; however the ratio of any one side to each of the other
sides remains constant, thus

b
a
=

b ′

a ′
=

b ′′

a ′′
(6.3)

b
h
=

b ′

h ′
=

b ′′

h ′′
(6.4)

a
h
=

a ′

h ′
=

a ′′

h ′′
(6.5)

If the angleθ and hence the shape of the triangle had been different, the ratios would

have had different values. Thus each angleθ gives rise to unique values for
b
a

,
b
h

and
a
h

, and conversely each value for
b
a

,
b
h

or
a
h

in a triangle leads to a particular

value forθ. This result is so important that the ratios are given the special names
tangent, sineandcosine, usually abbreviated to tan, sin and cos. Tan, sin and cos
are known collectively astrigonometric (or trig.) ratios.
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The tangent of angleθ is defined by

tanθ =
opposite
adjacent

(6.6)

This is the ratio we have been describing as
b
a

, whereb is the sideoppositeangleθ

anda is the side (other than the hypotenuse) that isadjacent(next to) angleθ.

The sine of angleθ is defined by

sinθ =
opposite

hypotenuse
(6.7)

This is the ratio we have been describing as
b
h

.

The cosine of angleθ is defined by

cosθ =
adjacent

hypotenuse
(6.8)

This is the ratio we have been describing as
a
h

.
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θ

opp
hyp

adj

Figure 6.15: tanθ =
opp
adj

; sinθ =
opp
hyp

; cosθ =
adj
hyp

The sides opposite and adjacent to a particular angle in a right-angled triangle are
usually abbreviated to ‘opp’ and ‘adj’ and the hypotenuse is abbreviated to ‘hyp’,
as shown in Figure 6.15.

Note that the trigonometric ratios are defined with respect to a particular angle in
a right-angled triangle. If we had considered the other non right-angled angle in
the triangle in Figure 6.15, the ‘opposite’ and ‘adjacent’ sides would have been
different, and so the sine, cosine and tangent would have been different too.
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Figure 6.16: Tables, slide rules and calcu-
lators can all be used to find trigonometric
ratios.

The trigonometric ratios were tabulated many years ago and
generations of scientists have used tables and slide rules sim-
ilar to those shown in Figure 6.16 to calculate lengths from
angles and angles from lengths. Nowadays, trigonometric ra-
tios are available at the press of a calculator button.

6.3.1 Using a calculator for trigonometry

Make sure that you can use your calculator to find trigonomet-
ric ratios. The sine, cosine and tangent functions are likely to
be clearly marked as ‘sin’, ‘cos’ and ‘tan’. Remember, from
Section 6.1, that angles can be measured in eitherdegreesor
radians. Your calculator should be able to cope with either
of these (and possibly a third angular measure called ‘grad’
too) but you need to ensure that the calculator is in the correct
‘mode’. Angleθ in Figure 6.15is 30◦, alternatively written as
π

6
radians, so the sine of angleθ could be expressed as either

sin 30◦ or sin
π

6
(where

π

6
is in radians, though the word ‘ra-

dians’ is usually omitted when finding trigonometric ratios). Note that sin
π

6
(which

is the sine of the angle
π

6
and could be written as sin

(
π

6

)
for clarity) is not the same

as
sinπ

6
(which is

1
6

th of the sine of the angleπ and could be written as
(sinπ)

6
for
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clarity).

Check that you can use your calculator to give:

sin 30◦ = 0.5; cos 30◦ = 0.8660; tan 30◦ = 0.5774

and also to give:

sin
π

6
= 0.5; cos

π

6
= 0.8660; tan

π

6
= 0.5774

where the answers are either exact or given to four significant figures.

Note that when using trigonometric ratios you should always work to at least four
significant figures (although you should round your answer to an appropriate num-
ber of significant figures at the end of a calculation).

Question 6.4

Use your calculator to find:

(a) sin 49◦ Answer

(b) cos
π

8
(where

π

8
is in radians) Answer

(c) tan
π

4
(where

π

4
is in radians). Answer
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You will also need to be able to use your calculator to find the angle which has a
particular sine, cosine or tangent. For example, if you know that tanθ = 0.75, then
what isθ in degrees? What you are looking for is known as the ‘inverse tangent’
or arctangentand you need to use a button on your calculator labelled as ‘tan−1’ or
‘arctan’. Check that you can use your calculator to give the correct answer, which
is that tan−1(0.75) = 37◦ = 0.64 radians to two significant figures. Your calculator
should also be able to calculate ‘inverse sine’ (using a button labelled as ‘sin−1’
or arcsinand ‘inverse cosine’ (‘cos−1’ or arccos). Note that ‘tan−1’, ‘sin−1’ and
‘cos−1’ are properly referred to as theinverse functionsof tan, sin and cos (as they
work in the opposite direction) but care needs to be taken to avoid confusion with
reciprocals:

tan−1 ,
1

tan

sin−1 ,
1

sin

cos−1 ,
1

cos

remembering that, means ‘is not equal to’.
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Question 6.5

Use your calculator to find:

(a) Use your calculator to find the angleα (in degrees) for which
cosα = 0.5253.

Answer

(b) Use your calculator to find the angleβ (in radians) for which
tanβ = 1.5574.

Answer

Note that although we have only defined trigonometric ratios for angles in a right-
angled triangle, and most of the angles for which trigonometric ratios are used in
this course areacute(i.e. less than 90◦), values of sin, cos and tan can be found
for larger angles too. Use your calculator to check that sinπ = 0, cosπ = −1
and tanπ = 0 (whereπ is an angle in radians, equal to 180◦). Box 6.2considers
the sines and cosines of angles greater than 90◦ in slightly more detail, and it also
introduces you tonegativeangles and their trigonometric ratios.
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Box 6.2 Using trigonometric ratios to describe waves

It is possible to assign values for sinθ and cosθ for all an-
gles, however large they are. Table 6.1 gives values for sinθ
and cosθ for selected values ofθ up to the arbitrarily chosen
value of 3π (540◦). The angles are like those encountered
in Figure 6.4in turning through a complete circle, except
that there is no need to stop at 360◦, and the angles are now
measured in radians.

Two results have been omitted from Table 6.1.

Question

Use your calculator to find the sine of
3π
2

radians (270◦)

and the cosine of
13π
6

radians (390◦) and add these values

to Table 6.1.

Answer

sin
3π
2
= −1

cos
13π
6
= 0.8660 to four significant figures.

θ in radians sinθ cosθ

0 0 1
π/6 0.5 0.8660
π/3 0.8660 0.5
π/2 1 0
2π/3 0.8660 −0.5
5π/6 0.5 −0.8660
π 0 −1

7π/6 −0.5 −0.8660
4π/3 −0.8660 −0.5
3π/2 0
5π/3 −0.8660 0.5
11π/6 −0.5 0.8660

2π 0 1
13π/6 0.5
7π/3 0.8660 0.5
5π/2 1 0
8π/3 0.8660 −0.5
17π/6 0.5 −0.8660

3π 0 −1

Table 6.1: Values of sinθ and cosθ for θ
from 0 to 3π
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If instead of turning in an anticlockwise direction in the way
used to define angles up to 360◦and beyond (Figure 6.4), we
had turned in a clockwise direction, the angles would have
been measured in the opposite direction. Angles such as

these are defined to be negative e.g.−
π

6
, −π, −

3π
2

. Values

for sinθ and cosθ can also be assigned for negative values
of θ, as shown in Table 6.2.

Inspection ofTable 6.1and Table 6.2 shows that sinθ and
cosθ each vary between−1 and+1 across the whole range
of values forθ. The form of the variation is made clearer by
the graphs shown inFigure 6.17.

The graphs may remind you of the sort of wave pattern ob-
served when you take an instantaneous sideways look at
waves on a pond. In fact, sine and cosine functions, of the
form y = asinθ andy = acosθ (wherea is a constant) are
extensively used in describing the motion of waves of all
types. The detail is beyond the scope of this course, but it is
another application of maths in science!

θ in radians sinθ cosθ

0 0 1
−π/6 −0.5 0.8660
−π/3 −0.8660 0.5
−π/2 −1 0
−2π/3 −0.8660 −0.5
−5π/6 −0.5 −0.8660
−π 0 −1
−7π/6 0.5 −0.8660
−4π/3 0.8660 −0.5
−3π/2 1 0
−5π/3 0.8660 0.5
−11π/6 0.5 0.8660
−2π 0 1
−13π/6 −0.5 0.8660
−7π/3 −0.8660 0.5
−5π/2 −1 0
−8π/3 −0.8660 −0.5
−17π/6 −0.5 −0.8660
−3π 0 −1

Table 6.2: Values of sinθ and cosθ for θ
from 0 to−3π
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6.3.2 Using trigonometry in science

Figure 6.18: Using trigonometry to find the height of a tree.
θ = 36.5◦ andD = 28.6 m.

We are now in a position to be able to find
the height of the tree mentioned at the be-
ginning of the chapter. This is shown asH
in Figure 6.18. We know thatθ = 36.5◦ and
suppose we have measuredD, the distance
to the tree from the point at which the angle
θ was measured, to be 28.6 m. How tall is
the tree?

We can say that

tanθ =
opp
adj

=
H
D

in this case.

We need to rearrange this equation to makeH the subject; we can do this in exactly
the same way as we did in Chapter 4, by reversing the equation and then multiplying
both sides of the equation byD. This gives

H = D tanθ

SoH = 28.6 m× tan 36.5◦ = 21.2 m to 3 significant figures.
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Figure 6.19: (a) Using a gun clinometer to find the height
of a tree; (b) the gun clinometer gives angleα.

It was clearly stated at the beginning of the
chapter thatθ was the angle between the
groundand a straight line drawn to the top
of the tree, but in reality you’re more likely
to have taken readings at eye level, per-
haps using an instrument such as a ‘gun cli-
nometer’, whose use is illustrated in Figure
6.19. The gun clinometer measures the an-
gle shown asα in Figure 6.19b, and Worked
example 6.3 shows how this can be used to
find the height of a tree.
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Question

When used by a man of height 1.8 m and in the way illustrated inFigure 6.19, a
gun clinometer records an angleα of 39◦ at a distance,D, of 18 m from a tree.
What is the height of the tree?

Answer

tanα =
H
D

whereα = 39◦ andD = 18 m, so

H = D tanα

= 18 m× tan 39◦

= 14.6 m

On this occasion, however, the reading was taken at eye level, soH is not the
height of the tree. Assuming that it is 1.7 m from the ground to the man’s eyes
and that the ground is horizontal, the height of the tree is 1.7 m more thanH,
i.e. the height of the tree is 16 m to two significant figures.

Question 6.7 asks you to use trigonometry in solving another simulated ‘real world’
problem, but Question 6.6 is given first to enable you to practise the underlying
trigonometric and algebraic skills.
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Question 6.6

(a) Find lengthh in Figure 6.20a. Answer

(b) Find lengtha in Figure 6.20b. Answer

(c) Find angleθ in Figure 6.20c, giving your answer in degrees. Answer

Figure 6.20: Right-angled triangles for use in Question 6.6 (not drawn to scale).
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Question 6.7 Answer

A theodolite of height 1.5 m is positioned with its base at sea-level somewhere
in the Cambridgeshire Fens, and indicates that the top of Ely Cathedral’s West
Tower is at an inclination of 2.27◦ (see Figure 6.21). The base of Ely Cathedral
is 15 m above sea-level and the West Tower is 66 m tall. Approximately how
far is the theodolite from Ely Cathedral?

Hint: start by findingH, the vertical distance between the top of the theodolite
and the top of the West Tower.

θ

D

H

66m

15m
1.5m

theodolite

Figure 6.21: Using trigonometry to find distance(not to scale). θ = 2.27◦.
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In addition to providing a way of finding unknown lengths and angles, trigonomet-
ric ratios appear from time to time in scientific equations. You are not expected to
remember these equations or to understand the background science; brief explana-
tions are provided in Boxes 6.3–6.6 for interest only.

Box 6.3 Angle of dip and true thickness of strata

Folding and tilting of layers of rocks, caused by pressures within the Earth,
have resulted in many layers lying at an angle to the Earth’s surface. This angle
is called the angle of dip and is illustrated inFigure 6.22. The angle of dip can
usually be measured, as can the apparent width of a stratum (layer) at the Earth’s
surface — its outcrop, but it is thetrue thickness of the stratum which is of real
interest to geologists.

The vertical thickness of the stratum (inFigure 6.23) may also be of interest,
especially when exploring for underground resources (such as oil) by drilling.
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Question

Express sinθ in Figure 6.22 in terms ofT andW. Hence find an equation for
the true thickness,T, of a stratum in terms of the width,W, of the outcrop at the
Earth’s surface, and the angle of dip,θ.

Answer

sinθ =
T
W

so

T =Wsinθ (6.9)

angle
of dip

ground
surfaceW

T

θ

Figure 6.22: The relationship between the angle of dip,θ, width of outcrop,W,
and true thickness,T, for a tilting stratum of rock (shown in darker brown).
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Question

Express tanθ in Figure 6.23 in terms ofV andW. Hence find an equation for
the vertical thickness,V, of a stratum in terms of the width,W, of the outcrop at
the Earth’s surface, and the angle of dip,θ.

Answer

tanθ =
V
W

so

V =W tanθ (6.10)

V

ground
surfaceW

θ

Figure 6.23: The relationship betweenθ, W, and the vertical thickness,V, of the
stratum.
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Worked example 6.4

Suppose a stratum of rock, lying at an angle of dip of 28◦, has an outcrop of
width of 71 m at the Earth’s surface. What is its true thickness?

Answer

FromEquation 6.9, T =Wsinθ whereW = 71 m andθ = 28◦, so

T = 71 m× sin 28◦ = 33 m to two significant figures.

The true thickness of the layer is 33 metres.

Question 6.8 Answer

What is the vertical thickness of a stratum of rock which has outcrop of width
65 m at the Earth’s surface, and an angle of dip of 36◦?

Hint: you should use an appropriate equation fromBox 6.3.
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Box 6.4 Using trigonometry to determine the radius of ions

The crystal structure of lithium iodide consists of lithium
and iodide ions (ions are atoms with electric charge due
to the loss or gain of electrons), as shown in Figure 6.24.
Both types of ions can be represented by spheres and, in
one model, the spheres can be considered just to touch each
other. This enables us to use trigonometry to find the radius
of the ions.

If the distance between the centre of a lithium ion and the
centre of an iodide ion is known (this is the so-called inter-
nuclear distance, and is labelled ash on Figure 6.24) then

cos 45◦ =
adj
hyp
=

r
h

wherer is the radius of a lithium ion.

Multiplying both sides byh gives

r = hcos 45◦ (6.11)

Equation 6.11 can be used to find the radius of a lithium ion.

45°

r

h

Figure 6.24: Using trigonometry
to find the radius of lithium ions
(shown in green). The purple
sphere represents an iodide ion.
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Question 6.9 Answer

The internuclear distance,h, between the ions shown inFigure 6.24is measured
to be 302 pm (where 1 pm= 10−12 m, as defined inBox 2.2).

UseEquation 6.11to find the radius of a lithium ion.
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Box 6.5 Snell’s law for seismic waves and light

You may have realized, from the equation for S wave speed,vs =

√
µ

ρ
(much used in Chapters 3 and 4), that waves travel at different speeds
in different substances. When a wave moves from one substance into
another in which it travels at a different speed, the change in speed
will cause the wave to changedirection. This behaviour is known as
refraction and it is illustrated in Figure 6.25.

Snell’s law of refraction states that

sini
sinr

=
v1

v2
(6.12)

wherev1 is the speed of the wave in the first substance,v2 is the
speed of the wave in the second substance, andi andr are the angles
of incidence and refraction respectively, as illustrated in Figure 6.25.

Refraction occurs for all types of waves, for example, seismic waves
passing from one rock type to another in the Earth, or a beam of light
passing from air to glass, and Snell’s Law is true whatever type of
wave motion is being considered. The law is named after the Dutch
scientist Willebrord Snel (1596–1650) but the law was stated very
much earlier, by the mathematician Abu Said al-Ala Ibn Sahl in his
bookOn the Burning Instruments, written in about 984.

v1

i

r

boundary v2

Figure 6.25: A wave undergoing
refraction on passing through a
boundary between two media in
which the speeds of propagation,
v1 and v2, are different (in this
casev1 > v2); i is called the an-
gle of incidence andr is called
the angle of refraction.
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Worked example 6.5

Calculate the angle of refraction of a seismic wave which has an angle of inci-
dence of 35◦ on crossing a boundary from rock 1 (withv1 = 6.3× 103 m s−1)
into rock 2 (withv2 = 8.2× 103 m s−1).

Answer

We knowv1 = 6.3× 103 m s−1, v2 = 8.2× 103 m s−1 andi = 35◦, and we want
r. Snell’s law states that

sini
sinr

=
v1

v2

Multiplying both sides by sinr gives

sini =
v1

v2
× sinr

Reversing the equation and multiplying both sides byv2 gives

v1 sinr = v2 sini

Dividing both sides byv1 gives

sinr =
v2 sini

v1
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Substituting gives

sinr =
8.2× 103 m s−1 × sin 35◦

6.3× 103 m s−1

= 0.7466

So

r = sin−1(0.7446)

= 48◦ to 2 significant figures.

Note that in this case the angle of refraction is greater than the angle of inci-
dence. This is becausev2 is greater thanv1.

Question 6.10 Answer

A beam of light strikes an air–glass interface with an angle of incidence of 45.0◦

and the angle of refraction (in the glass) is found to be 26.3◦. The speed of light
in air is 3.00× 108 m s−1. Use Snell’s law to find the speed of light in glass.
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Box 6.6 Using a diffraction grating

A diffraction grating is simply a series of ex-
tremely narrow, evenly spaced slits through
which light can pass. When a light beam of a
single colour (i.e. a single wavelength) hits the
diffraction grating at an angle of 90◦, as shown
in Figure 6.26, the grating acts in such a way as
to split up the incoming beam, forming what is
called a diffraction pattern. Some light passes
straight through the grating; this is called the
zero-order beam. Other beams are produced at
anglesθ1, θ2, etc. from the straight-through po-
sition and are known as the 1st, 2nd, etc. order
diffracted beams.

The angleθn of thenth order beam is given by
the equation

sinθn =
nλ
d

(6.13)

whereλ is the wavelength of the light andd is
the grating spacing (i.e. the distance between
two adjacent slits in the grating).

screendiffraction
grating second order

first order

zero order

first order

second order

light beam

θ1

θ2

θ2

θ1

Figure 6.26: The pattern formed by a diffraction grat-
ing.
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Worked example 6.6

A beam of light of wavelength 5.89× 10−7 m passes through a diffraction grat-
ing and the second-order diffracted beam is atθ2 = 45.9◦. Find the grating
spacingd.

Answer

In this caseλ = 5.89× 10−7 m, n = 2, θn = 45.9◦.

Multiplying both sides ofEquation 6.13by d gives

dsinθn = nλ

Dividing both sides by sinθn gives

d =
nλ

sinθn

=
2× 5.89× 10−7 m

sin 45.9◦

= 1.64× 10−6 m

So the grating spacing is 1.64× 10−6 m.
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Question 6.11 Answer

Light of a different colour (i.e. a different wavelength) passes through the same
diffraction grating as in Worked example 6.6 (sod = 1.64× 10−6 m). The first-
order diffracted beam is atθn = 24.1◦. Find the wavelength,λ, of this light.

Appendix A, at the back of this book, considers a further application of trigonom-
etry in science; its use when dealing with vector quantities such as velocity and
force. You may find the material useful if you intend to study physics courses in the
future.

6.4 Small angle approximations

When the angle under consideration is small, some useful approximations can be
employed.

Question

Use your calculator to find sinθ, tanθ and cosθ (each to five significant figures)
for θ = 0.5◦.

Answer

sin 0.5◦ = 8.7265× 10−3, tan 0.5◦ = 8.7269× 10−3 and cos 0.5◦ = 0.99996.
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Question

Convert 0.5◦ to radians, again giving your answer to five significant figures.

Answer

360◦ = 2π

so 1◦ =
2π
360

0.5◦ = 0.5×
2π
360

= 8.7266× 10−3 radians

Comparing the answers to the above questions shows that sinθ ≈ θ and tanθ ≈ θ,
whenθ is measured in radians, and also that cosθ ≈ 1. These results are true for all
small angles, in other words

For all small angles

cosθ ≈ 1

For small anglesstated in radians,

sinθ ≈ θ and tanθ ≈ θ
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These ‘small angle approximations’ hold within 0.5% accuracy for angles less that
about 0.1 radians (6◦). Remember though that the final two approximations are only
valid for angles measured in radians.

Small angle approximations arise from the fact that, whenθ is small in a triangle
like the one shown in Figure 6.27,h ≈ a and also the length,b, of the straight side
opposite toθ approximates to the length of an arc subtended byθ in a circle with its
centre at point P and radiush or a. In other words (on Figure 6.27)

b ≈ sh (6.14)

b ≈ sa (6.15)

s
hs

a

P θ
a

h
b

arc radius  h
arc radius  a

Figure 6.27: A right-angled triangle with a small angleθ
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From trigonometry

sinθ =
opp
hyp
=

b
h

and tanθ =
opp
adj
=

b
a

For small angleθ we can substitute fromEquations 6.14and6.15to give

sinθ ≈
sh

h
and tanθ ≈

sa

a

From the definitions of a radian (Equation 6.1)

sh

h
=

sa

a
= θ

So

sinθ ≈ θ and tanθ ≈ θ

Also,

cosθ =
adj
hyp
=

a
h

so whenh ≈ a (i.e. for small angles)

cosθ ≈ 1
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Figure 6.28: Calculating the Moon’s diameter (not to scale).

Small angle approximations are useful in astronomy, because objects at a great
distance subtend a very small angle when observed from the Earth.

An arc drawn from the Earth and encompassing a distant object such as the Moon
(see Figure 6.28) has a very similar curvature to a line drawn from one side of the
Moon to the other (which is the Moon’s diameter) and the distance to the centre
of the Moon is approximately equal to the radius of this arc. This gives us a way
of calculating the Moon’s diameter, the second of the problems raised at the begin-
ning of the chapter. Methodology of the sort illustrated inWorked example 6.7is
frequently used when the size or distance to a distant object is required.
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Worked example 6.7

The Moon subtends an angleφ of 9.06×10−3 radians (fromWorked example 6.2)
and the distance to the Moon,L, is 3.84× 108 mm. Find the Moon’s diameter.

Answer

From the definition of the radian (Equation 6.1) and with angles and lengths as
shown inFigure 6.28

φ =
s
r

In this cases≈ D andr ≈ L so

φ ≈
D
L

Reversing this equation and multiplying both sides byL gives

D ≈ L φ

≈ 3.84× 108 m× 9.06× 10−3

(remembering fromSection 6.1that strictly speaking, an angle measured in ra-
dians can be written without units).

This givesD ≈ 3.48× 106 m, i.e. the Moon’s diameter is 3.48× 106 m.
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Question 6.12 Answer

A man standing on a beach observes that a passing car ferry subtends an angle
of 3.5◦. The ferry is 86 m long. How far is it from the ferry to the man? Assume
that the ferry is perpendicular to the direction in which it is being observed, as
shown in Figure 6.29.

3.5° car ferry
observer

86m

Figure 6.29: A car ferry observed from a beach (not to scale).
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6.5 Learning outcomes for Chapter 6

After completing your work on this chapter you should be able to:

6.1 demonstrate understanding of the terms emboldened in the text;

6.2 use degrees or radians to measure angles, and convert between these two
systems of angular measure;

6.3 find an internal angle in a triangle if you have been told the other two internal
angles;

6.4 calculate the length of any side of a right-angled triangle if you have been told
the lengths of the other two sides;

6.5 use a scientific calculator to find angles from trigonometric ratios (sin, cos and
tan only), and vice versa;

6.6 use trigonometry to find unknown angles and sides in right-angled triangles;

6.7 apply small angle approximations when appropriate;

6.8 apply knowledge gained in this chapter and earlier in the course to scientific
examples involving angles and trigonometry.
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Logarithms 7
‘Seeing there is nothing (right well-beloved Students of the Mathematics)
that is so troublesome to mathematical practice, nor that doth more molest
and hinder calculators, than the multiplications, divisions, square and cubi-
cal extractions of great numbers, which besides the tedious expense of time
are for the most part subject to many slippery errors, I began therefore to
consider in my mind by what certain and ready art I might remove those
hindrances.’

Thus wrote John Napier in the preface to his bookMirifici logarithmorum canonis de-
scripio in 1614 (the quote is from the English translation of 1616). Napier (1550–1617)
was a wealthy Scottish landowner and theologian, who claimed to study mathematics
only as a hobby. Despite this, he invented bothlogarithms(or ‘logs’ for short) and
‘Napier’s bones’ with the express purpose of making it easier to do multiplications and
divisions. Logarithms were in regular use for this purpose well into the second half of
the twentieth century.

Nowadays we have electronic calculators and computers to help with long multiplica-
tions and divisions, so you may be wondering why this course, written in the twenty-first
century, still includes a chapter on logarithms. Over the years, in addition to being an in-
valuable aid to arithmetic, logarithms have proved themselves to have many applications
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and they remain widely used in these applications. For example, the pH-scale (used to
describe acidity) is based on logarithms, and the curved graph representing the variation
of activity with time for a radioactive source (see Chapter 5Figure 5.34) can be turned
into a straight line by plotting thelogarithmof activity against time. This chapter will
explain what logarithms are, and demonstrate some of their uses in modern science.

7.1 Logarithms to base 10

Henry Briggs (1561–1630), the first professor of geometry at Gresham College, Lon-
don, visited Napier in the summer of 1615 and, with Napier’s blessing, developed the
type of logarithms known aslogarithms to base 10, or ‘common logarithms’.

You know, fromSection 1.3.1that, for example,

106 = 1000 000

103 = 1000

100 = 1

10−1 =
1
10
= 0.1

10−5 =
1

105
= 0.000 01

where 10 is known as the base number.
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The process of obtaining a logarithm to base 10 (usually described as ‘taking the
log to base 10’) is theinverseof raising the base 10 to a power. In each of the
above examples the logarithm to base 10 of the number on the right-hand side of
the equation is simply the power to which the 10 on the left-hand side is raised.
The logarithm to base 10 is abbreviated log10 in this course (you may also see the
abbreviation log, without a subscript, used to describe a logarithm to base 10) so,
for example,

10 raised to the
power 3 equals 1000

so log10 1000 = 3

so the logarithm to
base 10 of 1000 is 3

103 = 1000

100 = 1

10 raised to the
power 0 equals 1

so log10 1 = 0

so the logarithm to
base 10 of 1 is 0

10–1 = 0.1

10 raised to the
power –1 equals 0.1

so log10 0.1 = –1

so the logarithm to
base 10 of 0.1 is –1
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We can say, more generally:

The logarithm to base 10 ofp is the power to which 10 must be raised in order
to equalp.

i.e. if p = 10n, then log10 p = n.

The definition of a logarithm to base 10 applies for fractional values ofn too. For
example, you know, from Section 1.3.4 that

3√
10 can be written as 101/3. This

means that

101/3 =    10 so log10 (   10 ) =3 3 1
3

10 raised to the
power     equals    1031

3

   so the logarithm to
base 10 of     10 is3 1

3

In fact, n could beany number; you may like to start by using your calculator to
check the following to four significant figures (use either the ‘x y’ or ‘^’ button or,
if your calculator has one, a button marked ‘10x’):

100.1235= 1.329

103.456 = 2858

10−1.234 = 0.05834
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From the last of these we can say that

10–1.234 = 0.05834

10 raised to the power
–1.234 equals 0.05834

so log10 0.05834 = –1.234

so the logarithm to base
10 of 0.05834 is –1.234

Question 7.1

Without further use of a calculator, write down the values of:

(a) log10 100 Answer

(b) log10 0.001 Answer

(c) log10

√
10 Answer

(d) log10 1.329 Answer

Since taking a logarithm to base 10 is the inverse of raising 10 to a power, the ‘log10’
or ‘log’ button on a calculator should reverse the operation of the ‘10x’ button. You
can use your calculator to check this for an arbitrarily chosen number, e.g. 4.8; the
‘10 x’ button should give 63 095.734 45 and finding the logarithm to base ten of the
latter number returns the display to 4.8.

Back J I 350



Contents �

Question 7.2

Use your calculator to find the following to 4 significant figures:

(a) log10 2 Answer

(b) log10 2000 Answer

Question 7.3

(a) Use your calculator to find 101.5 to 4 significant figures. Answer

(b) If log10 p = 1.5, what isp? Answer

It is worth noting that

• it is not possible to obtain the logarithm to base 10 of a negative number, or
of zero: if you try this on your calculator it will produce an error message.

• it is possible to obtain logarithms ofpure numbersonly; you cannot obtain
the logarithm of a quantity possessing units. Strictly, if a quantity possesses
units, then it should be divided by those units before taking the logarithm.
You will see how this is done in practice in Box 7.1 later in this chapter.
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7.2 Logarithmic scales revisited

Logarithmic scales, such as theRichter scalefor earthquake magnitude and the
decibel scalefor relative loudness of sounds, were discussed in Chapter 2. The
word ‘logarithmic’ is used to describe such scales simply because they are based on
logarithms; both the decibel and the Richter scales are based on logarithms to base
10. It was stated in Chapter 2 that logarithmic scales are used when the quantities
being measured vary over a wide range (seeFigure 2.2); the answer toQuestion 7.2
illustrates why logarithms are so useful in this context. The log to base 10 of 2 is
0.3010, but the log to base 10 of 2000, a number a thousand times bigger than 2, is
just 3.3010 and it turns out that the log to base 10 of 2000 000 is only 6.3010. Thus
taking logarithms gives us a way of coping with a scale that covers a huge range of
values.

As a more specific example of this, consider the decibel. This unit was introduced in
Chapter 2, but now it can be defined properly. The loudness of a sound in decibels,
relative to a threshold value (a sound which is just audible) is given by:

relative intensity in decibels= 10× log10

(
I
I0

)
whereI0 is the intensity of the threshold sound andI is the intensity of the sound in
question. So the sound of a pneumatic drill with an intensity 1012 times that of the
threshold has:

relative intensity in decibels= 10× log10

(
1012

)
= 10× 12= 120
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The pH scale, widely used as a measure of acidity, is also based on logarithms to
base 10. The pH scale is discussed further in Box 7.1.

Box 7.1 The pH scale

The pH scale was developed by the Danish biochemist Søren Sørenson in 1909.
‘pH’ is an abbreviation for ‘pondis hydrogenii’ or ‘potential of hydrogen’ and
the scale is based on a measurement of the concentration of hydrogen ions in
the solution in question. Concentration and its units, mol dm−3, were introduced
in Box 3.2, and a hydrogen ion is a hydrogen atom which has lost an electron
and so is positively charged. The hydrogen ion concentration of pure water at
25 ◦C is 1× 10−7 mol dm−3, whilst that of lemon juice (more acidic than pure
water) is about 8× 10−3 mol dm−3 and that of household bleach (considerably
less acidic than pure water) is about 1× 10−12 mol dm−3. Note that the range of
values is very wide and also that all of the values are quite small, which makes
them rather tricky to deal with. The definition of pH (which handles both of
these things) is:

pH = − log10

(
hydrogen ion concentration in mol dm−3

mol dm−3

)
Since the hydrogen ion concentration is measured in units of mol dm−3 and we
divide by mol dm−3 before taking the logarithm, we are obtaining the logarithm
of a pure number, as required.
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From the definition of pH, the pH of pure water is:

− log10

(
1× 10−7 mol dm−3

mol dm−3

)
= − log10

(
10−7

)
= −(−7) = 7

the pH of lemon juice is:

− log10

(
8× 10−3 mol dm−3

mol dm−3

)
= − log10

(
8× 10−3

)
= −(−2.1) = 2.1

and the pH of household bleach is:

− log10

(
1× 10−12 mol dm−3

mol dm−3

)
= − log10

(
10−12

)
= −(−12)= 12

Thus we have a much more manageable scale. The entire range of values for
hydrogen ion concentration, from 1.0 mol dm−3 down to 1× 10−14 mol dm−3,
is represented by pH values between 0 and 14. A pH of 7 (the value for pure
water) representing a neutral solution, with lower numbers being more acidic
and higher numbers being less acidic.
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Question 7.4

Calculate, to two significant figures, the pH of the following:

(a) human blood, with a hydrogen ion concentration
of 4.0× 10−8 mol dm−3

Answer

(b) hair shampoo, with a hydrogen ion concentration
of 3.2× 10−6 mol dm−3.

Answer

7.3 Rules of logarithms

Much of the usefulness of logarithms follows from several rules which are summa-
rized below:

log10 10n = n (7.1)

log10 (p× q) = log10 p+ log10 q (7.2)

log10

(
p
q

)
= log10 p− log10 q (7.3)

log10
(
pn) = n log10 p (7.4)
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Equation 7.1is a restatement of the definition of a logarithm to base ten. The other
rules can be derived from the rules for manipulating exponents, given in Chapter 1.
The derivation ofEquation 7.2is given in Box 7.2 for your interest (the derivations
of Equations 7.3 and 7.4 are similar).

Box 7.2 DerivingEquation 7.2

From the definition of a logarithm to base 10:

If p = 10a then log10 p = a (7.5)

If q = 10b then log10 q = b (7.6)

Multiplying p andq gives:

p× q = 10a × 10b = 10a+b

from the rules for exponents given inSection 1.3.2.

Taking the logarithm to base 10 of both sides:

log10(p× q) = log10

(
10a+b

)
= a+ b (from Equation 7.1)

But a = log10 p from Equation 7.5 andb = log10 q from Equation 7.6 so

log10(p× q) = log10 p+ log10 q
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We can verifyEquations 7.2, 7.3and7.4by substituting numerical values forp, q
andn.

If p = 2 andq = 1000, then fromEquation 7.2,

log10(2× 1000)= log10 2+ log10 1000

= 0.3010+ 3

= 3.3010

To five significant figures, this is the same value as a calculator gives for log10 2000
(as obtained in theanswer to Question 7.2), so Equation 7.2 seems reasonable. Note
that log10 2000 isexactly3 more than log10 2.

Again usingp = 2 andq = 1000, now inEquation 7.3,

log10

(
2

1000

)
= log10 2− log10 1000

= 0.3010− 3

= −2.6990

To five significant figures, this is the same value as a calculator gives for log10 0.002,
so Equation 7.3 seems reasonable. Note that log10 0.002 is exactly3 less than
log10 2.
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If p = 2 andn = 3, then fromEquation 7.4,

log10

(
23

)
= 3 log10 2

= 3× 0.3010

= 0.9030

A calculator gives log10 8 = 0.9031 to four significant figures, almost but not ex-
actly the same as the value obtained for log10(2

3) by using Equation 7.4. directly.
Equation 7.4 seems reasonable. If we had usedexactvalues for log10 2 and log10 8
the answers would have been identical, but in working to a limited number of sig-
nificant figures we need to take care with rounding errors.

Worked example 7.1

Use the fact that log10 3 = 0.4771 to obtain a value for log10 3000 without using
a calculator. You should give your answer to four significant figures.

Answer

log10 3000= log10(3× 1000)

= log10 3+ log10 1000 (fromEquation 7.2)

= 0.4771+ log10 103

= 0.4771+ 3 (fromEquation 7.1)

= 3.477 to four significant figures
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Question 7.5

Use the fact that log10 3 = 0.4771, andEquations 7.1 to 7.4to find the following
withoutusing a calculator. Give your answers to four significant figures.

(a) log10 300, Answer

(b) log10 0.03, Answer

(c) log10 9. {Hint: remember that 9= 32.} Answer

These rules for the manipulation of logarithms explain how Napier’s invention was
used to simplify the processes of multiplication and division.Equation 7.2gives
a way of turning multiplication into addition;Equation 7.3gives a way of turning
division into subtraction andEquation 7.4gives a way of calculating powers and
roots. The rules of logarithms have other uses too, as illustrated in Box 7.3 on the
next page.
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Box 7.3 k-value analysis

k-value analysis provides a methodology for studying the different factors that
affect the size of a biological population. Consider, for example, a population
of 24 pairs of owls studied by H. N. Southern in Wytham Wood, near Oxford,
in 1952–1953. In order for a pair of owls to have young which themselves
will breed, various things must happen: for example, the parents must breed;
the eggs must hatch; they must produce fledglings that survive to be owlets; the
owlets must live long enough to form pairs. Things can go wrong at every stage!
Thek-value (which you can think of as the ‘killing factor’) is a measure of the
killing power of each of the things that can go wrong.

At each stage:

k = log10

(
NB

NA

)
whereNB is the number of individuals alive before this stage andNA is the
number of individuals alive afterwards.

For example, 43 eggs were laid (N2 in Table 7.1) but only 16 eggs hatched (N3

in Table 7.1) so thek-value for this stage is:

k3 = log10

(
N2

N3

)
= log10

(
43
16

)
= log10(2.6875)= 0.4293
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Question

Use the data inTable 7.1to findk5 = log10

(
N4

N5

)
Answer

k5 = log10

(
N4

N5

)
= log10

(
15
9

)
= log10(1.6667)

= 0.2218

k-value analysis gives an easy way of comparing the effect of different killing
factors andktotal, the totalk-value for all stages is

ktotal = log10

(
N0

N5

)
= log10

(
72
9

)
= 0.9031

Question

Use the data given inTable 7.1to findk1 + k2 + k3 + k4 + k5.

Answer

k1 + k2 + k3 + k4 + k5 = 0.1498+ 0.0741+ 0.4293+ 0.0280+ 0.2218

= 0.9030
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Note that, within rounding errors, this is the same as the value calculated for
ktotal from

ktotal = log10

(
N0

N5

)
The resultktotal = k1 + k2 + k3 + k4 + k5 can also be proved from the rules of
logarithms:

k1 = log10

(
N0

N1

)
= log10 N0 − log10 N1 (from Equation 7.3)

Similarly

k2 = log10

(
N1

N2

)
= log10 N1 − log10 N2

and so on, until

k5 = log10

(
N4

N5

)
= log10 N4 − log10 N5

So

k1 + k2 + k3 + k4 + k5 = (log10 N0 − log10 N1) + (log10 N1 − log10 N2) + . . .

+ (log10 N4 − log10 N5)
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Apart from log10 N0 and log10 N5, all of the logarithms on the right-hand side
are both added and subtracted, so

k1 + k2 + k3 + k4 + k5 = log10 N0 − log10 N5

= log10

(
N0

N5

)
= ktotal
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7.4 Using logarithms to make curves straight

You were introduced, in Chapter 5, to various graphs of dif-
ferent shapes. For example a graph of the areaA of a circle
against its radiusr is aparabola; the equation of this graph is
A = π r 2. Similarly, the graph of the number of radioactive
nucleiN against elapsed timet is anexponential; the equation
of this graph isN = N0 e−λt. Logarithms can be used to turn
these and other curved graphs into straight-line graphs, and a
knowledge of the rules of logarithms (fromSection 7.3) can be
used to interpret the resulting straight-line graphs and thus to
determine physical constants such asN0 andλ.

7.4.1 Log–log graphs

Figure 7.1a shows a graph ofA againstr for the equation
A = π r 2. One method for turning this curve into a straight
line was introduced inSection 5.4. Another method is to plot
log10 A against log10 r; as shown in Figure 7.1b this also gives
a straight line. A graph of this type is known as a ‘log–log
graph’. But why should it be a straight line?

(a)

(b)

log10ÊA

log10Êr

A

r0

0

Figure 7.1: Graphs of (a)A against
r, and (b) log10 A against log10 r for
the equationA = π r 2.
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Taking the log to base 10 of both sides of the equationA = π r 2 gives:

log10 A = log10

(
π r 2

)
= log10π + log10 r 2 (from Equation 7.2)

= log10π + 2 log10 r (from Equation 7.4)

We can reverse the order of the two terms on the right-hand side to give:

log10 A = 2 log10 r + log10π

This can be compared with the general equation of a straight-line graph,y = mx+ c
(Chapter 5Equation 5.1)

log10 A =  2   log10r + log10π

    y = m       x +     c

intercept on
the vertical axis

gradient

This comparison implies that a graph of log10 A against log10 r should be a straight
line of gradient 2 and intercept on the vertical axis of log10π.
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Figure 7.2 is an accurately plotted graph of
log10(A/cm2) against log10(r/cm) for the data in
Table 7.2.

Question 7.6 Answer

Find the gradient and intercept on the vertical
axis of the straight line shown in Figure 7.2.

r/cm A/cm2 log10 (r/cm) log10

(
A/cm2

)
1 π 0 0.497
2 4π 0.301 1.099
3 9π 0.477 1.451
4 16π 0.602 1.701
5 25π 0.699 1.895

Table 7.2: The radius and area of various circles,
and corresponding logarithms to base 10

log10(r/cm)

0.2

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

lo
g 10

(A
/c

m
2 )

Figure 7.2: A graph of log10(A/cm2) against log10(r/cm).
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Worked example 7.2

If a graph is plotted of log10 y against log10 x for the equationy = 3x−2, what
will be the gradient and the intercept on the vertical axis?

Answer

Taking the log to base 10 of both sides of the equationy = 3x−2 gives

log10 y = log10

(
3x−2

)
= log10 3+ log10 x−2 (from Equation 7.2)

= log10 3− 2 log10 x (from Equation 7.4)

We can reverse the order of the two terms on the right-hand side to give

log10 y = −2 log10 x+ log10 3

Comparison with the general equation of a straight-line graph,y = mx+ c,
reveals thatm= −2 andc = log10 3, so the gradient of the graph will be−2 and
the intercept on the vertical axis will be log10 3.

Figure 7.3shows graphs ofy againstx and log10 y against log10 x for the equa-
tion y = 3x−2, but note that it is possible to answer Worked example 7.2 without
plotting either of these graphs.
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Question 7.7 Answer

If a graph is plotted of log10 y against log10 x for the equationy = 2x3, what will
be the gradient and the intercept on the vertical axis?

Plotting graphs of the logarithm of one quantity against the logarithm of another
quantity can be used to solve scientific mysteries, as is illustrated in Box 7.4.

Box 7.4 Kepler’s third law

The Danish astronomer Tycho Brahe (1546–1601) was a meticulous observer
and recorder of data. He developed accurate sighting devices and kept a de-
tailed record of the positions of the planets at regular intervals for more than 20
years. Tycho Brahe’s tables provided the data which enabled Johannes Kepler
(1571–1630) to work out mathematical relationships describing the motion of
the planets.

Plotting the timeT it takes for a planet to orbit the Sun (known as its orbital
period) against its average distance,a, from the Sun gives a graph of the shape
shown inFigure 7.4.

There is clearly a relationship betweenT anda but what is it? It took Kepler
a long time to work this out, but we can use logarithms to help. Let’s start
by assuming that the relationship is of the formT = kan wherek and n are
constants. The problem now is to find the value ofn.
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Taking the log to base 10 of both sides of the equationT = kan gives:

log10 T = log10
(
kan)

= log10 k+ log10 an (from Equation 7.2)

= log10 k+ n log10 a (from Equation 7.4)

We can reverse the order of the two terms on the right-hand side to give:

log10 T = n log10 a+ log10 k

Comparison with the general equation of a straight-line graph,y = mx+c, shows
that a graph of log10 T against log10 a will be a straight line with gradientn and
intercept log10 k.

Figure 7.5shows the same data asFigure 7.4, but now thelogarithmsof the
variables have been plotted.

Question

What is the gradient of the line inFigure 7.5?

Answer

gradient=
1.5− 0.0
1.0− 0.0

= 1.5

This means thatT = ka1.5, i.e. T = ka3/2. Squaring both sides givesT2 = k2a3,
so the square of the time it takes for a planet to orbit the Sun is proportional to
the cube of its average distance from the Sun, i.e.T2 ∝ a3. This is Kepler’s
third law.
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7.4.2 Log–linear graphs

We can turn graphs of equations such asN = N0e−λt into straight-line graphs using
a similar methodology to the one employed in Section 7.4.1, but now we plot the
logarithm of one variable against the other variable itself (not its logarithm). The
resultant graph is known as a ‘log–linear graph’. Figure 7.6 shows graphs ofN
againstt and log10 N againstt for the equationN = N0e−λt. Note that the graph of
N againstt is a curve, but that the log–linear graph of log10 N againstt is a straight
line.

t

(a)

N

0
(b)

log10ÊN

t

0

Figure 7.6: Graphs of (a)N againstt and (b) log10 N againstt for the equation
N = N0e−λt.
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To show why the graph of log10 N againstt is a straight line we need to start by
taking the log to base 10 of both sides of the equationN = N0e−λt. This gives:

log10 N = log10

(
N0e−λt

)
= log10 N0 + log10 e−λt (from Equation 7.2)

= log10 N0 − λ log10 e (fromEquation 7.4)

We can reverse the order of the two terms on the right-hand side to give:

log10 N = −λt log10 e+ log10 N0

=
(
−λ log10 e

)
t + log10 N0

This can be compared with the general equation of a straight-line graph,y = mx+ c

log10 N = –λlog10e  t + log10 N0

     y =     m       x +      c

intercept on
the vertical axis

gradient

So a graph of log10 N againstt will be a straight line with a gradient of−λ log10 e
and an intercept on the vertical axis of log10 N0. Note that the gradient ofFigure
7.6bis negative, as expected.
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Question 7.8 Answer

If a graph is plotted of log10 n againstt for the equationn = n0 eat (Chapter 5
Equation 5.3; note thatn0 anda are positive constants), what will be the gradient
and intercept on the vertical axis?

Graphs of log10 y against log10 x and log10 y againstx are plotted so frequently
(though perhaps rather less frequently now than they were in the past, because of
computer graph-plotting programs) that special graph paper is available for the pur-
pose. ‘Log–linear’ (or ‘semi-log’) graph paper has divisions corresponding to log10
on the vertical axis only, so is useful for plotting graphs of log10 y againstx.

Figure 7.7illustrates the use of log–linear graph paper in investigating the variation
of log10 N with t for real experimental data, in this case in an experiment to find the
half-life of the excited state of barium-137.

‘Log–log graph paper’ has divisions corresponding to log10 on both axes, so is
useful for plotting graphs of log10 y against log10 x.
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7.5 Logarithms to base e

The previous sections of this chapter have considered logarithms based on powers
of 10. It is possible to use numbers other than 10 as the base for logarithms and the
other base which is widely used in science is ‘e’, the ‘special number’ introduced
in Chapter 5.

In much the same way as taking the logarithm to base 10 is the inverse of raising
10 to a power, so taking alogarithm to base e(abbreviated ln or loge) is the inverse
of raising e to a power.

The logarithm to base e ofp is the power to which e must be raised in order to
equalp,

i.e. if p = eq then lnp = q.

A logarithm to base e is often referred to as a ‘natural logarithm’ and the ‘n’ in the
abbreviation ‘ln’ can be thought of as a reminder of this.

Check that you can use your calculator to raise e to various powers. You are likely
to be using a button labelled ‘ex’ in order to do this; the ‘EXP’ button has a totally
different use. There is a need to take particular care over the meaning of ‘e’, ‘EXP’
and ‘exp’ since ‘exp’ is sometimes used to mean ‘e to the power’, soN = N0e−λt

is sometimes written asN = N0 exp(−λt) andn = n0eat is sometimes written as
n = n0 exp(at).
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Check that you can get the following results (to four significant figures):

e3 = 20.09

e0.6931= 2.000

e−1 = 0.3679

Then we can say:

e3 = 20.09 so ln 20.09 = 3

e raised to the
power 3 equals 20.09

so the logarithm to
base e of 20.09 is 3

e0.6931 = 2

e raised to the
power 0.6931 equals 2

so ln 2 = 0.6931

so the logarithm to
base e of 2 is 0.6931

e–1 = 0.3679

e raised to the
power –1 equals 0.3679

so ln 0.3679 = –1

so the logarithm to
base e of 0.3679 is –1
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Since taking a logarithm to base e is the inverse of raising e to a power, the ‘ln’ or
‘loge’ button on a calculator should reverse the operation of the ‘ex’ button. You
can use your calculator to check this for an arbitrarily chosen number, e.g. 1.4; the
‘e x’ button should give 4.055 199 967 and finding the logarithm to base e of the
latter number returns the display to 1.4.

Question 7.9

Use your calculator to find the following to four significant figures:

(a) ln 4, Answer

(b) the number whose natural logarithm is 4. Answer

Note that the rules of logarithms, discussed inSection 7.3, apply to logarithms in
anybase, not just those to base 10. In particular, they apply to logs to base e too,
so:

ln en = n (7.7)

ln (p× q) = ln p+ ln q (7.8)

ln

(
p
q

)
= ln p− ln q (7.9)

ln
(
pn) = n ln p (7.10)
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You may be wondering why logs to base e are useful; why don’t we always use logs
to base 10? One reason why logs to base e are important stems from the fact that
taking a logarithm to base e is the inverse of raising e to a power. This means that
equations such asN = N0e−λt can be turned intosimplerstraight-line equations by
taking logarithms to base e than is possible by taking logarithms to base 10.

Taking the log to base e of both sides of the equationN = N0e−λt gives:

ln N = N = N0e−λt

= ln N0 + ln e−λt (from Equation 7.8)

= ln N0 − λt (from Equation 7.7)

We can reverse the order of the two terms on the right-hand side to give:

ln N = −λt + ln N0

This can be compared with the general equation of a straight-line graph,y = mx+ c

ln N = −λ   t + ln N0

  y =  m   x +    c

intercept on
the vertical axis

gradient
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So a graph of lnN againstt (see Figure 7.8)
will be a straight line with a gradient of−λ
and an intercept on the vertical axis of lnN0.

Question

A graph plotted of lnN against timet
for the decay of barium-137 is a straight
line of gradient−4.4× 10−3 s−1. What is
the decay constant (the constantλ in the
equationN = N0 e−λt)?

Answer

The gradient of the graph is
−4.4× 10−3 s−1 so the decay constantλ
is 4.4× 10−3 s−1.

Box 7.5 investigates the relationship be-
tween decay constantλ and half-life, t1/2.
The half-life of a radioactive decay process
(first introduced inChapter 5) is the time
taken for the number of radioactive nuclei,
and hence the activity, to fall by half.

t

lnN

0

gradient of −λ

intercept on the
vertical axis at lnN0

Figure 7.8: A graph of lnN againstt for the equation
N = N0 e−λt.
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Box 7.5 The relationship between decay constant and half-life

The equationN = N0 e−λt can be written as:

N = N0
1

eλt

(
since e−λt =

1

eλt

)
Rearranging gives:

eλt =
N0

N

At t = t1/2, N = N0 ×
1
2

(from the definition of half-life inSection 5.4) i.e.

N0

N
= 2

So eλ t1/2 = 2

Taking the log to base e of both sides of this equation gives:

ln
(
eλ t1/2

)
= ln 2

i.e. λ t1/2 = ln 2 (fromEquation 7.7)

λ =
ln 2
t1/2

or t1/2 =
ln 2
λ

Thus a decay constant of 4.4× 10−3 s−1 (for barium-137) corresponds to a half-

life of
ln 2

4.4× 10−3 s−1
= 1.6× 102 s to two significant figures.
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Question 7.10 Answer

If a graph is plotted of lnn againstt for the equationn = n0 eat, what will be the
gradient and intercept on the vertical axis? (Note that this is the same equation
as used inQuestion 7.8, but now you are asked to consider a graph of lnn against
t rather than a graph of log10 n againstt.)

Box 7.6 The Arrhenius equation

The Arrhenius equation, named after the Swedish chemist Svante Arrhenius
(1859–1927), is one of the most important equations in chemistry. It links the
rate of a chemical reaction to the temperature at which the reaction takes place.
The equation is given by:

kR = Ae(−Ea/RT) (7.11)

wherekR is the ‘rate constant’ at a particular temperatureT, A is the Arrhe-
niusA-factor (orA-factor),Ea is the Arrhenius activation energy (or activation
energy) andR is the ‘gas constant’.

Taking the log to base e of both sides of Equation 7.11 gives:

ln kR = ln
(
Ae(−Ea/RT)

)
= ln A+ ln e(−Ea/RT) (from Equation 7.8)

= ln A−
Ea

RT
(from Equation 7.7)
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We can reverse the order of the two terms on
the right-hand side to give:

ln kR = −
Ea

RT
+ ln A

=
−Ea

R
1
T
+ ln A

This can be compared with the general equa-
tion of a straight-line graph,y = mx+ c

intercept on
the vertical axis

gradient

ln kR =      + ln A

  y =  m     x +    c

1
T

−Ea
R

gradient of −Ea
R

lnkR

0

intercept on the
vertical axis at lnA

1
T

Figure 7.9: A graph of lnkR against 1/T for the equa-
tion kR = A e(−Ea/RT).

So if bothA andEa are constants, independent of temperature (a reasonable
assumption for most reactions when studied over a limited range of temper-
ature), a graph of lnkR against 1/T will be a straight line of gradient−Ea/R
and intercept on the vertical axis lnA. A graph of lnkR against 1/T (as shown
in Figure 7.9) is referred to as an Arrhenius plot.
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The Arrhenius equation accounts
remarkably well for the tempera-
ture behaviour of the vast major-
ity of chemical reactions, including
those which occur in nature. For
many living organisms, the temper-
ature of their environment is hugely
important, and biological processes
are frequently temperature depen-
dent. Biological processes gener-
ally involve complex sequences of
chemical steps, yet in common with
many other composite reactions,
they often exhibit an Arrhenius-
type behaviour. Figure 7.10 shows
an Arrhenius plot for the heartbeat
of a diamond-backed terrapin. At
lower temperatures, the plot departs
from linear behaviour, indicating a
different control mechanism.

T−1/K−1

0
3.3 × 10−3 3.5 × 10−3

2.0

3.0

4.0

5.0

3.4 × 10−3

1.0
ln

 (h
ea

rt 
ra

te
)

Figure 7.10: An Arrhenius plot of its heartbeat (rate) in the
temperature range 18◦C to 34◦C.
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7.6 Learning outcomes for Chapter 7

After completing your work on this chapter you should be able to:

7.1 demonstrate understanding of the terms emboldened in the text;

7.2 use a calculator to find the logarithm (to base 10 or base e) of a positive
number;

7.3 demonstrate understanding of the relationship between powers of 10 and
logarithms to base 10;

7.4 demonstrate understanding of the relationship between powers of e and
logarithms to base e;

7.5 use the rules governing the logarithms of products, fractions and powers;

7.6 interpret a graph of log10 y against log10 x for a function of the typey = a xb;

7.7 interpret a graph of log10 y againstx for a function of the typey = C ekx;

7.8 interpret a graph of lny againstx for a function of the typey = C ekx.
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Probability and descriptive statistics 8
Statistical information is a familiar aspect of modern life, which features routinely
in, for example, news reports, sports commentaries and advertising. Scientists who
have collected large amounts of data by either counting or measuring quantities also
rely on statistical techniques to help them make sense of the data. Suppose you had
information collected from, say, three thousand patients, all with the same medical
condition but undergoing a variety of treatments. First you would need techniques
for organizing and describing the data, so that you could present a summary by
giving just a few numbers. This is the function of ‘descriptive statistics’, covered
in this chapter. Then you might want to analyse the data in some way, perhaps to
decide whether it supports the suggestion that treatment with one particular drug
is more effective than other forms of medication. Chapter 9 will look at some of
the statistical tests that may be applied to raw data in order to come to objective
conclusions about what it really shows.

Statistical techniques offer ways of dealing with variability, and natural variability
is something that scientists meet all the time. Each time an experiment or a mea-
surement is repeated, a slightly different result may be obtained; in any group of
people there will be a variation in height; the count of background radiation at any
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individual location fluctuates randomly from moment to moment. It is therefore
very important to be able to decide with some measure of certainty whether a par-
ticular result could have been obtained simply by chance or whether it has some real
significance, and the mathematics of chance and probability underpin all aspects of
statistics.

8.1 Chance and probability

Probability is expectation founded upon partial knowledge. A perfect
acquaintance withall the circumstances affecting the occurrence of an
event would change expectation into certainty, and leave neither room
nor demand for a theory of probabilities.’

(George Boole, 1815–1864)

In many branches of science it is not possible to predict with any certainty what
the outcome of a particular event will be. There may be several possible outcomes
and all the scientist can offer in the way of quantitative prediction is an assessment
of the relative likelihood of each of these outcomes. For example, if a man and a
woman both carry the cystic fibrosis gene without showing symptoms of the dis-
ease, the chances are 1 in 4 that their first child will suffer from the condition. Such
assessments of probability are a routine part of genetics, nuclear physics, quantum
physics and many other scientific disciplines.

In seeking to understand the nature and rules of probability it is often best to focus
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initially on everyday examples that are easily visualized. So Sections 8.1.1 to 8.1.4
feature many examples of tossed coins and rolled dice. However, you will also
get the opportunity to see how these ideas are applied to some genuine scientific
problems: for example, what is the probability that two people planning to have a
child will both turn out to be carriers of the cystic fibrosis gene?

8.1.1 Calculating probability

If a process is repeated in identical fashion a very large number of times, theprob-
ability of a given outcome is defined as the fraction of the results corresponding to
that particular outcome.

probability of a given outcome=
number of times that outcome occurs

total number of outcomes
(8.1)

The nature of the fraction in Equation 8.1 shows that the probability of any given
outcome cannot be smaller than 0 or larger than 1. A probability of 0 represents
impossibility, while a probability of 1 represents inevitability. The closer the prob-
ability of a given outcome is to 1, the more likely that outcome is to occur. This is
illustrated diagrammatically inFigure 8.1.

When a coin is tossed fairly, the likelihood of it landing on heads is equal to the
likelihood of it landing on tails. If it is tossed repeatedly a great many times, it will
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in theory come up heads half the time: the probability of tossing heads is1
2. The

theoretical probability of tossing tails is, of course, also1
2. The sum of these two

probabilities is1
2 +

1
2 = 1; i.e. it is certain that when the coin is tossed it will land

either on heads or on tails. This is an example of a general rule:

The sum of the probabilities of all possible outcomes is equal to 1.

A probability of 1 represents certainty.

Dice games involve rolling six-sided dice. Each face of a dice is marked with a
different score: one, two three, four, five or six. If the dice is not loaded and the
rolling is done fairly, then all outcomes are equally likely, so the probability of any
one of the six possible outcomes (for example scoring a three) is1

6. Again, the sum
of the probabilities of all the possible outcomes is1

6 +
1
6 +

1
6 +

1
6 +

1
6 +

1
6 = 1.

So on one roll of the dice the probability of scoring a three is1
6 and the probability

of not scoring a three is56. Another way of expressing this is to say that on a single
roll of the dice there is only one way of scoring a three, but there are 5 ways ofnot
scoring a three. Clearly, it is more likely than not that a number other than three
will be scored. This is just one illustration of another general rule:

The most likely outcome is the one that can occur in the greatest number of
ways.
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Provided nothing biases the result to make one outcome inherently more likely
than others, the definition given byEquation 8.1can be rewritten to encompass the
number of ways in which a particular outcome may come about:

The probability of a given outcome=

number of ways to get that particular outcome
total number of possible outcomes

(8.2)

Question

What would be the probability of throwing an odd number on one roll of a dice?

Answer

There are three possible ways of getting an odd number (1, 3 or 5) and six pos-
sible outcomes in total, so Equation 8.2 shows that the probability of throwing
an odd number is36, which can be simplified to the equivalent fraction1

2.

An alternative way of arriving at this conclusion is to say that as three of the
possible outcomes are even and three are odd, the chances of one throw resulting
in an odd number are the same as of it resulting in an even number. Hence the
probability of an odd number is12.
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Question 8.1

What is the probability of one card drawn at random from a shuffled pack of
playing cards being:

(a) a heart, Answer

(b) red, Answer

(c) an ace, Answer

(d) a picture card? Answer

Note: if you are unfamiliar with playing cards, you need the following infor-
mation. There are 52 cards in a pack, divided into four suits: hearts (red),
diamonds (red), spades (black) and clubs (black). Each suit contains 13 cards,
made up of one ace, nine ‘number’ cards (from 2 to 10 inclusive) and three
picture cards (Jack, Queen, King).

8.1.2 Probability and common sense

The concept of probability is a purely theoretical one. Strictly speaking, no ex-
periment measures a probability: all that we can measure is the fraction of times
a particular outcome occurs in a finite number of attempts. In theinfinitely long
run this fraction is expected to approach the theoretical probability, but in practice
we may never attain this limit. You could easily toss a fair coin four times and get
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four heads. You could even toss it 20 times and still get heads on every single toss,
though that would be fairly unlikely. But the more tosses you made the more nearly

the fraction
number of heads

total number of tosses
would approach its theoretical value of1

2.

A failure to appreciate the fact that the number of attempts needs to beextremely
large before the probability of a particular outcome will reliably approach the theo-
retical value is at the root of many popular misconceptions about probabilities. One
commonly held fallacy about coin tossing is that if the first ten tosses of a coin have
produced several more heads than tails, then the eleventh toss is more likely than
not to come up tails. This is not true. Although in the extremely long run the im-
balance between heads and tails is expected to be negligible, on any one toss heads
and tails are equally likely, irrespective of previous history. Coins have no memory!

Question 8.2

(a) You toss a single coin three times. It comes down heads on the
first two occasions. What is the probability that you will get
heads on the third throw?

Answer

(b) If you toss two coins simultaneously and they both come down
heads, what is the probability that when you then toss a third
coin it will also come down heads?

Answer
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8.1.3 Expressing probability

According toEquation 8.1, probability is defined as a fraction. However, as you
know from Chapter 1, a fraction such as1

4 may also be expressed as a decimal
number or as a percentage:

1
4
= 0.25= 25%

The following statements:

• the probability of event A is14,

• the probability of A occurring is 0.25,

• there is a 25% probability of the outcome being A,

are therefore all equivalent.

In addition, particularly in spoken language, it is common to say,

• there is a 1 in 4 probability of the outcome being A

and that too is equivalent to the other three statements.

For the rest of this chapter, probabilities will usually be expressed as fractions, but
you will meet the other notations in Chapter 9.
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8.1.4 Combining probabilities

The probabilities described in Sections 8.1.1 and 8.1.2 related to the
outcomes of a single process, such as repeatedly tossing one coin. Now
suppose you were to toss three separate coins simultaneously. What is
the probability that all three will show heads? One way of tackling this
problem is to write all the possible combinations of results. There are
in fact eight possible outcomes, all of which are equally likely:

Of the eight combinations, only one — shown in red — represents the
desired outcome of three heads. On the basis ofEquation 8.2, the prob-
ability of all three coins coming up heads is therefore1

8.

1 H H H
2 H H T
3 H T H
4 H T T
5 T H H
6 T H T
7 T T H
8 T T T

The same result can be obtained using the ‘multiplication rule for probabilities’:
the probability that the first coin will show heads is1

2, and the same is true for the
second and third coins. The probability that all three will show heads is1

2×
1
2×

1
2 =

1
8.

Notice carefully how this situation differs from the one featured inQuestion 8.2:
both the scenarios described in Question 8.2 correspond to having a choice only
between outcomes 1 and 2 in the list above (because the outcome of the first two
tosses is already known as being two heads). The multiplication rule is expressed
in its most general form by saying that

If a number of outcomes occur independently of one another, the probability of
them all happeningtogetheris found by multiplying their individual probabili-
ties.
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An example of how this rule applies in a common genetic disease is given in Box
8.1.

Box 8.1 Probability and cystic fibrosis

Cystic fibrosis is the most common genetic disease in white European and Amer-
ican populations. It results from one of a number of mutations (errors) in a sin-
gle gene that codes for a protein involved in the transport of salts in the cells
of the body. A person with cystic fibrosis has numerous symptoms including
sticky mucus in the lungs which makes them prone to infections, abnormally
salty sweat and problems with the digestion of food. The cystic fibrosis (CF)
gene is described as recessive, which means that individuals with only one copy
of the gene, so-called ‘carriers’, show no symptoms of the disease and may be
unaware that they carry the gene. Individuals with two copies of the faulty CF
gene will show the symptoms of the condition.

Among white Europeans, the probability of being a carrier is1
25.

For a child whose parents are both carriers, the probability of inheriting a copy
of the CF gene from both parents is1

4. This is therefore the probability that the
child of such parents will have symptoms of the disease.

Question

Assuming that the gene is equally likely to be carried by men and women, what
is the probability that any two people planning to have a child together would
both be carriers?
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Answer

The probability of both partners being carriers is1
25 ×

1
25 =

1
625.

Question

What is the probability of a child born to white European parents having cystic
fibrosis?

Answer

The probability that both parents are carriers is1
625, and the probability that

a child whose parents are both carriers will have the disease is1
4. So the

probability of a child born to white European parents having cystic fibrosis is
1

625 ×
1
4 =

1
2500

(In fact the figure quoted for babies born with cystic fibrosis in the UK is about
1 in 2000, somewhat higher than this calculation would suggest.)

Question 8.3

(a) If you toss two coins at the same time, what is the probability
of getting two tails?

Answer

(b) If you throw a pair of dice, what is the probability of getting a
pair of sixes?

Answer
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Question 8.4

Under identical conditions, a seed of each of three different species of plant A,
B, and C, has a germination probability of1

2, 1
3 and 1

4, respectively. If we have
one of each type of seed, what is the probability that:

(a) the seed of A and the seed of B will both germinate? Answer

(b) one seed of each of the three species will germinate? Answer

(c) no seed of any of the species will germinate? (Hint: first work
out the probability of non-germination for each type of seed
individually.)

Answer

Another situation in which you might need to combine probabilities occurs when
outcomes are mutually exclusive (i.e. cannot occur together). For example, what is
the probability of gettingeithera threeor a five on a single roll of a die? One way of
working this out is to say that there are six possible outcomes altogether and two of
them correspond to the desired outcome. So fromEquation 8.2, the probability of
the desired outcome is26 =

1
3. The same result can be obtained using the ‘addition

rule for probabilities’. The probability of throwing a three is16 and the probability
of throwing a five is also16, so the probability of throwingeithera threeor a five is
1
6 +

1
6 =

2
6 =

1
3. Again, this example illustrates a general rule:

Back J I 394



Contents �

If several possible outcomes are mutually exclusive, the probability ofone or
otherof these outcomes occurring is found by adding their individual probabil-
ities.

Worked example 8.1

One card is drawn from a shuffled pack of 52. What is the probability of the
card being either a heart or a diamond? (For a description of a standard pack of
cards, see the comment withQuestion 8.1.)

The card cannot be both a heart and a diamond: these outcomes are mutually
exclusive.

The probability of the card being a heart is1
4.

The probability of the card being a diamond is1
4.

So the probability of the card being either a heart or a diamond is:

1
4
+

1
4
=

2
4
=

1
2

{Note: Since both diamonds and hearts are red suits, the question is equivalent
to asking ‘what is the probability of a single card drawn from the pack being
red?’ This was posed as Question 8.1b and answered then by a different route,
though of course theresultwas the same!}
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Question 8.5 Answer

If you were to draw one playing card from a pack of 52, what would be the
probability of that card being either the Jack, Queen or King of diamonds?

There are also cases in whichboth the addition and multiplication rules operate.
For example:

Question

What is the chance that in a family of three children only one will be a boy?

Answer

Assuming that the sex of a child is independent of the sexes of its siblings, the
probability that the first child is a boy is12, the probability that the second is a
girl is 1

2, and the probability that the third is also a girl is1
2. So the probability

of this particular combination (boy–girl–girl) is

1
2
×

1
2
×

1
2
=

1
8

But in a family with just one boy and two girls, the boy may be the eldest, the
middle or the youngest child, and these possibilities are mutually exclusive. So
the probability of the family consisting of a boy and two girls (born in any order)
is

1
8
+

1
8
+

1
8
=

3
8
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(Note that in fact the assumption that a baby is just as likely to be a boy as a girl
is not quite true. UK statistics show that for every 100 girls born, 106 boys are
born.)

As with the coin-tossing example earlier, you may find that a table of the possi-
bilities helps in visualizing the situation. Of the eight possible combinations of
three children, only three — shown in red — comprise one boy and two girls.

First child Second child Third child Boys Girls

Boy Boy Boy 3 0
Boy Boy Girl 2 1
Boy Girl Boy 2 1
Boy Girl Girl 1 2
Girl Boy Boy 2 1
Girl Boy Girl 1 2
Girl Girl Boy 1 2
Girl Girl Girl 0 3

Question 8.6 Answer

If you toss two coins simultaneously, what is the probability of getting one head
and one tail?
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8.1.5 Probability ratios

Probability calculations are important in many branches of science, but nowhere more
so than in genetics. Box 8.2 describes early work in the field and provides some
illustrative data, based on plant-breeding experiments.

Box 8.2 Mendel’s peas

Gregor Mendel (1822–1884) was an Austrian monk whose experiments in breeding
the garden pea laid the foundations of the science we now call genetics. Mendel
did not know about genes in the way that they are understood today, still less about
chromosomes and DNA. The rules of inheritance he developed were based on what
he observed of the external characteristics of his plants, and the probabilities of
plants with particular characteristics arising from specific breeding crosses carried
out in the following way:

1. Mendel used pollen from a plant to fertilize the flowers of the same plant
(so called ‘self-pollination’) for several generations until he was sure he had
‘pure breeding’ plants, i.e. plants that always produced offspring identical
in appearance to themselves. He called these pure-breeding plants the P-
generation (‘P’ for parental).

2. He then took pollen from one P-generation plant and used it to fertilize an-
other P-generation plant with a different characteristic. By this process of
‘cross-pollination’ a pure-breeding purple-flowered variety could be crossed
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with, for example, a pure-breeding white-flowered one. Mendel called the
offspring of this cross the F1 (first filial) generation.

3. Finally members of the F1-generation were self-pollinated and the offspring
of this process were called the F2 (second filial) generation.

Mendel investigated seven pairs of contrasting characteristics of his pea plants.
His results relating to three of these pairs of characteristics — flower colour, seed
shape and stem length, are shown below. Mendel found these characteristics to be
independent: the fact that a particular plant had white flowers had no bearing on
whether its seeds were round or wrinkled or on what height the plant was.

Flower colour: P (purple) crossed with P (white)
F1 all purple-flowered
F2 705 purple- and 224 white-flowered

Seed shape: P (round) crossed with P (wrinkled)
F1 all seeds round
F2 651 seeds round and 207 seeds wrinkled

Stem length: P (tall) crossed with P (short)
F1 all plants tall
F2 787 tall plants and 277 short plants

Note that in the case of Mendel’s peas, the heights of the plants were not distributed
across a continuous range: there was no difficulty in deciding whether a particular
plant was ‘tall’ or ‘short’.
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Before working with this data, it is important to understand how the results have
been presented. Raw data from breeding experiments come in terms of descrip-
tions and numbers, as with the examples given in Box 8.2, but results are often
reported by expressing the numbers in the form of aratio. For example, in the
F2-generation, Mendel obtained 705 plants with purple flowers and 224 with white
flowers. Another way of expressing this is to say that purple- and white-flowered
plants appeared in the ratio 705 : 224 (said as ‘705 to 224’).

We can think of ratios as simply another way of writing fractions. If, for instance,
we discovered from a paint chart that a green paint had been mixed from yellow
paint and blue paint in the ratio 3 : 2, we would understand that the green paint
was made up of three parts yellow paint and two parts blue paint. In other words,3

5
of the mixture was yellow and25 was blue. Adding both sides of the ratio together
has given us the denominator of the fractions. Knowing the denominator, it is then
easy to express the ratio in terms of percentages:3

5 =
60
100 so 60% of the mixture is

yellow and 40% is blue. A 60 : 40 ratio is exactly the same as a 3 : 2 ratio — it is
just a matter of multiplying or dividing both sides of the ratio by 20. Sometimes it
is convenient to simplify even further, in this case by dividing both sides by two to
express the 3 : 2 ratio in the equivalent form of 1.5 : 1. Note that, like fractions,
ratios do not have units attached to them.
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N P K Others

bone meal 1 5 0 19
lawn tonic 4 1 0 5
tomato food 6 5 9 80

Table 8.1: Ratios of ingredients in
common fertilizers expressed as ratios
N : P : K : others

Ratios are quoted in many applications. For example, fertiliz-
ers are characterized on their labelling by the ratio of two or
three major ingredients, each indicated by a letter. These let-
ters are N (for nitrogen, which is required for leaf growth),
P (for phosphorus, which in the form of phosphates is re-
quired for root development) and K (for potassium, which in
the form of potash is required for flowers and fruit). Typical
ratios for three common types of fertilizer are shown in Table
8.1.

Question

What is the fraction of P in bone meal?

Answer

The fraction of P in the whole is
5

1+ 5+ 19
=

5
25
=

1
5

.

Question

What is the percentage of N in lawn tonic?

Answer

The fraction of N in the whole is
4

4+ 1+ 5
=

4
10
=

40
100

.

So lawn tonic contains 40% N.
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Question

What is the percentage of K in tomato food?

Answer

The fraction of K in the whole is
9

6+ 5+ 9+ 80
=

9
100

.

So tomato food contains 9% K.

As already noted for the paint example, it is quite common for ratios to be expressed
in a form such that one of the parts is 1, even if this means that the other part is a
decimal number. Question 8.7 gives an illustration of a ratio expressed in such a
way.

Question 8.7 Answer

In the atmosphere, the ratio of the volume of oxygen to the volume of other
gases is 0.26 : 1. What percentage of the atmosphere is oxygen?

The ratio of 705 : 224 that Mendel obtained for purple- to white-flowered plants
(seeBox 8.2) can be simplified by dividing both sides of the ratio by 224 to obtain
the equivalent ratio of 3.15 : 1. Notice that one side of this ratio is exact:224

224 is
exactlyequal to 1. However, the other side is not exact and a choice has to be
made about how many significant figures to quote; 2 or 3 significant figures are
usually sufficient in this context. His data relating to the other independent pairs of
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characteristics involving seeds and stem lengths can be simplified in a similar way
by dividing the larger number by the smaller, to obtain:

flowers purple : white = 705 : 224 = 3.15 : 1

seeds round : wrinkled= 651 : 207 = 3.14 : 1

stems tall : short = 787 : 277 = 2.84 : 1

In each case the ratio is close to 3 : 1. In other words, the character from the P-
generation that was present in all members of the F1-generation is present in only
about 3

4 of the F2-generation. By the same token, the character that completely
vanished in the F1-generation reappears in about1

4 of the F2-generation. In fact,
modern understanding of genetics leads to the theoretical prediction of a 3 : 1 ratio;
the slight deviations observed in experiments like Mendel’s are the same as those
observed when tossing a coin. The more tosses of the coin, the more nearly the
ratio of heads : tails approaches 1 : 1. Similarly, the more pea plants included in the
experiments, the more nearly the ratios would be expected to approach 3 : 1.

The examples of Mendel’s experiments on peas concerned the inheritance of just
a single pair of alternative characteristics: flowers were either purple or they were
white; seeds were either round or they were wrinkled; stems were either tall or they
were short. When there are more than two options for particular characteristics, the
calculations become a little more complicated, but the principles remain exactly the
same, as demonstrated by the following worked example.
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Question

On a maize cob, four types of grain can be distinguished: dark smooth ones,
dark wrinkled ones, pale smooth ones and pale wrinkled ones. The aggregate
results of counting numbers of the four types on 20 cobs all from the same plant
were:

dark smooth dark wrinkled pale smooth pale wrinkled
4791 1587 1617 531

Assuming that the theoretical ratios for these characteristics are whole numbers,
what would be the theoretical probability that a single grain chosen at random
from a large number of cobs would be a pale smooth one?

Answer

Dividing through by the smallest number in the sample, which in this case is
531, gives:

dark smooth dark wrinkled pale smooth pale wrinkled
9.02 2.97 3.05 1

If it is assumed that the theoretical ratios are whole numbers, these data strongly
suggest that the ratios would be:

dark smooth dark wrinkled pale smooth pale wrinkled
9 3 3 1
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The theoretical fraction of grains that are pale and smooth is therefore

3
9+ 3+ 3+ 1

=
3
16

This is also the probability of one grain selected at random being pale and
smooth. This probability could be expressed as a fraction

(
3
16

)
, a decimal num-

ber (0.1875) or a percentage (18.75%).

8.2 Descriptive statistics

Scientists collect many different types of information, but sets of data may be very
loosely classified into two different types. In the first type, so-called ‘repeated mea-
surement’, an individual quantity is measured a number of times. An astronomer
wanting to determine the light output of a star would take many measurements on a
number of different nights to even out the effects of the various possible fluctuations
in the atmosphere that are a cause of stars ‘twinkling’. In the second type of inves-
tigation, so-called ‘sampling’, a proportion of the members of a large group are
measured or counted. A botanist interested in the average size of Primrose plants
in a wood would try to choose representative samples of plants from different parts
of the wood and measure those.
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8.2.1 Repeated measurements

Figure 8.2: The pattern formed by a
diffraction grating

Scientists are always concerned with the reliability and precision of
their data, and this is the prime reason for them to repeat measure-
ments many times. Consider the photograph in Figure 8.2, which
was produced by a diffraction grating illuminated with red light (see
Box 6.6). To determine the wavelength of the light it would be
necessary to measure the distances between the lines. Because the
lines are rather fuzzy each measurement would need to be repeated
a number of times.

Generally the process of repeating measurements of a particular quantity would
lead to a number of slightly different results being obtained. Measured values of
one quantity that are scattered over a limited range like this are said to be subject
to ‘random uncertainty’. Measurements for which the random uncertainty is small
(i.e. for which the range over which the measurements are scattered is small) are
described asprecise. The ‘best’ estimate scientists could make of the distance be-
tween each line in Figure 8.2 would be some sort of average of the measured values.

The scatter inevitably associated with raw data begs various questions. For instance,

• how close to the ‘true’ value is this calculated average value?
• how close to the ‘true’ value is one typical measurement likely to be?
• conversely, how probable is it than any given measurement will be close to

the average value?
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Matters will be further complicated if there is some inherent error or bias in the mea-
suring instrument, such that all the readings are, say, too large by a fixed amount.
Such measurements are said to have a ‘systematic uncertainty’. Note that unless
measuring instruments can be constantly checked against one another, it is easy for
quite large systematic uncertainties to creep unnoticed into measurements. Mea-
surements for which the systematic uncertainty is small are described asaccurate.
Of course to get anywhere near to the ‘true’ value of a quantity, measurements have
to be both accurate and precise!

8.2.2 The distribution of repeated measurements

As noted in the previous section, if the same quantity is mea-
sured repeatedly, the results will generally be scattered across a
range of values. This is perhaps best illustrated using a real ex-
ample. Table 8.2 shows 10 measurements of a quantity called the
‘unit cell constant’ for an industrial catalyst used in the refining
of petrol; this is an important quantity which determines how well
the catalyst works, and can be measured by X-ray diffraction tech-
niques. Notice that the cell constant is very small and is measured
in nanometres.

Measurement Cell constant/nm

1 2.458
2 2.452
3 2.454
4 2.452
5 2.459
6 2.455
7 2.464
8 2.453
9 2.449
10 2.448

Table 8.2: Repeated measurements
of the unit cell constant for a batch
of industrial catalyst
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It is always difficult to see patterns in lists or ta-
bles of numbers. If the data is put into the form
of a histogram, as has been done in Figure 8.3,
the task becomes much easier. The histogram
provides a visual representation of the way in
which the measurements are distributed across
a range of values. In fact the pattern on Figure
8.3 is not particularly obvious, because the data
set is quite small, consisting of only ten mea-
surements.

When the number of measurements is in-
creased, the variation in the height of the bars
gradually becomes smoother, as illustrated in
Figure 8.4.
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Figure 8.3: Histogram of data from Table 8.2.
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Figure 8.4: Distribution of a larger number of
repeated measurements.
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When substantially more measurements have
been accumulated, the size of the intervals can
be reduced while still having a reasonable num-
ber of measurements within each interval. This
again tends to produce a smoother distribution,
as shown in Figure 8.5. Note the changes of
vertical scale between Figure 8.3, 8.4 and 8.5.

With an extremely large number of measure-
mentsandvery small intervals on the horizontal
axis, the ‘envelope’ of the distribution will tend
to become a smooth bell-shaped curve, like that
in Figure 8.6.

These distributions all give some impression of
the spread of the measurements, and the way the
results cluster at the peak of the distribution in
Figure 8.6 suggests that this peak might repre-
sent the average or ‘best estimate’ value. How-
ever, a scientist would want a more quantitative
and succinct way to describe such results and to
communicate them to other people working on
similar problems. The mean and standard de-
viation are the measures most commonly used
to summarize large sets of data with just a few
numbers.
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Figure 8.5: The distribution becomes smoother as the
number of measurements increases.
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Figure 8.6: The distribution for an extremely large
number of measurements.
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8.2.3 Mean and standard deviation for repeated measurements

In everyday terms, everybody is familiar with the word ‘average’, but in science
and statistics there are actually several different kinds of average used for different
purposes. In the kind of situation exemplified byTable 8.2, the sort to use is the
mean(or more strictly the ‘arithmetic mean’) For a set of measurements, this is
defined as the sum of all the measurements divided by the total number of measure-
ments made.

Question

What is the mean of the results inTable 8.2?

Answer

The sum of all the measurements is 24.544 nm. There are 10 results, so the

mean value is
24.544 nm

10
, or 2.4544 nm to 5 significant figures. (The reason for

giving the result to this number of significant figures will be discussed shortly,
but for the moment let us proceed without worrying too much about this aspect
of the calculation.)

To turn this description of how to calculate a mean into a formula, each element
has be allocated a symbol. So let us say that we have maden measurements of a
quantityx. Then we can call the individual measurementsx1, x2, x3, . . . xn (where
x1 is properly said either as ‘x subscript one’ or as ‘x sub one’, but also sometimes
as ‘x one’ provided the meaning remains clear). The mean value of any quantity is
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usually denoted by writing a bar over the quantity so the mean ofx is written asx
(and said ‘x bar’). Possible (and correct) formulae are therefore:

x =
x1 + x2 + x3 + . . . + xn

n
or

x =
1
n

(x1 + x2 + x3 + . . . + xn)

However, the sum is tedious to write out, so a special ‘summation’ sign,
∑

(the
Greek capital letter sigma), is used to denote the adding up process, and the mean
of n measurements can be neatly written as:

x =
1
n

n∑
i =1

xi (8.3)

Thei = 1 below the summation sign indicates that the first value forxi in the sum is
x1, and then above it indicates that the last value in the sum isxn. In other words,
all integer values ofi (x1, x2, x3, etc.) are to be included up toxn. (The summation
sign with the information attached to it is usually said as ‘sum of x sub i from one
to n’.)

We now want a quantitative way of describing the spread of measurements, i.e.
the extent to which the measurements ‘deviate’ from the mean. There are 5 steps
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required to do this, which are laid out below, andTable 8.3shows the results of
following this ‘recipe’ for the data inTable 8.2:

Step 1

Calculate the deviation of each measurement. The deviationdi of any individual
measurement is defined as the difference between that measurement and the mean
of the set of measurements:

di = xi − x (8.4)

Notice that the value ofdi may be positive or negative depending on whether a par-
ticular measurement is larger or smaller than the mean of the set of measurements.
At this stage the deviations have been expressed as decimal numbers.

Step 2

Calculate the squares of each of the deviations (i.e.d2
i ). These will, of course, all

have positive values.

By this stage the values have become very small so the column has been headed in
such way that the numbers entered in the column represent the value ofd2

i divided
by 10−5.

Step 3

Add together all the squares of the deviations (i.e.
n∑

i =1

d2
i ).
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Step 4

Divide by the total number of measurements (i.e.n) to obtain the mean of all the Table 8.3
square deviations. This may be written as:

d2
i =

1
n

n∑
i =1

d2
i (8.5)

Step 5

Take the square root of this mean to obtain the ‘root mean square deviation’sn. It
is this quantitysn that is known as thestandard deviation. Step 5 may be written as:

sn =

√
d2

i

or, substituting ford2
i from Equation 8.5, as:

sn =

√√
1
n

n∑
i =1

d2
i (8.6)

Sincedi was defined inEquation 8.4as(xi − x), one final substitution into Equation
8.6 givessn in its most frequently used format:
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The standard deviationsn for n repeated measurements of the same quantityx
is given by

sn =

√√
1
n

n∑
i =1

(xi − x)2 (8.7)

At the end of this process, we can summarize all the data in Table 8.2 just by
saying that the ten measurements had a mean of 2.4544 nm and standard deviation
0.0046 nm. The calculation of standard deviation is given inTable 8.3.

There are several things worth noting about this result and the data in Table 8.3.

First, all the quantities have units associated with them. The values ofxi were
measured in nanometres, so deviations will also be in nanometres and the squares
of the deviations in nm2, as shown in the column headings in the table.

A second useful feature to notice is that the sum of all the deviations is equal to
zero.

n∑
i =1

di = 0

If you are interested in knowing why this is always true, there is an explanation in
Box 8.4(though you do not need to work through the full explanation in order to
make use of the result). At the end of Step 1 it is well worth adding up all the values
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you have calculated for the deviations to ensure that they do indeed total zero. If
they don’t, you have made an arithmetic slip somewhere which needs to be put right
before you proceed to Step 2.

Box 8.4 The sum of the deviations is always equal to zero

It is quite easy to work out from first principles the reason for the sum of the
deviations being zero in the special case in which the set consists of just two
measurements,x1 andx2. The mean would then be:

x =
x1 + x2

2

so d1 = x1 − x = x1 −
x1 + x2

2
= x1 −

x1

2
−

x2

2

and d2 = x2 − x = x2 −
x1 + x2

2
= x2 −

x1

2
−

x2

2
Therefore

d1 + d2 =

(
x1 −

x1

2
−

x2

2

)
+

(
x2 −

x1

2
−

x2

2

)
=

(
x1 −

x1

2
−

x1

2

)
+

(
x2 −

x2

2
−

x2

2

)
(rearranging the terms)

= 0

This argument can be extended to any number of values ofx; as an exercise in
algebra you might like to try it for three measurements. However many values
of x are chosen, it is always the case that the sum of the deviations is zero.
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Looking now at the details of the calculation, the original measurements of length
were made to the nearest picometre (i.e. 0.001 nm), represented by 3 places of
decimals (i.e. 3 digits after the decimal point). More digits were carried in the
calculations to avoid rounding errors. However, what is the appropriate number of
digits to quote in the final answer? Well, when we added up all the 10 results in

Table 8.3, we obtained
n∑

i =1

xi = 24.544 nm (i.e. 5 digits in total). We divided this

sum by an exact number (10) so we are entitled to retain 5 digits in the result of
this division, givingx as 2.4544 nm. It is therefore valid to retain one more decimal
place in the mean value than we had in each of the measurements individually.
After all the whole point of repeating the measurement many times and averaging
is to improve our confidence in our final result! Having quoted the mean asx =
2.4544 nm, it then makes sense to quote the standard deviation as 0.0046 nm.

The fact that here the standard deviation is quite small in comparison to the mean
shows why, in this context, it is more sensible to think in terms of places of decimals
rather than significant figures. Because leading zeroes do not count as significant,
the standard deviation is actually only given to 2 significant figures, whereas the
mean is given to 5. In such circumstances it is easier to think of the mean and
the standard deviation as being expressed to the same number of decimal places
(always assuming of course that they are given the same units).

In summary, it is often reasonable to give the mean to one more decimal place (or
one more significant figure) than was used for each of the individual measurements,
and then to quote the standard deviation to the same number of decimal places as
the mean.
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8.2.4 Using a calculator for statistical calculations

Table 8.3shows all the values for each step in the process of calculating a standard
deviation, so that you can see what the operations encapsulated byEquation 8.7
actually entail, but you will probably be relieved to hear that it is not usually neces-
sary to carry out such detailed calculations. Scientific and graphics calculators (or
computer spreadsheets) can do most of the drudgery for you.

You will need to consult the instructions for your own calculator in order to find out
how to do this, but usually the process involves the following steps.

Step 1

Put the calculator into statistical mode.

Step 2

You should then be able to input all the data; sometimes the data is stored via a
memory button, in other cases it can be entered and displayed as a list. Try this out
with the following set of numbers:

8, 6, 9, 12, 10

Step 3

Having input the data, you can then get most calculators to tell you the number of
items of data. If your calculator can do this, it should return the answer ‘5’ here. It
doesn’t matter if your calculator doesn’t have this function, but if it does it’s well
worth using this checking device. If you have to input a long string of data values,
it’s quite easy to miss one out inadvertently!
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Step 4

When you know you have the data correctly stored, find out how to display the
mean; you should get the answer ‘9’ here.

Step 5

Now find out how to display the standard deviation. Many calculators use the sym-
bol σn for standard deviation, rather thansn (σ is the lower case version of the
Greek letter sigma). Do be careful with this step: your calculator may also have a
button labelledσn−1 or sn−1. Don’t use it by mistake! You should get the answer
‘2’ here.

Once you are sure you know how to use your calculator to perform calculations
of mean and standard deviation, apply this skill to Question 8.8. To answer such
questions, you could choose to work out a full table similar toTable 8.3, but that
it is a very time-consuming process, so it is worth becoming confident in using the
statistics buttons on your calculator.
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Question 8.8 Answer

A sample of a particular manufacturer’s ‘coarse
round wire’ was measured at ten points along
its length. The data is given in Table 8.4.

Calculate the mean and standard deviation of
these measurements.

Measurement Diameter/mm

1 1.09
2 1.00
3 1.25
4 1.24
5 1.29
6 0.89
7 1.09
8 1.14
9 1.22
10 1.01

Table 8.4: Repeated measurements
of the diameter of a wire.

8.2.5 How likely are particular results?

In real experiments, as opposed to hypothetical ones, it is very rare that scientists
make a sufficiently large number of measurements to obtain a smooth continuous
distribution like that shown inFigure 8.6. However, it often convenient to assume a
particular mathematical form for typically distributed measurements, and the form
that is usually assumed is thenormal distribution, so-called because it is very com-
mon in nature. The normal distribution corresponds to a bell-shaped curve which
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is symmetric about its peak, as illustrated inFigure 8.6. Repeated independent
measurements of the same quantity (such as the breadth of an object, or its mass)
approximate to a normal distribution. The more data is collected, the closer it will
come to describing a normal distribution curve.

mean value

sn

sn

±sn

Figure 8.7: The shaded area under this normal distribution
curve represents the measurements that lie within one stan-
dard deviation of the mean.

The peak of the normal distribution curve
corresponds to the mean value of the distri-
bution, as shown in Figure 8.7. This figure
also illustrates how the standard deviation
of a set of measurements is related to the
spread. Although it is beyond the scope of
this course to prove this, the area under a
portion of a distribution curve within a cer-
tain range represents the number of mea-
surements that lie within that range, as a
proportion of the whole set. For a normal
distribution, it turns out that 68% of the
measurements lie within one standard de-
viation (i.e. within±sn) of the mean value.
Conversely, 32% of the measurements will lie outside this range. If you make a
single additional measurement, it is therefore just over twice as probable that this
one measurement will fall within one standard deviation of the mean than that it
will fall outside this range. For a normal distribution, it also turns out that 95%
of measurements are likely to fall within two standard deviations of the mean and
99.7% within three standard deviations of the mean.
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w y z

precision of measurement increasing
(i.e. random uncertainty decreasing);

standard deviation decreasing

w y z

Figure 8.8: Normal distribution curves for three independent sets of
measurements, with the same number of measurements in each set. The
measurements of quantityw are subject to large random uncertainties,
while those of quantityy are more precise and those ofz more precise
still.

Remembering that precise mea-
surements were defined inSec-
tion 8.2.1 as those for which
the scatter was small, you will
appreciate that the more pre-
cise a repeated set of the same
number of measurements of a
particular quantity, the more
highly peaked the distribution
curve and the smaller the stan-
dard deviation will be. A very
broad distribution on the other
hand, corresponds to measure-
ments with considerable scatter
and the standard deviation will
be large. These trends are illus-
trated in Figure 8.8.
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8.2.6 Different types of ‘average’

Figure 8.7showed that if the data has a normal distribution the mean value corre-
sponds to the peak of the distribution. Normal distributions of data are very com-
mon in science, but by no means universal. Figure 8.9 shows some other possible
distributions, three of which are symmetric and one of which isskewed(i.e. not
symmetric).

(a)

mean

mean

mean
mean

(b)

(c) (d)

Figure 8.9: Types of
distribution. (a) is the
normal distribution: a
symmetric bell shaped
curve. (b) is also
symmetric, but the
shape of the curve
does not approximate
to the normal
distribution. (c) is a
skewed distribution.
(d) is symmetric, but
displays two equal
maxima.
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In many cases, especially if the distribution is skewed, the mean is not the best way
of representing an average or typical value. Imagine for example a small company
with a single owner who pays himself £900 000 a year and 10 employees who
are each paid £10 000. The statement that the mean annual income of these 11
workers is more than £90 000 (i.e. £1000 000 divided by 11) — although true —
is somewhat misleading! In such cases, two other quantities, the mode and the
median, may represent the data more fairly.

The modeis the most frequently occurring value in the set of data. If the data is
plotted on a histogram or a bar chart, the mode will be the value corresponding to
the tallest bar.

Question

What is the mode of the earnings in the company described above?

Answer

The mode is £10 000. This is certainly more representative of the typical earn-
ings than the mean would be!

Note that in some cases there may be more than one value for the mode; for exam-
ple, that would be the case for the distribution shown inFigure 8.9d.
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The medianis the middle value in a series when the values are arranged in order
of size. This means that half the measurements have values that are bigger than the
median and half have values that are smaller than the median. If there are an odd
number of measurements, the median is the middle measurement; if there are an
even number of measurements it is the mean of the middle two values.

To see how this works, consider the following example. Ten plants of a particu-
lar species were chosen at random and the number of flowers on each plant were
counted. The results were:

8; 7; 4; 8; 10; 7; 9; 7; 8; 7;

Question

What is the mode for this data?

Answer

The best way of answering this is to compile a table showing the number of
plants with particular numbers of flowers:

number of flowers 4 7 8 9 10
number of plants 1 4 3 1 1

The mode is 7 flowers. There are more plants with 7 flowers than with any other
number of flowers.
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Question

What is the median for this data?

Answer

To answer this, we have to order the data. In increasing numbers of flowers, the
results obtained were:

4; 7; 7; 7; 7; 8; 8; 8; 9; 10.

With a sample of 10 plants the median is the mean number of flowers on the 5th

and 6th plants (counted in either ascending or descending order). In ascending
order, the 5th plant has 7 flowers and the 6th has 8, so the median is7+8

2 = 7.5.

Question 8.9

The heights of nine different specimens of the same type of plant were measured
in centimetres, and the results in descending order were:

8.6; 8.3; 8.2; 7.9; 7.8; 7.8; 7.4; 7.3; 7.1

(a) What is the median of this data? Answer

(b) What is the mean of this data? Answer

Box 8.5 illustrates a case in which the mode and median give a more representative
summary of the data than the mean.

Back J I 425



Contents �

Box 8.5 Seabird migration

In a study of Storm Petrels (small seabirds), sev-
eral thousand birds were marked with identifying
rings when they were at their nests on a Shet-
land island. After nesting, the birds dispersed.
Twenty-eight of the birds were subsequently re-
ported as having been recovered in other areas as
shown in Table 8.5.

Taking all 28 observations into account, the mean
distance from their nest site at which the birds
have been recovered is 554.5 km. However, this
is not a very useful way in which to summarize
the data, because in fact 13 out of the 28 birds
(i.e. nearly half) moved less than 100 km, and
only two moved further than the mean distance.
The median distance is 114 km and this is a more
typical value.

Recovery place Distance/km Number
of birds

Shetland (Lerwick) 49 8
Shetland (Foula) 77 5
Fair Isle 114 5
Orkney 157 2
Sule Skerry 248 3
Summer Isles 382 1
St Kilda 529 2
Cape Clear 1114 1
South Africa (Durban) 10568 1

Table 8.5: The recovery location of Storm Petrels
ringed at their nests on one of the Shetland islands

This example shows how the mean can be highly dependent on a small number of measurements that
are a long way from the mode. In this case, the single recovery from South Africa has an enormous
influence on the mean. The median is ‘resistant’ to extreme values. Even if the bird recovered in South
Africa had stopped in Morocco, or alternatively if it had gone to New Zealand, the median value would
have remained 114 km.
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8.2.7 Samples and populations

It is no accident that the examples used in Sections 8.2.3 and 8.2.4 to illustrate
the statistics for repeated measurements of individual quantities were drawn from
chemistry and physics. Experiments involving repeated measurements of some
quantity are typical of the physical sciences. There are, however, many other types
of scientific work in which a typical procedure is to collect data by measuring or
counting the members of a sub-set of things which form part of a larger group,
and Section 8.2.6 contained several examples. In this type of work, the sub-set of
members that are measured or counted is called thesampleand the larger group is
called apopulation. Although often employed in the context of biology to describe
a group of organisms that might breed with one another, the term ‘population’ is
used much more widely in statistics to mean a collection of things or events. Ex-
amples of statistical populations could include all the sand grains on a beach, all
the leaves on a tree, all the people in England with blood group AB, or all the visits
made to the Science Museum in March.

It is generally the case that the members of any one population display some vari-
ability; for instance, not all the leaves on an oak tree will be exactly the same size.
Furthermore, different populations often overlap with respect to whatever we might
be measuring or counting. But despite this variability and overlap, what scientists
often want to know is whether there seem to be systematic differences between the
populations. Indeed, only if there do seem to be such differences do they accept
that they really are dealing with more than one population. Failure to find evidence
of systematic differences between the leaves of oak trees growing on sandy soil and
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those of oak trees growing on clay soils would suggest that the leaves (and trees)
were members of the same population, or in other words that soil conditions have
no overall effect on the leaves of oak trees. The statistical techniques used in look-
ing for systematic differences between populations are the subject of Chapter 9, but
in order to make use of these techniques it is necessary to be able to summarize
the data that has been collected. You saw inSection 8.2.3that for repeated mea-
surements data sets could be summarized by quoting just two quantities: the mean
and the standard deviation. This is also true for samples drawn from populations,
but the mean and the standard deviation take on slightly different meanings in this
context.

It is normally the case that data cannot be collected on all members of a population.
It would indeed be impractical to attempt to measure every leaf on an oak tree! By
the same token, it is usually impossible to know thetruemean of some quantity for a
whole population. This ‘true mean’ (also known as the ‘population mean’) is given
the symbolµ (the Greek letter ‘mew’), with the understanding that this quantity
is generally not only unknown but unknowable. What wecan easily calculate,
however, is the mean of the quantity as measured for a sample drawn from the
population. This is given the symbolx and calculated usingEquation 8.3, exactly
as we did in Section 8.2.3. Provided the sample is unbiased,x is the best estimate
of µ that we can obtain.

As with the mean, the true standard deviation of a population can usually never
be known with certainty. Again, the best estimate we can obtain must come from
the distribution of values in a sample drawn from the population. However, this
time it isn’t appropriate to use the formula for the standard deviation of repeated
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measurements of one quantity which was:

sn =

√√
1
n

n∑
i =1

(xi − x)2 (8.7)

Instead a slightly different formula is used, namely:

sn =

√√
1

n− 1

n∑
i =1

(xi − x)2 (8.8)

sn−1 is often called the ‘sample standard deviation’ because it is calculated from
data taken for a sample of the population.

The value determined forsn−1 provides the best estimate of the standard deviation
of the population. It will not have escaped your notice that the only difference be-
tween the two formulae is that in Equation 8.8 we are dividing by (n− 1), whereas
in Equation 8.7 we were dividing byn. This means thatsn−1 must always be larger
thansn (because we are dividing by a smaller number). This allows for the possi-
bility that within the whole population there may be a few extremely high or low
values of the measured quantity which will not necessarily be picked up in a sample
drawn from that population.

Back J I 429



Contents �

sn−1 is also often called the ‘estimated standard deviation of a population’ be-
cause, provided the sample is chosen without bias, it is the best estimate that can
be made of the true standard deviation of the population.

You should now check that you can use your calculator to determine the sample
standard deviationsn−1 for a set of data. For this purpose, try taking the same set
of numbers you used in Section 8.2.4 to check how to calculatesn. These numbers
were:

8, 6, 9, 12, 10.

The first four steps are the same as before, only Step 5 will be different.

Step 1

Put the calculator into statistical mode.

Step 2

Input all the data.

Step 3

If your calculator can tell you the number of items of data, check that it gives the
answer ‘5’ here.

Step 4

When you know you have the data correctly stored, display the mean; you should
get the answer ‘9’ here.
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Step 5

Now find out how to display the sample standard deviation. The appropriate button
will probably be markedσn−1 or sn−1. You should get the answer ‘2.2’ here (to one
decimal place). Don’t use theσn or sn button by mistake!

While this example is useful to familiarize yourself with the process, it doesn’t rep-
resent a realistic scenario, not least because the hypothetical data set is so small.
Because the aim is to estimate the mean and standard deviation for a whole popu-
lation by carrying out measurements just on a sample, it is important to ensure that
the sample is representative of the population as a whole and that usually requires
it not only to be chosen without bias, but also to be reasonably large. In Question
8.10, the sample consists of 20 plants.

Question 8.10 Answer

Suppose that the number of flowers were counted on 20 orchid plants in a colony,
and that the results were:

8; 8; 4; 8; 8; 7; 9; 7; 7; 5; 9; 10; 6; 9; 7; 4; 8; 5; 11; 5.

From this data, estimate to 3 significant figures the mean number,µ, of flowers
per plant in the colony and the standard deviation of the population. You may
if you wish construct a table similar toTable 8.3, but it will be much quicker
simply to use your calculator.
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8.3 Learning outcomes for Chapter 8

After completing your work on this chapter you should be able to:

8.1 demonstrate understanding of the terms emboldened in the text;

8.2 calculate the probability of a particular outcome from information about
possible outcomes;

8.3 express a probability as a fraction, a decimal number or a percentage;

8.4 combine probabilities appropriately from information about possible
outcomes;

8.5 interpret data in which the relative values of quantities are expressed as ratios;

8.6 calculate the mean, mode and median for a set of data;

8.7 calculate the standard deviationsn for a set of repeated measurements of a
particular quantity;

8.8 calculate the estimated standard deviation of a population,sn−1, from a set of
measurements made on a sample drawn from the population.
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Statistical hypothesis testing 9
Samples and populations can be described in terms of their actual or estimated
means and standard deviations, as discussed in Chapter 8. However, the ultimate
aim of collecting data is usually not simply to describe, but also to answer sci-
entific questions as objectively as possible. An extensive collection of statistical
techniques has been developed over many years to provide answers to some such
questions, bearing in mind that most data are intrinsically variable. In this chapter,
you will be introduced to the general principles that underpin almost all of these
techniques and then shown how to perform three particular statistical tests com-
monly used to answer different sorts of question. In order to illustrate these ideas
and to provide some of the data with which you can practice, this chapter is partly
based on a small ecological study. The study is described in Box 9.1.
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Box 9.1 Green-winged Orchids and ridge-and-furrow topography

A conspicuous feature of parts of the English Midlands is ridge-and-furrow topography. Some of this
is medieval and some is much later in age. It has been known for some time that Bulbous Buttercup
(Ranunculus bulbosus) tends to occupy the drier ridges and Creeping Buttercup (R. repens) the wetter
furrows. Also found in the same area is Green-winged Orchid (Orchis morio), a rare plant in England. A
study was undertaken to find out whether the distribution and/or performance of Green-winged Orchid
might also be influenced by ridge-and-furrow topography.

Various measurements were made
on a sample of plants growing in a
local nature reserve. Figure 9.1 il-
lustrates some of the measurements
taken. These included the horizon-
tal and vertical distances of each
plant from the nearest ridge crest,
the height of the plant, the number
of leaves and the number of flowers.
Whether a plant was growing on the
north-west or the south-east slope
of the ridge was also recorded, since
the two slopes might differ with re-
spect to mean temperature, mois-
ture availability, etc.

plant height

horizontal distance

vertical distance

position of
ridge crest

Figure 9.1: Measurement of horizontal and vertical distances
of a plant from the nearest ridge crest and plant height.
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9.1 The principles of hypothesis testing

Many of the questions that arise out of scientific investigations are driven byhy-
potheses, tentative explanations of observations that may be tested by experiment
or by making further observations. Taking the study briefly described inBox 9.1
as an example, it might be proposed that Green-winged Orchid (like Bulbous But-
tercup) occurs more frequently — and/or grows better — nearer the drier crests of
ridges than the wetter furrows. Alternatively, it might be that Green-winged Orchid
(like Creeping Buttercup) ‘prefers’ the wetter furrows to the drier ridges. Notice
that these tentative ideas contain the unproven assumption that ridges are indeed
drier than furrows. Statistical hypothesis testing provides a universally agreed set
of procedures for answering questions such as ‘Do Green-winged Orchids tend to
occur nearer to ridge crests than expected by chance?’, ‘Does the amount of water
in soil increase with distance from the nearest ridge crest?’, ‘Do the Green-winged
Orchids growing nearer ridge crests tend to be taller or have more leaves and/or
flowers than those growing further away?’.

There are two major branches of statistical hypothesis-testing: ‘tests of association’
(e.g. ‘Are Green-winged Orchids found in association with ridge crests significantly
more frequently than would be expected by chance?’) and ‘tests of difference’ (e.g.
‘Is there a significant difference between the mean height of plants growing on the
north-west rather than the south-east slopes of ridges?’).
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Question

Would an investigation into whether there is a significant increase in the water
content of soil with increasing distance from the nearest ridge crest be a test of
association or a test of difference?

Answer

Since we would be looking to see if there is anassociationbetween soil water
content and distance from ridge crest, this would be a test of association.

Having ascertained which statistical test is appropriate in any particular circum-
stance, most scientists look up the details of that test and then use it almost as if
it were a ‘black box’ (a piece of equipment that users trust to perform a particular
task reliably without understanding how it actually works). Sometimes, however,
it is helpful to stand back from the details of any particular statistical test and to
consider those features that are common to nearly all such tests. These common
features can best be illustrated by considering in general terms a test of difference
between two means.
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Figure 9.2: Diagram summarizing a possible result
of an experiment in which a sample exposed to ex-
perimental treatment (shown with blue shading) was
compared to a control (pink shading). Note the over-
lap between the two distributions. Eachx is the mean
of a sample (and estimates the mean of the population,
µ) and eachsn−1 is the sample standard deviation (es-
timated standard deviation of the population).
Note: The diagram shows the two distributions over-
lapping at exactlysn−1 from the mean. This would
not normally be the case.

Suppose that a scientist collected measurements
from two samples of plants, one of which had
been exposed to a particular experimental treat-
ment and the other (the so-called control sample)
which had not. Almost certainly, there would be
some variation within each of these two sets of
measurements and this would be reflected in their
standard deviations. Moreover, even if the differ-
ence between the means of the experimental and
control plants was relatively large, it would not
be surprising if there was some overlap between
the two sets of measurements, as shown in Figure
9.2.

Now it might suit the scientist’s favoured theory
to convince others that the treatmentdid have
a statistically significant effect on the measured
character. On the other hand, it might be in the
scientist’s interests to show that the treatmentdid
not have a statistically significant effect. Either
way, the scientist is required by the procedures of
statistical hypothesis testing to put forward a so-
callednull hypothesisin the first instance. As the
name suggests, a null hypothesis is one of ‘no dif-
ference’. In this case the null hypothesis would be
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that there is no difference between the population mean of the treated plants (µ1)
and the population mean of the control plants (µ2). Expressing this statement math-
ematically, the null hypothesis would be that

µ1 = µ2

or, equivalently, thatµ1 − µ2 = 0.

At the same time, the scientist has to put forward analternative hypothesisthat is the
logical ‘mirror image’ of the null hypothesis. In this case the alternative hypothesis
would be that thereis a difference between the means of the treated and control
plants. Expressing this statement mathematically, the alternative hypothesis would
be that

µ1 , µ2

or µ1 − µ2 , 0.

Question

Is it possible for both the null and alternative hypotheses to be false?

Answer

No. If either is false, then the other must be true.

Back J I 438



Contents �

If the null hypothesis is true, then the alternative hypothesismustbe false and
vice versa.

Once statements of the null and alternative hypotheses have been made, a quantity
called thetest statisticis calculated. The test statistic is a number, on the basis of
which a decision can be made to accept or reject the null hypothesis. The value
of the test statistic depends on the characteristics of the samples being compared,
and in most cases it is calculated using one or more equations. Things are often so
arranged that the value of the test statistic comes out to be zero if the null hypothesis
is true (for instance, by including the term (x1−x2) in the numerator of the equation,
wherex1 andx2, the means of the two samples, are the best available estimates of
the unknowable values ofµ1 andµ2). However, because of the vagaries of sampling,
it would be extremely unlikely for the means of two samples drawn from even the
same population to be identical (for instance, two samples of control plants are very
unlikely to have exactly the same mean). So, the question is ‘How large does the
test statistic have to be before one can be reasonably confident that the samples
were drawn from different populations (and therefore conclude, in this example,
that the experimental treatment probably did have a significant effect)?’ In fact, it
is impossible to give a definitive answer to this question; it can be answered only in
terms of probabilities.

Ideally, the precise probability that the calculated value of the test statistic could
have arisen by chance if the null hypothesis were true would be determined. In a
particular instance, this might turn out to be something like 1 in 63, i.e.1

63 , which
is 0.015 87 to four significant figures. In practice, the value of the test statistic is
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usually compared to lists ofcritical valuescalculated for a few pre-determinedsig-
nificance levelsexpressed in terms of probabilities. In this context, the probabilities
are usually abbreviated toP and expressed in decimal notation, e.g. 0.1, 0.05 and
0.01. For any particular significance level, the critical value is the most extreme
(usually largest) value that the test statistic could be expected to have if the null
hypothesis were true. Of course, if the null hypothesisis true then any deviation
from the test statistic’s expected value (which, as noted above, is usually zero) must
have arisen purely by chance. If the significance level corresponding to the value of
the test statistic turns out to be quite low (usually because the test statistic is rather
high), then it must be accepted that the null hypothesis is unlikely to be true. If the
null hypothesis is false, then the alternative hypothesismustbe true. Only at this
stage can the scientist conclude:

• either that the treatment did have a significant effect (because the null hy-
pothesis was probably false and therefore the alternative hypothesis probably
true)

• or that the treatment did not have a significant effect (because the null hy-
pothesis is likely to have been true).

It is extremely important to realize that the particular significance level at which a
null hypothesis is rejected — and hence the alternative hypothesis is accepted — is
a matter of convention. The usual convention in science is to reject a null hypothesis
if the probabilityP is less than the 0.05 significance level, i.e. ifP < 0.05. However,
in employing this convention, it is also important to realize that you could either be
rejecting a true null hypothesis or accepting a false one. Indeed, you are explicitly
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accepting that on average, if you were to carry out 100 statistical tests, you would
reach the wrong conclusion for 5 of these tests (although you would not know
which ones). If the work you are engaged inreally matters, for example, medical
research in which human lives might be at stake, then you would probably employ
more exacting criteria (such as rejecting null hypotheses only ifP < 0.01 or even
P < 0.001). On the other hand, insisting on the use of such rigorous criteria for even
routine scientific work would mean that many null hypotheses that really are false
would have to be accepted, and this would undoubtedly hinder scientific progress.

The important features of statistical hypothesis testing are summarized below:

1. A null hypothesis (e.g.µ1 = µ2) and an alternative hypothesis (e.g.
µ1 , µ2) are proposed.

2. The value of a test statistic is calculated.

3. If the probability of this value arising by chance if the null hypothesis
were true is low — conventionally, less than 0.05 — then the null hy-
pothesis is rejected and the alternative hypothesis accepted. (There
is alwaysthe possibility of either rejecting a true null hypothesis or
of accepting a false one.)

When null hypotheses are rejected, the results are described as beingstatistically
significantor sometimes just as ‘significant’. A consequence of this is often a feel-
ing that ‘non-significant’ results are of less value than ‘significant’ ones. Indeed,
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there is probably a ‘reporting bias’ whereby significant differences are more likely
to be published in scientific papers than non-significant ones. This undervaluing of
non-significant differences is unfortunate because the whole point of the exercise is
to try to find out what is happening in the real world. It may be just as important to
know that an effect isnot produced by one experimental treatment as to know that
another treatment does produce the effect.

Question 9.1

Should the null hypothesis be accepted or rejected if the result of a statistical
hypothesis test turned out to be:

(a) P < 0.01, Answer

(b) P > 0.05, Answer

(c) P > 0.01? Answer
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9.2 Deciding which test to use; levels of measurement

The expression ‘levels of measurement’ refers to important distinctions between
different sorts of data that might be collected during the course of a scientific inves-
tigation.

An example of data collected at thecategorical levelis the sex of animals. In most
cases, an animal is unambiguously either ‘male’ or ‘female’. Furthermore, there is
no logical way in which the category ‘male’ can be ranked as ‘higher’ or ‘better’
than the category ‘female’ or vice versa. All that can be said is that these two
categories are different. Of course, a data set may include more than two categories.

It is possible to rankordinal leveldata in a sensible way. For instance, plants may
be listed in order of their heights or grouped by the approximate number of leaves
they possess without knowing the actual heights or the actual numbers of leaves. If
the actual heights or numbers of leaves are known, then these data are at theinterval
level.

Data collected at the interval level can, if necessary, be analysed at the ordinal
level. For instance, you might know that Plant A has 8 leaves and that Plant B has 5
leaves (interval level data). Nevertheless, you could choose to ignore some of this
information and simply treat Plant A as having more leaves than Plant B (ordinal
level data). Of course, if all you knew was that Plant A has more leaves than Plant
B, then you could not convert this information into interval level data for analysis.

Categorical level data cannot usually be treated as if they were at interval or ordinal
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level (although you might argue that, for instance, red-flowered plants have more of
a particular pigment than pink-flowered plants of the same species). However, by
applying arbitrary criteria, interval or ordinal level data can sometimes be converted
into categorical data for analysis. For instance, one of the seven pairs of contrasting
characters used by Mendel in his pioneering research on the genetics of garden
peas (seeBox 8.2) was ‘tall’ versus ‘short’. This categorical distinction made sense
only because, in this particular case, there was no overlap between ‘tall’ and ‘short’
plants.

The reason for distinguishing between the different levels of measurement is that
different statistical tests must be used to analyse categorical, ordinal and interval
level data. Sometimes, when analysis of data at the interval level fails to reveal sta-
tistically significant differences, such differences may be shown up when the data
are re-analysed at the ordinal level. However, because some information about the
samples has effectively been ‘thrown away’ in the process, any statements eventu-
ally made about the populations from which the samples were drawn are necessarily
less complete than they might have been.
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Question 9.2

In each of the following cases, explain briefly whether the data should be treated
as being at the categorical, the ordinal or the interval level.

(a) A count is made of the number of parasites on each member of
a sample of sheep.

Answer

(b) A sample of sheep are counted as either ‘parasitized’ (i.e. car-
rying one or more parasites) or ‘unparasitized’ (i.e. carrying
no parasites).

Answer

(c) A sample of sheep are counted as ‘unparasitized’ (i.e. carry-
ing no parasites), ‘lightly parasitized’ (i.e. carrying 1–5 par-
asites), ‘moderately parasitized’ (i.e. carrying 6–10 parasites)
or ‘heavily parasitized (i.e. carrying more than 10 parasites).

Answer
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9.3 Theχ2-test

Theχ2-test(whereχ is the Greek letter ‘chi’, said to rhyme with ‘sky’) is very com-
monly employed when scientists wish to test whether data on a singlecategorical
variable match a particular theoretical pattern. Since ‘presence’ versus ‘absence’
is a categorical variable, theχ2-test is often used to compare the numbers of in-
dividuals present in different areas with the numbers expected on the basis of an
appropriate null hypothesis. This is more precisely called theχ2 goodness-of-fit
test. (There are otherχ2-tests, e.g. for possible associations between two categori-
cal variables.)

In the Green-winged Orchid study, described inBox 9.1, horizontal distance from
the nearest ridge crest (as shown inFigure 9.1) was recorded for 210 plants grow-
ing on several ridges. Because the ridge crest-to-furrow distance varied slightly
between ridges, each of these distances was divided into five equal categories (cat-
egory 1 being 0.00–19.9% of the distance from the crest, category 2 being 20.0–
39.9% of the distance, category 3 being 40.0–59.9% of the distance, etc.) so that
the data from different ridges could be pooled for analysis. This procedure enables
us to treat interval level data (the horizontal distance of each plant from the nearest
ridge crest) as categorical level data (the distance category into which each plant
falls). If the 210 plants were distributed uniformly with respect to the ridge crest,
then a fifth of them (i.e. 42) would be expected to occur within each distance cate-
gory. A reasonable null hypothesis would be that, if it were possible to collect data
on the entire population of Green-winged Orchids growing in fields with ridge-
and-furrow topography, then there would be no difference between the number of
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plants observed in each distance category and the number that would be expected
on the assumption that the plants were distributed uniformly. The alternative hy-
pothesis would be that the number of plants observed in each distance category was
not equal to the number of plants expected. Accepting this alternative hypothesis
implies accepting that the plants were distributed non-uniformly.

In fact, of the sample of 210 plants, 105 occurred in the first distance category, 74
in the second, 28 in the third, 3 in the fourth and none in the fifth. It certainlyap-
pearsthat the plants were not uniformly distributed. Theχ2-test allows a definitive
statement to be made on the probability that the population of plants from which
the sample was drawncould have been distributed uniformly despite the appar-
ently non-uniform distribution observed in the sample. Only if this probability is
sufficiently low (conventionally ifP < 0.05) can the null hypothesis be rejected
and the alternative hypothesis (with its implication that the plants were distributed
non-uniformly) accepted.
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Distance category Observed
number (Oi)

Expected
number (Ei)

1 (nearest to ridge) 105 42
2 74 42
3 28 42
4 3 42
5 (furthest from ridge) 0 42

total 210 210

Table 9.1: Table comparing the observed distribution of a
sample of Green-winged Orchids across 5 categories of dis-
tance from the nearest ridge crest with the distribution ex-
pected if the plants were distributed uniformly

The first stage in performing aχ2-test is
usually to draw up a table to compare ob-
served and expected numbers in different
categories. The table for the sample of
210 orchid plants is given in Table 9.1, and
compares the number of individuals,Oi ,
that were observed in each distance cate-
gory, with the numberEi expected on the
basis of the null hypothesis. As a check,
the total number in theOi column should
equal the total number in theEi column.
The trickiest part of mostχ2-tests is decid-
ing the ‘expected’ numbers. In this case, if
the null hypothesis were true, a fifth of the
plants (i.e. 42) would be expected to fall
into each distance category.
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The test statistic isχ2 and this is found in the following way.

1. For each distance category, the ‘expected’ number is subtracted from the ‘ob-
served’ number.

This gives (Oi − Ei).

2. Each result from step 1 is squared.

This gives(Oi − Ei)2.

3. Each result from step 2 is divided by the appropriate ‘expected’ number.

This gives
(Oi − Ei)2

Ei
.

4. The results from step 3 are totalled.

This gives
n∑

i =1

(Oi − Ei)2

Ei
which is the test statisticχ2.

In summary,

χ2 =

n∑
i =1

(Oi − Ei)2

Ei
(9.1)
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Distance
category

Oi Ei (Oi − Ei) (Oi − Ei)2 (Oi − Ei)2

Ei

1 105 42 63 3969 94.500
2 74 42 32 1024 24.381
3 28 42 −14 196 4.667
4 3 42 −39 1521 36.214
5 0 42 −42 1764 42.000

total 210 210 0 201.762

Table 9.2: Extension of Table 9.1 to calculateχ2.

The easiest way to calculateχ2 is to
extendTable 9.1to include columns
for each of these steps. This has been
done in Table 9.2, andχ2 is the to-
tal of the values in the right-hand col-
umn. Notice that, as a further check,
the total of the (Oi − Ei) column must
be zero, since the total number of in-
dividuals observed is equal to the to-
tal number of individuals expected.

As an example of the way in which
each value is calculated, consider the
first distance category.Oi = 105 and
Ei = 42 so

(Oi − Ei)2

Ei
=

(105− 42)2

42
=

632

42
=

3969
42
= 94.500

This value, and all the other values in the right-hand column of Table 9.2 have been
calculated to three places of decimals. This is normal practice when findingχ2

because this is how values are generally stated in tables of critical values forχ2.
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The next stage is to compare the value of the test statisticχ2 (which, in this case,
is 201.762) with the critical values listed inTable 9.3. The sizes of the critical
values in such a table depend on both the significance level (P = 0.1, P = 0.05 and
P = 0.01, given across the top of the table) and the number ofdegrees of freedom
(given down the left-hand side of the table).

The number of degrees of freedom can be found by counting the number of ‘cells’
in the table that contain observed counts (i.e. ignoring expected counts, totals etc.).

For theχ2-test, the number of degrees of freedom is given by

number of cells− 1

In this case, Table 9.1 has five cells, so

number of degrees of freedom= 5− 1

= 4

Box 9.2 gives a brief explanation of why it is reasonable for the number of degrees
of freedom to be four in this case.
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Box 9.2 Degrees of freedom

Why should the number of degrees of freedom be four for the data given in
Table 9.1? The total numbers of both ‘observed’ and ‘expected’ plants became
fixed (in this case, at 210) the moment data collection ceased. The number of
expected plants in each of the distance categories (42) is fixed by a combination
of the null hypothesis being tested (i.e. that equal numbers of plants would be
expected in each distance category) and the sample size (i.e. 210). In contrast,
the number of plants that could have been observed in each of any four of the
distance categories is completely free to vary, although the number of plants that
could have been observed in the final category isnot free to vary in this way —
it must be such that the total of the numbers in the observed column equals the
sample size (i.e. 210). In this case, there are therefore four degrees of freedom.

Similar arguments to the above underpin the concept of degrees of freedom in
other statistical tests.
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Degrees of
freedom

P = 0.1 P = 0.05 P = 0.01

1 2.706 3.841 6.635
2 4.605 5.991 9.210
3 6.251 7.815 11.341
4 7.779 9.488 13.277
5 9.236 11.070 15.086

Table 9.4: Part of Table 9.3.

The parts ofTable 9.3that are relevant to our example
are reproduced in Table 9.4. Reading across the row
for 4 degrees of freedom, it can be seen that theχ2

value of 201.762 is greater than 7.779 (corresponding
to a significance level of 0.1), greater than 9.488 (cor-
responding to a significance level of 0.05) and greater
than 13.277 (corresponding to a significance level of
0.01). In fact, the significance level is considerably less
than 0.01 (because 201.762 ismuchlarger than 13.277).
Thus, the probability that the plants in the population
from which the sample was drawn were distributed uni-
formly is muchless than 0.01 (i.e.P � 0.01). There can be little doubt that the
plants were not distributed uniformly with respect to distance from the ridge crest.
The null hypothesis can therefore be rejected — and the alternative hypothesis ac-
cepted — with a great deal of confidence. In reporting such a result, it is often stated
that the null hypothesis is rejected at theP = 0.01 significance level or (probably
more commonly) at the 1% significance level.

Although statistics shows that the plants were distributed non-uniformly, it does
not reveal thenature of the non-uniform distribution. The data should now be
re-inspected to confirm that the plants did indeed occurcloser to the ridge crests
than expected by chance — rather than nearer to the furrows or clustered halfway
between the ridges and furrows. The conclusion that can be drawn from this in-
vestigation is that Green-winged Orchids tend to occur significantly closer to ridge
crests than to furrows.
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Precautions for theχ2-test

You will not be expected, in this course, to decide which statistical test to use in any
given situation. However, in general, before performing aχ2-test you should check
that:

• the data are at the categorical level;

• the ‘observed’ numbers are actual counts (not proportions or percentages);

• none of the ‘expected’ numbers is less than 5 (a design feature of the test).

Worked example 9.1 shows the use of aχ2-test in investigating whether or not an
observed distribution of organisms is consistent with a particular theoreticalratio.
Questions of this type are quite common, and the first step is always to work out
the numberof organisms expected in each category if the null hypothesis — that
the theoretical ratio holds — is true. The worked example also illustrates that,
while observed numbers of organisms must always be whole numbers, the numbers
expected on the basis of theory or prediction often come out to be fractions.

Worked example 9.1

A biologist makes the prediction that flies of type A, type B and type C will
occur in the ratio 0.16 : 0.48 : 0.36 in a wild population,if this population is in
so-called Hardy–Weinberg equilibrium. A representative sample drawn from a
population was found to contain 28 type A flies, 134 type B flies and 78 type C
flies. Was this population in Hardy–Weinberg equilibrium?
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Answer

The total number of flies in the sample was 28+ 134+ 78 = 240. If the ratio
in the sample was 0.16 type A flies : 0.48 type B flies : 0.36 type C flies, then
there would be

0.16× 240= 38.4 type A flies

0.48× 240= 115.2 type B flies

0.36× 240= 86.4 type C flies

These are therefore the ‘expected’ numbers.

A table, extended to give values for (Oi −Ei), (Oi −Ei)2 and
(Oi − Ei)2

Ei
is given

in Table 9.5.

Fly type Oi Ei (Oi − Ei) (Oi − Ei)2 (Oi − Ei)2

Ei

A 28 38.4 –10.4 108.16 2.817
B 134 115.2 18.8 353.44 3.068
C 78 86.4 –8.4 70.56 0.817

total 240 240 0 6.702

Table 9.5: An extended table for Worked example 9.1
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The number of degrees of freedom is given by(
number of cells containing
observed numbers

)
− 1

= 3− 1

= 2

Reading across the row for 2 degrees of freedom inTable 9.3, it can be seen that
theχ2 value of 6.702 corresponds to a significance level of less than 0.05 but
more than 0.01 (i.e. 0.05> P > 0.01).

The probability that the ratio of different types of fly in the entire population
from which the sample of 240 was drawn is 0.16 type A : 0.48 type B : 0.36
type C is less than 0.05. This means that the null hypothesis (that the population
is in Hardy–Weinberg equilibrium) must be rejected at the 5% significance level.
On the basis of this investigation, it must be concluded that the population isnot
in Hardy–Weinberg equilibrium.
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Question 9.3 Answer

The prediction is made on the basis of theory that, if a particular genetic cross
were to be performed, the ratio of plants in the next generation should be 1
red-flowered : 2 pink-flowered : 1 white-flowered.

The next generation of a sample comprised 185 red-flowered plants, 305 pink-
flowered plants and 146 white-flowered plants. Is this data compatible with the
1 : 2 : 1 ratio predicted?

9.4 The Spearman rank correlation coefficient

In the study described inBox 9.1, soil samples were taken right across a ridge
at different horizontal distances from the crest, in order to test whether the water
content of the soil varies significantly from ridge crests to furrows. Both the original
mass of each sample and its mass after drying in an oven were measured using
a scientific balance. The water content of each sample was then expressed as a
percentage of its dry mass. For example, since the original mass of one sample was
22.85 g and its dry mass was 11.32 g, its water content was

(22.85 g− 11.32 g)
11.32 g

× 100%= 102%

(This percentage is greater than 100% because there was slightly more water than
soil in the sample.)
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In fact, several soil samples (known as ‘replicate’ samples) were taken at each hori-
zontal distance, and their mean water content was calculated and used for the rest of
the investigation. Figure 9.3 shows how the mean water content of the soil samples
taken on the north-west slope of the ridge varied with horizontal distance from the
nearest ridge crest.
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Figure 9.3: Mean water content (as a percentage of dry mass) of soil samples plotted
against horizontal distance from ridge crest.
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There certainly seems to be a trend of water content increasing with increasing horizontal
distance from ridge crest. But is this trend, or apparentcorrelationbetween these two
variables, statistically significant? The strength of a possible correlation between two
variables is summarized in the value of acorrelation coefficient (r). The value ofr can
range from+1 (i.e. a perfect positive correlation, in which the two variables increase or
decrease precisely in step with one another; Figure 9.4a) to−1 (i.e. a perfect negative
correlation, in which one variable increases as the other decreases and vice versa; Figure
9.4b). Where there is no correlation between two variables, the value ofr is zero (Figure
9.4c).Figure 9.3suggests that, for mean soil water content and horizontal distance from
nearest ridge crest,r lies somewhere between 0 and+1. However, we need to determine
the actual value ofr and hence determine the probability that — for the population of all
possible soil water contents — the null hypothesis (that there is no correlation between
water content and horizontal distance from ridge crest) is true.
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Figure 9.4: (a) A perfect positive correlation between two variables (i.e.r = +1).
(b) A perfect negative correlation (i.e.r = −1). (c) No correlation (i.e.r = 0). A graph
with points scattered over it in a random way also represents zero correlation.
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Several different sorts of correlation coefficient have been devised. In this case it is
appropriate to calculate theSpearman rank correlation coefficient (rs). This, as the
term ‘rank’ suggests, is based on ordinal level data. The null hypothesis is that there
is no correlation between soil water content and horizontal distance from ridge crest
(i.e. rs = 0) and the alternative hypothesis that the two variables are correlated (i.e.
rs , 0).

The measurements of mean soil water content for the north-west slope of the ridge
are summarized in Table 9.6.

Horizontal distance/cm Mean water content/% dry mass

0 76
50 83

100 93
150 80
200 102
250 95
300 120
350 130

Table 9.6: Mean soil water content (as percentage of dry mass) for samples taken
at various horizontal distances from the nearest ridge crest on the north-west slope
of a ridge

Before the test statistic can be calculated, the following steps should be completed:
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1. Work out the rank (order) of each of the 8 horizontal distances, (RA)i (which
will range between 1 and 8).

2. Work out the rank of each matching value for mean water content, (RB)i

(which will also range between 1 and 8).

3. Calculate each difference,Di = (RA)i − (RB)i .

4. Square each difference, to giveD2
i .

5. Total all the values forD2
i from Step 4 to give

n∑
i =1

D2
i .

As an example of Steps 1 to 4, consider the horizontal distance 150 cm, which has
(RA)i = 4 and (RB)i = 2 (since its distance is fourth from the crest while its water
content is second lowest).

Therefore,Di = (RA)i − (RB)i = 4− 2 = 2.

SoD2
i = 22 = 4.

The other values forD2
i are shown inTable 9.7, and the total of the numbers in

the right-hand column of this table gives
n∑

i =1

D2
i . Notice that

n∑
i =1

Di (the sum of the

differences of the ranks) should always be zero, which provides a check that the
ranks have been worked out correctly.
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Horizontal
distance/cm

Rank
(RA)i

Mean water
content/%

Rank
(RB)i

Di = (RA)i − (RB)i D2
i

0 1 76 1 0 0
50 2 83 3 –1 1

100 3 93 4 –1 1
150 4 80 2 2 4
200 5 102 6 –1 1
250 6 95 5 1 1
300 7 120 7 0 0
350 8 130 8 0 0

n∑
i =1

Di = 0
n∑

i =1

D2
i = 8

Table 9.7: Extension of Table 9.6 to include ranks

In the case of the data in Table 9.7, it was possible to assign a unique rank to each
value for horizontal distance and mean water content, but sometimes quantities ‘tie’
(i.e. have the same rank). Worked example 9.2, at the end of this section, illustrates
what to do when this is the case.
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The test statistic, the Spearman rank correlation coefficient, is rs and this is
calculated using Equation 9.2:

rs = 1−

6
n∑

i =1

D2
i

n(n2 − 1)
(9.2)

where
n∑

i =1

D2
i is the sum of the squares of the differences of the ranks andn is

the number ofpairsof measurements.

Substituting
n∑

i =1

D2
i = 8 (fromTable 9.7) andn = 8 into Equation 9.2 gives

rs = 1−
6× 8

8× (82 − 1)
= 0.905

The final stage is to compare the value of the test statisticrs (0.905 in this case)
with the critical values listed inTable 9.8. The critical values are again given to
three places of decimals and the size of the critical values depends on both the
significance level (P = 0.1, P = 0.05 andP = 0.01, given across the top of the
table) and the number ofpairs of measurements (given down the left-hand side of
the table). In this case the number of pairs of measurements is 8, and looking across
the appropriate row it can be seen that the calculatedrs value of 0.905 is greater than
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0.881, corresponding to a significance level of 0.01. Thus the probability,P, that
there is no correlation between water content and horizontal distance from the ridge
crest is less than 0.01; the null hypothesis must be rejected at the 1% significance
level, and the alternative hypothesis accepted. There is a statistically significant
(positive) correlation between mean soil water content and horizontal distance from
ridge crest.

It is extremely important to appreciate that even a statistically significant correlation
between two variables doesnot prove that changes in one variablecausechanges
in the other variable.

Correlation does not imply causality.

A time-honoured, but probably apocryphal, example often cited to illustrate this
point is the statistically significant positive correlation reported for the late nine-
teenth century between the number of clergymen in England and the consumption
of alcoholic spirits. Both the increased number of clergymen and the increased
consumption of spirits can presumably be attributed to population growth (which is
therefore regarded as a ‘confounding variable’) rather than the increase in the num-
ber of clergymen being thecauseof the increased consumption of spirits or vice
versa!
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Precautions for the Spearman rank correlation test

Before calculating a Spearman rank correlation (rs) it is necessary to check that:

• the data was collected at, or can be converted into, ordinal level (i.e. ranks);

• there are 7 to 30 pairs of measurements (though the test can be performed
with more than 30 pairs if you have access to a more extensive table of critical
values);

• these measurements are reasonably scattered.

Worked example 9.2illustrates how to rank data when two or more measurements
are identical. They must be given the same mean rank, and then account must be
taken of all the identical measurements before the rank of the next, non-identical,
value is decided. So, if two measurements tie for first place, they are each given a

rank of

(
1+ 2

2

)
= 1.5, and the next available rank is 3.
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Worked example 9.2

The number of Stonefly nymphs counted in standard
samples taken at 13 stations along a stream, together
with the water speed measured at these stations, is
presented in Table 9.9. Calculate the Spearman rank
correlation coefficient (rs) for this data and use this to
determine whether there is a statistically significant
correlation between water speed and the number of
Stonefly nymphs present.

Answer

Table 9.10is an extension of Table 9.9, to include val-

ues for (RA)i , (RB)i , Di , D2
i and

n∑
i =1

D2
i for the data in

this worked example.

Note, for example, that the water speed was mea-
sured to be 0.2 m s−1 at two sampling stations, so
these stations ‘tie’ for second place in the ranking of
water speed (after the station with a water speed of

0.1 m s−1). Each is given a rank of

(
2+ 3

2

)
= 2.5, and

the next available rank (for the station with a water
speed of 0.4 m s−1) is 4.

Water speed/m s−1 Number of nymphs

0.8 35
1.1 28
0.5 11
0.7 12
0.2 7
0.4 5
0.5 6
1.3 21
0.9 23
1.7 43
0.2 10
0.1 6
0.7 19

Table 9.9: Number of Stonefly nymphs in re-
lation to the speed of water flow at 13 sam-
pling stations in a stream
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Substituting
n∑

i =1

D2
i = 47.5 (fromTable 9.10) andn = 13 intoEquation 9.2:

rs = 1−
6× 47.5

13× (132 − 1)
= 0.870

Reading across the row for 12 pairs of measurements (in the absence of a row for
13 pairs) inTable 9.8, it can be seen thatP < 0.01. The null hypothesis must
therefore be rejected at the 1% significance level and the alternative hypothesis
accepted. There is a statistically significant positive correlation between water
speed and number of Stonefly nymphs.
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Question 9.4 Answer

Returning to the study described inBox 9.1, Figure 9.5 shows how the mean water content
of the soil samples taken from the north-west slope of the ridge varies withvertical distance
from ridge crest. Use the data given in Table 9.11 to determine whether there is a statis-
tically significant correlation between soil water content and vertical distance from ridge crest.
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Figure 9.5: Mean water content (as a percentage of dry
mass) of soil samples plotted against vertical distance
from ridge crest.

Vertical
distance/cm

Mean water content/
% dry mass

0 76
4 83
7 93
9 80
7 102

11 95
10 120
13 130

Table 9.11: Vertical distances from the
nearest ridge crest and mean soil water
content (as a percentage of dry mass) for
samples taken at various horizontal dis-
tances from the nearest ridge crest on the
north-west slope of a ridge
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9.5 Thet-test for unmatched samples

Severalt-testsare widely used to test whether the means of two samples are suffi-
ciently different to conclude that the samples were probably drawn from different
populations. Such a conclusion might allow an experimenter to conclude further
that, for example, an experimental treatment did produce a statistically significant
effect compared to the experimental control (Section 9.1). t-tests are often referred
to as ‘Student’st-tests’. This is not because people such as yourself use them a
lot — although this is true! ‘Student’ was the pseudonym used by W. S. Gossett
when he published the first version of the test in 1907. His employer, a well-known
brewing company based in Dublin, would not allow him to publish under his own
name.

Question

State the null and alternative hypotheses that would be appropriate for at-test.

Answer

Since at-test would be concerned with the difference between themeansof two
populations(1 and 2), the appropriate null hypothesis would be eitherµ1 = µ2

or its equivalentµ1 − µ2 = 0 and the appropriate alternative hypothesis either
µ1 , µ2 or µ1 − µ2 , 0 (seeSection 9.1).

As indicated by the section heading, thet-test introduced here is specifically forun-
matchedsamples. It is therefore necessary to discuss what is meant when samples
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are said to be either ‘matched’ or ‘unmatched’.

The soil samples (and hence their mean water content) discussed inSection 9.4were
uniquely matched to particular horizontal distances from the nearest ridge crest. If
data was collected fromindividual patients before and after they were given either
an experimental medicine or a placebo (i.e. a ‘dummy’ medicine), this data would
also be matched. Another example ofmatched sampleswould be the test scores
achieved by individual employees before and after a training event.

North-west slope
(i.e. Sample 1)

South-east slope
(i.e. Sample 2)

x/cm 18.6 21.1
sn−1/cm 5.5 3.9
n 14 16

Table 9.12: Mean plant height (x), estimated popu-
lation standard deviation (sample standard deviation)
of plant height (sn−1) and sample size (n) for a sample
of plants growing on the north-west slope of a ridge
(Sample 1) and another sample growing on the south-
east slope (Sample 2).

A typical situation in which at-test for un-
matched sampleswould be used is if the heights
of two samples of Green-winged Orchids were
measured, one sample growing on the north-west
slope of a ridge and the other sample growing
on the south-east slope (Table 9.12). Since there
is no logical connection between any one plant
growing on the north-west slope and any one
plant growing on the south-east slope, these two
samples are unmatched.
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Question 9.5

In each of the following cases, explain whether the samples are matched or
unmatched.

(a) A comparison is made between the heights of a sample of
Green-winged Orchids growing in one nature reserve and those
of a sample growing in another nature reserve.

Answer

(b) The numbers of nymphs of two species of Stonefly are counted
in each of 10 samples taken at different positions along a
stream.

Answer

In order to calculate the test statistic in this particulart-test it is necessary to solve
three equations one after another. The test statistic itself ist and this is calculated
using Equation 9.3, in whichx1 andx2 are the means of the two samples, 1 and 2,
that may, or may not, have been drawn from different populations.

t =
x1 − x2

SED
(9.3)

Notice that, if x1 = x2 (which would mean thatx1 − x2 = 0), thent = 0. So,
if the null hypothesis were true, then it would be expected thatt = 0. The term
SED represents the ‘standard error of the differences in the sample means’.SED is
calculated using Equation 9.4, in whichn1 andn2 are the two sample sizes.

SED =

√
(Sc)2

n1
+

(Sc)2

n2
(9.4)
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The term(Sc)2 (which appears twice inEquation 9.4) represents the ‘common pop-
ulation variance’. (Sc)2 is calculated using Equation 9.5, in whichs1 and s2 are
the two estimated population standard deviations (also known as sample standard
deviations, as discussed inSection 8.2.7). In fact, each ofs1 ands2 should really be
written assn−1, but if this were done the subscripts would be getting out of hand!

(Sc)
2 =

(n1 − 1)(s1)2 + (n2 − 1)(s2)2

(n1 − 1)+ (n2 − 1)
(9.5)

Inspection ofEquation 9.3shows that, other things being equal, the greater the
difference betweenx1 and x2, the larger the value oft. In addition, if the sample
means are well separated, it seems reasonable to expect that there is likely to be a
statistically significant difference between the true means of the populations from
which the samples were drawn. Similar arguments can be used to link small values
of s1 ands2 and large values ofn1 andn2 to both high values oft and an increased
likelihood of a statistically significant difference between the means from which
the samples were drawn. In general, high values oft are associated with greater
statistical significance.

Returning to the data summarized inTable 9.12, notice that the mean height of
the sample 2 (21.1 cm) is greater than that of sample 1 (18.6 cm). What needs
to be established is whether or not the difference observed (2.5 cm) is statistically
significant.
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Substituting the relevant values intoEquation 9.5:

S2
c =

(14− 1)(5.5 cm)2 + (16− 1)(3.9 cm)2

(14− 1)+ (16− 1)

=
(13× 30.25 cm2) + (15× 15.21 cm2)

13+ 15
= 22.193 cm2

Substituting the relevant values intoEquation 9.4:

SED =

√
22.193 cm2

14
+

22.193 cm2

16
= 1.724 cm

Substituting the relevant values intoEquation 9.3:

t =
18.6 cm− 21.1 cm

1.724 cm
= −1.450

What does a value oft = −1.450 mean? Did the populations of plants growing
on the north-west and south-east slopes of this ridge really differ in mean height or
could the observed difference in mean height between the two samples (i.e. 2.5 cm)
have arisen by chance?

The fact that the test statistict turns out to have a negative value can be ignored. If
it happened that the mean height of the sample of plants growing on the north-west
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slope of the ridge had been deducted from that of the sample growing on the south-
east slope, rather than the other way around, thent would have been+1.450. Only
theabsolute valueof t (i.e. the number without its sign, in this case 1.450) is of any
consequence.

The critical values oft are given inTable 9.13.

For thet-test for unmatched samples, the number of degrees of freedom is given
by

(n1 − 1)+ (n2 − 1)

Since in this casen1 is 14 andn2 is 16, the number of degrees of freedom is

(14− 1)+ (16− 1) = 13+ 15= 28

Reading across the row corresponding to 28 degrees of freedom to find the highest
critical value exceeded by the value of the test statistic (i.e. 1.450), it can be seen
that all that can said is thatP > 0.1. SinceP is not less than 0.05, the null hypothesis
(that µ1 = µ2) must be accepted and the alternative hypothesis (thatµ1 , µ2)
rejected. There is therefore no evidence that the samples were taken from different
populations of plants. The plants growing on the north-west and south-east slopes
of this ridge do not differ statistically significantly from one another in mean height.
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Precautions for the t-test for unmatched samples

Before performing at-test for unmatched samples it is necessary to check that:

• the samples are unmatched (if the samples are matched, then a different ver-
sion of thet-test must be used);

• population means are to be compared (different statistical tests must be used
if population modes or medians are to be compared);

• the data are at the interval level (again, different statistical tests must be used
if the data are at either ordinal or categorical level);

• there are fewer than about 25 items of data in each sample (if the samples are
larger than this, then a different — more straightforward! — statistical test
known as az-test should be used);

• the assumption can be made that the population(s) from which the samples
were drawn have normal distributions and approximately equal standard de-
viations.
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Question 9.6 Answer

Descriptive statistics on the number of flowers per plant for samples of plants
growing on the north-west and south-east slopes of another ridge are given in
Table 9.14. Is there a statistically significant difference between the slopes in
the mean number of flowers per plant?

North-west slope
(i.e. Sample 1)

South-east slope
(i.e. Sample 2)

x 7.7 7.2
sn−1 2.7 2.1
n 18 15

Table 9.14: Mean number of flowers per plant (x), estimated population standard
deviation of number of flowers per plant (sn−1) and sample size (n) for a sample
of plants growing on the north-west slope of a ridge (Sample 1) and another
sample growing on the south-east slope (Sample 2).

9.6 Other statistical tests

You have been introduced to three particular statistical hypothesis tests in Sections
9.3–9.5. Over the years, many tests have been devised to perform a wide range of
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statistical tasks in the context of science. Some of these tests (for example thet-test
for matchedsamples and theχ2-test for association) are similar to those covered
here, but most are designed to answer different sorts of scientific questions or to be
used in rather different circumstances.

Many excellent books have been written to help you select which particular sta-
tistical test is most appropriate for the task at hand and then guide you through
performing that test. Sections9.1 and9.2 of this chapter should enable you get
to grips quickly and relatively painlessly with unfamiliar statistical tests when the
time comes for you to branch out.

9.7 Learning outcomes for Chapter 9

After completing your work on this chapter you should be able to:

9.1 demonstrate understanding of the terms emboldened in the text;

9.2 propose null and alternative hypotheses in familiar circumstances;

9.3 perform aχ2-test and interpret the results;

9.4 calculate a Spearman rank correlation coefficient (rS) and then test its
statistical significance;

9.5 perform at-test for unmatched samples and interpret the results.
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Differentiation 10
In science, and in everyday life, we often want to know how one quantity varies
with respect to another. We may be interested in the actual value of one quantity for
a particular value of the other quantity, but it is often therateat which one quantity
varies with respect to another that is of more importance. Consider, for example,
a small plant. The height of the plant as we look at it is of some interest, but we
also want to know whether the plant is growing, and if so, how fast. Also, is the
plant growing at an ever increasing rate or is its rate of growth slowing down? If
the growth is slowing down the plant may fit in the space we’ve made for it on the
windowsill; if the rate of growth is increasing we may need to think again!

Chapter 5 introduced the concept of the gradient of a graph as a way of finding rate
of change, whether that be positive (as inFigure 5.9), negative (Figure 5.15) or zero
(Figure 5.16for Object B). However, Chapter 5 considered the gradient of straight-
line graphs only; we need to extend the concept to enable us to find the gradient of
curves.

Section 10.1 discusses a method for finding the gradient of a curve graphically,
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by drawing atangentto the curve at a particular point. Section 10.2 introduces
a method for deriving anequationfor the gradient from the equation of the curve
itself; this method is known asdifferentiation. Differentiation is one of the branches
of calculus(integration, the other major branch of calculus, is beyond the scope of
this course), where the word calculus comes from the Latin for ‘a stone’ and relates
to the use of stones for counting, or calculating. This chapter is about calculating
rate of change.

10.1 Drawing tangents to curves

he
ig

ht
 o

f p
la

nt

time

Figure 10.1: A curve, repre-
senting the growth of a hypo-
thetical plant.

For a straight line, the gradient is the same at all points. However, the
gradient of a curve varies from point to point. If you look at Figure 10.1
from left to right, you will see that the slope of the curve is initially gentle;
then it gets steeper; then it reduces again. If this graph represents the way
in which the height of our plant varies with time, this means that growth
is initially slow, before increasing to a more rapid rate and then slowing
again.

The straight lines drawn in red at various points on Figure 10.1 each have
a slope that exactly matches the slope of the curve at the point at which
it is drawn. These lines are called tangents, and the gradient of a curve at
a point is defined to be the gradient of a tangent drawn at that point. The
word tangent comes from the Latin ‘tangere’ which means ‘to touch’, and
a tangent is a line which touches the curve but doesn’t cross it. Note that
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the use of the word ‘tangent’ here is different from its use in trigonometry (Chapter
6).

Figure 10.2 illustrates the fact that, at each point, there is only one line that touches
a smooth curve without crossing it, so each point on the curve has a unique tangent
and thus a unique gradient. This result is true for all points on all smooth curves.

line 1

line 2

tangent to
point P

P

Figure 10.2: The tangent to a curve at a point P. Note that there is only one tangent
at P. Line 1, with a gradient slightly greater than that of the tangent, and line 2, with
a gradient slightly smaller than that of the tangent, both cross the curve.
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A tangent is a straight line, so we can find its gradient using
the method discussed inChapter 5. Figure 10.3 is a graph
of y = x2 and tangents have been drawn atx = 1 and at
x = 3.

Using the triangle drawn on the graph, the gradient of the
tangent atx = 3 is

gradient=
rise
run
=

(15.0− 9.0)
(4.0− 3.0)

=
6.0
1.0
= 6.0

Note that, because on this occasionx and y are variables
without units, the gradient also has no units.

The gradient of the curve at a point is the same as that of the
tangent touching the curve at that point, so we can say that
the gradient of the curve atx = 3 is 6.0 to two significant
figures.

y

tangent
at x = 1

tangent
at x = 3

0

2

4

6

8
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12

14

16

18

1 2 3 4 5 x

Figure 10.3: A graph ofy = x2
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Question 10.1

(a) Find the gradient ofy = x2 at x = 1 by finding the gradient of
the tangent which has been drawn toFigure 10.3at x = 1.

Answer

(b) Find the gradient ofy = x2 at x = 2 by drawing an additional
tangent to the curve inFigure 10.3.

Answer

Box 10.1 Rate of change of concentration in chemical reactions

As a chemical reaction involving substances in solution proceeds, the concen-
trations of the substances (called ‘reactants’ and ‘products’) vary with time.

Figure 10.4shows the way in which the concentration of one of the products
of a particular reaction increases with time. The product in this case is called a
hypobromite ion.

To find the rate of change of concentration of hypobromite ions with time at any
instant, we can draw a tangent to the curve and find its gradient. A tangent has
been drawn to the curve inFigure 10.4at 1500 s.

The gradient of the tangent=
2.40× 10−3 mol dm−3 − 1.16× 10−3 mol dm−3

3000 s− 0 s
= 4.13× 10−7 mol dm−3 s−1

So the rate of change of concentration of hypobromite ions with time at 1500 s
is 4.13× 10−7 mol dm−3 s−1.
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10.2 An introduction to differentiation

In answeringQuestion 10.1you probably realized that drawing tangents to curves
is not a very accurate way of finding gradients. Using this method, the gradient of
y = x2 at x = 2 could reasonably be anything between 3.5 and 4.5, although the
correct answer is exactly 4 (as you will discover in Section 10.2.1). Fortunately,
when the equation of the curve is known (as it is in this case), differentiation gives
us an exact method for finding the gradient, without even having to draw a graph.

10.2.1 The principles of differentiation

The reason why drawing a tangent to a curve is tricky is that, by definition, a tangent
only goes through one point on the curve and this makes it difficult to draw a line
with the correct gradient. Drawing achord(a line between two points on the curve)
and finding its gradient is very much easier.

The chord shown joining point P and point Q in Figure 10.5 (next page) has gradient
∆y
∆x

, where∆y is the difference between they values of P and Q and∆x is the

corresponding difference betweenx values (∆, the Greek upper case delta, is used
to indicate the change in a quantity, as discussed inChapter 3).
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y

x

Q

Q1

Q2

Q3

tangent to
point P

∆y

∆x

P

Figure 10.5: Finding the gradient of a curve at P.

As point Q moves along the curve towards P, passing
through Q1, Q2 and Q3, two things happen.

1. The values of∆x and ∆y get smaller and
smaller.

2. The gradient of the chord gets closer and
closer in value to the gradient of the tangent
at P.

If we reduce∆x all the way to zero,∆y will also be

zero, making
∆y
∆x

rather difficult to define, but we can

make∆x as small as we like in order to get an accu-
rate measurement of the gradient. This situation is
described as a ‘limit’; as∆x approaches zero, the ap-

proximation
∆y
∆x

approaches ever closer to the exact

gradient of the curve at the specified point. In this

limit,
∆y
∆x

is written as
dy
dx

where
dy
dx

(said as ‘dee

y by deex’) is called thederivative(or, strictly, the
‘first derivative’) of y with respect tox.

Note that
dy
dx

should be regarded as a single symbol. It doesnot mean a quantity

dy divided by another quantity dx, and the ‘d’s are not separate quantities so they

cannot be cancelled:
dy
dx
,

y
x
.
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Differentiation is simply the process of finding a derivative. Box 10.2 shows how
this can be done from first principles for the example we have been considering,y =
x2. This box is included for interest only; you do not need to be able to differentiate
from first principles. All you need to be able to do is to apply some very simple
general rules (the first of which is discussed in Section 10.2.2, immediately after
the box) that enable you to find the derivative directly from the original equation.

It turns out that fory = x2 we can say straight away that
dy
dx
= 2x, so the gradient

at x = 1 is (2× 1) = 2, the gradient atx = 2 is (2× 2) = 4, and the gradient at
x = 3 is (2× 3) = 6; reassuringly these are the same results that we obtained earlier
by drawing tangents to the curve, but now the answers are exact and we have found
them without having to draw a graph.
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Box 10.2 Differentiating y = x2 from first principles

Consider the chord drawn between points P and Q on Figure
10.6. P could be any point on the curve, so itsx andy values
are related by the equationy = x2.

The x value at Q is (x+ ∆x) and they value is (y+ ∆y). Since
point Q lies on the curve too, we can say

(y+ ∆y) = (x+ ∆x)2

Multiplying out the bracket on the right-hand side, in the way
discussed inChapter 4, gives

y+ ∆y = x2 + 2x∆x+ (∆x)2

Sincey = x2, we can subtracty from the left-hand side andx2

from the right-hand side to give

∆y = 2x∆x+ (∆x)2

Dividing both sides by∆x gives

∆y
∆x
= 2x+ ∆x

x

Q

∆y

∆x
P

y

Figure 10.6: Points P and Q on the
curvey = x2.
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In the limit as∆x approaches zero, the second term on the right-hand

side will disappear, and
∆y
∆x

will become equal to
dy
dx

, so we can say

dy
dx
= 2x

10.2.2 Differentiation by rule

It was shown, in Box 10.2, that the derivative ofy = x2 with respect tox is
dy
dx
= 2x.

By similar methods, it can be shown that:

• the derivative ofy = 2 x2 with respect tox is
dy
dx
= 4x;

• the derivative ofy = 3 x2 with respect tox is
dy
dx
= 6x;

• the derivative ofy = 4 x2 with respect tox is
dy
dx
= 8x.

or, more generally, the derivative ofy = C x2 with respect tox, whereC is a con-
stant, is

dy
dx
= C × 2x
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Similarly, it can be shown that:

• the derivative ofy = C x3 with respect tox is
dy
dx
= C × 3x2;

• the derivative ofy = C x4 with respect tox is
dy
dx
= C × 4x3;

• the derivative ofy = C x5 with respect tox is
dy
dx
= C × 5x4.

These results can be summarized in the general rule

The derivative ofy = C xn with respect tox is

dy
dx
= C n xn−1

whereC andn are constants.
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Worked example 10.1

If y = x5, what is
dy
dx

and what is the gradient of a graph ofy = x5 at x = 2?

Answer

In this caseC = 1 andn = 5, so
dy
dx
= 1× 5x4 = 5x4.

Whenx = 2,
dy
dx
= 5× 24 = 5× 16= 80.

So atx = 2 the gradient of the graph is 80.

Worked example 10.2

If y = 4x3, what is
dy
dx

and what is the gradient of a graph ofy = 4x3 at x = 3?

Answer

In this caseC = 4 andn = 3, so
dy
dx
= 4× 3x2 = 12x2.

Whenx = 3,
dy
dx
= 12× 32 = 12× 9 = 108.

So atx = 3 the gradient of the graph is 108.

Worked example 10.3 considers the application of the rule for differentiation in the
special case whenn = 1, and Worked example 10.4 considers what happens when
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n = 0; you may like to think about what you expect the results to be.

Worked example 10.3

If y = 4x, what is
dy
dx

?

Answer

In this caseC = 4 andn = 1, so
dy
dx
= 4× 1x1−1 = 4x0 = 4, (sincex0 = 1 for all

values ofx, as discussed inSection 1.3.1).

Note thaty = 4x is a linear equation of the formy = kx, so the result of Worked
example 10.3 should not have surprised you; differentiating an equation of the form
y = kx will always result in a derivative which is a constant. This constant is equal
to the gradient,k, of a graph ofy againstx (as discussed inSection 5.3.1).

Worked example 10.4

If y = 3, what is
dy
dx

?

Answer

y = 3 can be written asy = 3x0 (sincex0 = 1), soC = 3 andn = 0.

Thus
dy
dx
= 3× 0× x−1 = 0 (since multiplying anything by 0 gives 0).
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Differentiating a constant always gives zero. This should not surprise you either,
since the graph ofy = 3 is a horizontal line and the gradient of a horizontal line is
always zero.

Question 10.2

Differentiate the following with respect tox and in each case find the gradient
of the graph ofy againstx at x = 4.

Note that the instruction ‘to differentiate’ simply requires you to find the deriva-

tive
dy
dx

.

(a) y = x4 Answer

(b) y = 5x Answer

(c) y = 3x2 Answer

(d) y = 5 Answer

The rule for differentiation that we have been using applies for negative and frac-
tional values ofn too, as illustrated in Worked examples 10.5 and 10.6.
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Worked example 10.5

Differentiatey =
3
x

with respect tox.

Answer

y =
3
x

can be written asy = 3x−1 (seeSection 1.3.1for a reminder of the use of

negative exponents), soC = 3 andn = −1.

Thus
dy
dx
= 3× (−1)x−1−1 = −3x−2 = −

3

x2

Worked example 10.6

Differentiatey =
√

x with respect tox.

Answer

y =
√

x can be written asy = x1/2 (seeSection 1.3.4), soC = 1 andn = 1
2.

Thus
dy
dx
=

1
2

x
1
2−1 =

1
2

x−1/2 =
1

2x1/2
=

1

2
√

x
.
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Question 10.3

Differentiate the following with respect tox and in each case find the gradient
of the graph ofy againstx at x = 4.

(a) y =
1
√

x
Answer

(b) y =
2

x2
Answer

10.2.3 Using different symbols and different notation

So far we have found derivatives only ofy with respect tox. For example we

differentiatedy = x2 and found that
dy
dx
= 2x. Note thaty and

dy
dx

are bothfunctions

of x; this means that the values ofy and
dy
dx

depend on the value ofx. A derivative is

sometimes called a ‘derived function’ because it is a function that has been derived
from another function.

Functions in science are often expressed in terms of variables other thanx andy.
For example, we may know that as time,t, changes, the distance,s, of an object
from a certain position varies according to the equations = 5t2. The graph of this
function is illustrated inFigure 10.7.
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Figure 10.7: A graph ofs= 5t2

The speed at which the object is moving is given by
the rate of change of distance with time, so to find
the object’s speed we need to find the gradient of the
graph shown in Figure 10.7, i.e. to differentiates
with respect tot.

ds
dt
= 5× 2t 2−1 = 10t

Similarly, we know fromChapter 5that the volume,
V, of a gas at constant temperature is inversely pro-
portional to its pressure,P,

V ∝
1
P

or V =
k
P
= kP−1

wherek is a constant.

DifferentiatingV with respect toP gives

dV
dP
= k× (−1)P−1−1 = −kP−2 = −

k

P2

This expression gives the gradient of the graph
shown inFigure 5.29.
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Question 10.4

(a) Differentiatex = t7 with respect tot. Answer

(b) If E =
C
r

whereC is constant, what is
dE
dr

? Answer

An entirely different notation, called function or prime notation, is sometimes used
for derivatives. This notation makes it very clear that both the expression being
differentiated and its derivative are functions, and it identifies the variable on which
the functions depend. In this notation, the function shown inFigure 10.7would be
written as f (t) = 5t2 and its first derivative would be written asf ′(t) = 10t. The
term f (t), usually said as ‘f of t’, does not meanf timest, but simply implies that
f is a function oft. The termf ′(t) (said as ‘f prime of t’) is the first derivative of
f with respect tot.

Unfortunately bothf ′(x) and
dy
dx

notation are in common use, as is a variation

of the latter which writes
d
dt

(
5t2

)
= 10t for the derivative of 5t2 with respect to

time. This course uses only
dy
dx

notation as discussed in the preceding sections, but

you should be aware that other notations are also widely used.f ′(x) notation is

relatively modern but
dy
dx

notation was invented by Gottfried Leibniz, one of the

founders of calculus, and is known as Leibniz notation.
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Yet another notation, less commonly used in modern times, writes ˙s for the first
derivative ofs = 5t2 with respect tot. This notation was first used by Newton,
and the fact that we are left with such a plethora of notations for differentiation is
a lasting reminder of the bitter dispute between Newton and Leibniz over which of
them invented calculus (see Box 10.3).

Box 10.3 Newton and Leibniz: a story of reluctant publishers and letters
‘lost in the post’

Sir Isaac Newton (1642–1727) and the German mathematician and philoso-
pher Gottfried Wilhelm Leibniz (sometimes spelt Leibnitz) (1646–1716) both
claimed to have invented calculus. It is probable that they developed the ideas
independently; they certainly described their work in very different ways. New-
ton thought in terms of ‘fluxions’ whilst Leibniz used ‘differences’ (hence the

word ‘differentiation’) and developed the
dy
dx

notation still in use today.

Leibniz published a paper about differentiation in 1684 and another about inte-
gration in 1686. Newton had problems getting his mathematical work into print;
the publisher of his colleague Isaac Barrow’s work had gone bankrupt and pub-
lishers were wary of mathematical works after this. Works written by Newton
in 1669 and 1671 were not published until 1711 and 1736 respectively.
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Another source of the controversy seems to have been the length of time it took
for a letter to get from Newton in Cambridge to Leibniz in Paris. Newton’s letter
listed many of his results, and when Leibniz’s reply took a long time to arrive,
Newton assumed that Leibniz had spent six weeks refining his own work in the
light of Newton’s before replying. According to Leibniz the original letter had
spent these six weeks on its way from Cambridge to Paris, and he had replied
immediately he had received it.

It is beyond doubt that Newton accused Leibniz of plagiarism and that, despite
the fact that both men were well respected within their lifetimes and famous
afterwards, they ended their lives in acrimonious dispute with each other.
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10.2.4 Differentiating sums

y

0

1

2

3

1 2 x3 4

−1

Figure 10.8: A graph ofy = x2 − 4x+ 3.

Suppose we need to differentiatey = x2−4x+3, the function
shown in Figure 10.8, with respect tox.

It is possible to do this differentiation from first principles,
as shown inBox 10.4. Once again, this box is included for
interest only, as it turns out that it is possible to differentiate
y = x2 − 4x + 3 by the application of the rule already intro-
duced, and another simple rule which is stated after the box.
It would be possible to differentiate all functions from first
principles, but it is a lot quicker simply to apply the rules!

It is shown inBox 10.4that if

y = x2 − 4x+ 3 (10.1)

then

dy
dx
= 2x− 4 (10.2)

We could writey = x2−4x+3 asy = u+ v+w whereu = x2,
v = −4x andw = 3. We know (from the rule introduced in
Section 10.2.2) that ifu = x2, then

du
dx
= 2x (10.3)
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if v = −4x, then

dv
dx
= −4 (10.4)

and ifw = 3, then

dw
dx
= 0. (10.5)

ComparingEquation 10.2with Equations 10.3, 10.4 and 10.5 shows that

dy
dx
=

du
dx
+

dv
dx
+

dw
dx

This rule is a general one, in other words:

The derivative of the sum of a number of functions is equal to the sum of the
derivatives of these functions. If

y = u+ v+ w

then

dy
dx
=

du
dx
+

dv
dx
+

dw
dx
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Worked example 10.7

Differentiatex = t 5 + 6t 3 with respect tot.

Answer

Differentiating each of the terms separately gives

dx
dt
= (1× 5t 5−1) + (6× 3t 3−1)

= 5t 4 + 18t 2

Question 10.5 Answer

Differentiatez= 4y2 + y with respect toy.

10.2.5 Second derivatives

dy
dx

gives the gradient of a graph ofy againstx. It is often also useful to know

the rate of change of thegradientwith respect tox, i.e. to differentiate again with
respect tox to find the derivative of the derivative. Such a quantity is referred to as

thesecond derivativeof y with respect tox and it is written
d2y

dx2
(said as ‘dee-2-y

by dee-x-squared’) orf ′′(x) (said as ‘f double prime ofx’) in function notation.
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Consider again the example used inSection 10.2.4.

We had

y = x2 − 4x+ 3

and

dy
dx
= 2x− 4

dy
dx

is itself a function ofx and differentiating again gives

d2y

dx2
= 2

The graphs ofy againstx,
dy
dx

againstx and
d2y

dx2
againstx for this example are

shown inFigure 10.10. The graph of
dy
dx

againstx shows how thegradientof the

graph ofy againstx varies withx, and the graph of
d2y

dx2
againstx shows how the

gradient of the graph of
dy
dx

againstx varies withx. In this particular case, the graph

of y againstx (Figure 10.10a) is a parabola (as discussed inSection 5.4). Note that
this graph is horizontal atx = 2; at this point its gradient is zero. It should not
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surprise you, therefore, that the graph of
dy
dx

againstx (Figure 10.10b) has
dy
dx
= 0

at x = 2. Similarly, the graph of
dy
dx

againstx is a straight line of gradient 2, so the

fact that
d2y

dx2
has a constant value of 2 (seeFigure 10.10c) should not surprise you.

Question 10.6

Find the first and second derivatives of:

(a) x = 2t3 + 4t2 − 2t + 3 with respect tot; Answer

(b) z=
2
y

with respect toy. Answer

Box 10.5 considers an application of differentiation to science, in this case the mo-
tion of an object falling because of the action of gravity. Note that the variables are
now real physical quantities, so they have units attached to them.

Box 10.5 Objects falling under gravity

Suppose that an object is dropped from the Clifton Suspension Bridge, which
crosses the River Avon as it flows through a gorge near Bristol. The bridge is
75 m above the river, as illustrated inFigure 10.11.
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If we assume that the object starts from rest (i.e. it is dropped not thrown from
the bridge) then the distance,s, that it has travelled downwards from the bridge
in a timet is given by the equation

s=
1
2

gt2 (10.7)

whereg is the magnitude of the acceleration due to gravity, which we can take
to be 9.81 m s−2.

We can differentiate Equation 10.7 twice in order to find out more about the way
the object’s speed changes as it falls. However, first let’s find the time taken for
the object to reach the river. Rearranging Equation 10.7 to maket2 the subject
gives

t2 =
2s
g

Taking the square root of both sides (recognizing thatt is a period of time so we
are only interested in the positive square root) gives

t =

√
2s
g

Thus, whens= 75 m,

t =

√
2× 75 m

9.81 m s−2
=

√
15.29 s2 = 3.91 s= 3.9 s to two significant figures.
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So the object takes 3.9 seconds to hit the water.

The object starts from rest, but will be travelling quite fast when it hits the water.
How fast? To find speed we need to find the rate of change of distance, i.e. to
differentiateEquation 10.7with respect tot.

The speedv is then

v =
ds
dt
=

1
2

g× 2t = gt

This implies that speed is proportional to time; the speed is zero as the object is
dropped but then it increases in a linear way as time increases.

Since it takes 3.9 s for the object to hit the water (or 3.91 s, working to three
significant figures to avoid rounding errors), its speed as it hits the water is

v = 9.81 m s−2 × 3.91 s= 38 m s−1 to two significant figures.

DifferentiatingEquation 10.7for a second time tells us the rate at which the
object’sspeedis changing. This is the object’s acceleration,a

a =
dv
dt
=

d2s

dt2
= g = 9.81 m s−2

Thus the object is accelerating at 9.81 m s−2 (the acceleration due to gravity) as
you might have expected. The fact that the final answer is reasonable provides
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a useful check ofEquation 10.7(which wasassumedto be the correct equation
from which to start). Note that the acceleration is constant all the time the object
is falling, and the fact that acceleration is positive is consistent with the observed
fact that speed increases as the object falls.

Figure 10.12shows the variation of the object’s distances from the bridge, speed
v, and acceleration in a downwards directiona, with increasing time. Note that
the gradient of the first graph (sagainstt) leads to the second graph (v againstt)
and that the gradient of the second graph (v againstt) leads to the final graph (a
againstt).

10.3 Differentiating exponential functions

Chapter 5 introduced graphs of exponential growth, such asn = n0 eat (seeFigure
5.36) and graphs of exponential decay, such asN = N0 e−λt (seeFigure 5.35),
where e is the number whose value is 2.718 to four significant figures. In general
a function of the typey = C ekx, wherex and y are variables andC and k are
constants, is called anexponential function. Finding the gradient of exponential
functions reveals another reason why e is such a special number.

Figure 10.13is a graph of the simplest imaginable exponential function; in this case
C = 1 andk = 1, soy = ex. Tangents have been drawn to the curve inFigure 10.13
aty = 1, y = 5 andy = 10.
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Question

Use the tangents that have been drawn onFigure 10.13to find the gradient of the
graph ofy = ex at y = 1, y = 5 andy = 10. You should work to two significant
figures in each case.

Answer

The gradient of the tangent drawn aty = 1 is

gradient=
(2.0− 0.0)

(1.0− (−1.0))
=

2.0
2.0
= 1.0

The gradient of the tangent drawn aty = 5 is

gradient=
(9.2− 4.2)
(2.5− 1.5)

=
5.0
1.0
= 5.0

The gradient of the tangent drawn aty = 10 is

gradient=
(17.0− 7.0)
(3.0− 2.0)

=
10.0
1.0
= 10

In each case, to two significant figures, the gradient of the tangent (and thus of
the graph itself) is equal to the value ofy at the point where the tangent was
drawn.
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Question

Predict the gradient of a tangent drawn to the curve inFigure 10.13aty = 2.

Answer

It seems likely that a tangent drawn aty = 2 will have a gradient of 2 too. It
turns out that this is indeed the case.

The rule that has emerged from this sequence is generally true; the gradient of a
graph ofy = ex at a particular point is equal to the value ofy at that point, i.e. for
y = ex, the derivative ofy with respect tox is equal toy itself:

If y = ex then
dy
dx
= y

or, put another way, ify = ex then
dy
dx
= ex.

dy
dx

is only equal to y for this one specific exponential function. However, more

generally,

If y = C ekx, whereC andk are constants, then
dy
dx
= Ckekx.

Sincey = C ekx this means that
dy
dx
= ky i.e.

dy
dx

is proportionalto y.
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This rule is the final rule for differentiation given in this course, and its use is illus-

trated in Worked examples 10.8 and 10.9. The fact that
dy
dx

is proportional toy for

all functions of the formy = C ekx also explains the shape of graphs of exponential
growth and decay, and is the reason why e is such a special number.

Worked example 10.8

If y = e3x what is
dy
dx

? Express your answer (a) in terms ofx, (b) in terms ofy.

Answer

(a) C = 1 andk = 3 in this case, so
dy
dx
= 1× 3 e3x = 3 e3x.

(b) Alternatively, we could write
dy
dx
= 3y.

Worked example 10.9

Find the first and second derivatives ofz= 3 e−2t with respect tot.

Answer

C = 3 andk = −2 in this case, so
dz
dt
= 3× −2e−2t = −6 e−2t.

This could also be written as
dz
dt
= −2z.
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Differentiating again gives

d2z

dt2
= −6× −2 e−2t = 12 e−2t

This could also be written as
d2z

dt2
= 4z.

Question 10.7

(a) Differentiatey = 2 ex with respect tox. Answer

(b) Differentiatez= et/2 with respect tot. Answer

Since
dy
dx

is proportional toy for all exponential functions we can use exponen-

tial functions to describe situations in which the rate of change of some quantity
at an instant is proportional to the actual value of that quantity at the same in-
stant.

Radioactive decay, first described in Chapter 5 and further discussed in Box 10.6,
is an example of a situation like this and this is why it can be described by an
exponential function.
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Box 10.6 Radioactive decay revisited

As previously discussed, radioactive decay is an inherently
random process; we can never know when a particular nucleus
is going to decay. However, if the sample contains a large num-
ber of radioactive nuclei, theaveragerate at which the nuclei
decay will be proportional to the number of radioactive nuclei
remaining. It is this proportionality which leads to the process
being an exponential one, in this case an exponentialdecay.

As discussed inChapter 5andChapter 7, we can describe the
process by the equationN = N0 e−λt whereλ is a positive con-
stant called the decay constant,N0 is the initial number of ra-
dioactive nuclei andN is the number remaining after timet.
The constantλ is related to the half-life,t1/2 by the equation

t1/2 =
ln 2
λ

(see Box 7.5). DifferentiatingN = N0 e−λt with

respect tot gives

dN
dt
= −N0λe−λt = −λN (sinceN = N0 e−λt).

In this case the gradient is negative as you would expect, since
the number of radioactive nuclei remaining is reducing with
increasing time. The larger the value ofN, the faster the rate
of decay, as shown in Figure 10.14.

t

N0

N

Figure 10.14: Radioactive decay
can be described by the equation

N = N0 e−λt, so
dN
dt
= −λN. Tan-

gents to the curve are shown in red.

Back J I 510



Contents �

10.4 Learning outcomes for Chapter 10

After completing your work on this chapter you should be able to:

10.1 demonstrate understanding of the terms emboldened in the text;

10.2 find the gradient of a curve at a particular point by means of drawing a
tangent to the curve at that point;

10.3 demonstrate understanding of the fact that the derivative of a function gives
the gradient of the corresponding graph;

10.4 demonstrate understanding of the fact that the second derivative of a function
is obtained by differentiating twice;

10.5 differentiate functions of the formy = C xn;

10.6 differentiate simple sums of functions;

10.7 differentiate exponential functions of the formy = C ekx;

10.8 demonstrate understanding of the fact that, for exponential functions,
dy
dx

is

proportional toy.
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Resolving vectors A
The letterv has been used throughout the course to represent speed; but whyv rather
thans? The letterv reminds us of the word ‘velocity’ which, in everyday speech,
is used interchangeably with speed. However, in science the two words have subtly
different meanings. Velocity is an example of avector, a quantity that has direction
as well as magnitude (size). In contrast, speed is ascalarquantity; it has magnitude
only.

Question

In terms of a strict interpretation of vector and scalar quantities, what is wrong
with the statement ‘the car has a velocity of 50 km hour−1?

Answer

No direction has been given, so this is a scalar quantity, i.e. the speed of the car.
To turn it into a vector we would need to say, for example, that ‘the car has a
velocity of 50 km hour−1 due north’.
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Another example of the difference between speed and velocity comes when con-
sidering an object orbiting another object at constant speed. Consider, for example,
the Earth orbiting the Sun at about 30 km s−1 (as discussed inBox 3.1). The Earth’s
speed relative to the Sun is approximately constant, but its direction of movement
is constantly changing, so its velocity is constantly changing too.

The quantities considered elsewhere in this course have been almost exclusively
scalars (mass, temperature, energy, magnitude of acceleration) but velocity is not
the only scientific quantity to be a vector, by a very long way. Other such quantities
include, force, weight and acceleration.

A vector may be represented diagrammatically by an arrow, the length of which
specifies the vector’s magnitude, and the direction of which is the same as the vec-
tor’s. By convention, vectors are printed as bold symbols, e.g.v, while the magni-
tude of the vector is written normally, e.g.v. Handwritten vector symbols should
be written with a wavy underline, as shown in Figure A.1.

v

(a) (b)

Figure A.1: Representing a vector: (a) in printed text; (b) by hand.
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To specify a vector fully, both its magnitude (which is always positive) and its
direction must be stated, e.g. ‘F is a force of 10 N acting vertically downwards’.
The magnitude ofF may be written as

F = |F| = 10 N

The vertical lines drawn either side of theF provide an alternative way of indicating
themodulus(magnitude) of the vector.

Adding vector quantities together is not as straightforward as adding scalar quanti-
ties, since both magnitude and direction need to be taken into account. Fortunately
the trigonometry from Chapter 6 comes to our aid.

b

a

Figure A.2: Two forcesa and
b acting on an object.

Imagine an object being acted on by the two forces shown in Figure A.2.
You want to know the overall effect; what is the total force acting on
the object as a result ofa and b? It is not immediately obvious how to
proceed since the two forces have different sizesandare acting in different
directions.
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y

ay a

θ

ax x

Figure A.3: Thex- andy-components ofa.

One way forward is to resolve each vector intocompo-
nents; any two dimensional vector (such as one drawn
on the page of a book, as here) can be characterized by
its components along two perpendicular axes. Figure A.3
shows the components of the vectora along two axesx and
y. Note that the componentsax anday are scalar quantities.

We can use trigonometry to findax anday.

Since cosθ =
adj
hyp

we can say that cosθ =
ax

a
, thusax = acosθ.

Similarly sinθ =
opp
hyp

,

so we can say that sinθ =
ay

a
, thusay = asinθ.

If a has magnitudea = 6.0 N and acts at 60◦ to thex-axis,
we can say

ax = 6.0 N× cos 60◦ ay = 6.0 N× sin 60◦

= 3.0 N = 5.2 N
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Similarly, if b has magnitudeb = 2.8 N and acts at 25◦ to thex-axis, we can say

bx = 2.8 N× cos 25◦ by = 2.8 N× sin 25◦

= 2.5 N = 1.2 N

y

x

cy

φ

c

cx

Figure A.4: Findingc from its x- and y-
components.

We can find thex-component of the resultant forcec, by
addingthex-components ofa andb:

cx = ax + bx = 3.0 N+ 2.5 N = 5.5 N

Similarly, they-component ofc is given by

cy = ay + by = 5.2 N+ 1.2 N = 6.4 N

The resultant forcec is shown in Figure A.4.

We can use Pythagoras’ Theorem to find the magnitudec,
so

c2 = c2
x + c2

y

c =
√

c2
x + c2

y

=

√
(5.5 N)2 + (6.4 N)2

= 8.4 N
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And since tanφ =
opp
adj
=

cy

cx
we can find the angle betweenc and thex-axis, which

gives us the direction in which the force acts:

tanφ =
6.4 N
5.5 N

= 1.1636

Thusφ = tan−1(1.1636)= 49◦ to two significant figures.

So the resultant forcec has a magnitude of 8.4 N and acts at an angle of 49◦ to the
horizontal axis.
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Question A.1 Answer

Find the x- and y-components of the vectorv
shown in Figure A.5. The vector has a magni-
tude of 8.6 m s−1 and acts at an angle,α, of 42◦

to thex-axis.

y

x

vy
v

vx

α

Figure A.5
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Question A.2 Answer

Find the magnitude and direction of the vector
F shown in Figure A.6.

Fx = 4.0 N andFy = 3.0 N.

y

x

Fy
F

Fx

Figure A.6
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Glossary

absolute-value The absolute value of a number is the number given without its+

or − sign.

accurate Description of a set of measurements for which thesystematic
uncertaintyis small. Compare withprecise.

acute-angle An angle of less than 90◦.

addition rule for probabilities A rule stating that if several possible outcomes
are mutually exclusive, the probability of one or other of these outcomes
occurring is found by adding their individual probabilities.

adjacent (trigonometry) The side other than the hypotenuse which is next to a
particular angle in aright-angled triangle.

algebra The process of using symbols, usually letters, to represent quantities and
the relationships between them.

alternative hypothesis The logical ‘mirror image’ of thenull hypothesis
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proposed at the start of a statistical hypothesis test (e.g. that the means of
two populations are not identical,µ1 , µ2 ).

arc A portion of a curve, particularly a portion of the circumference of a circle.

arccosine Seeinverse cosine.

arcsec An abbreviation for ‘second of arc’. A 60th part of aminuteof arc i.e. a
3600th part of adegree(of arc).

arcsine Seeinverse sine.

arctangent Seeinverse tangent.

arithmetic mean Measure of the average of a set of numbers. For a set ofn
measurements of a quantityx, the arithmetic meanx (often abbreviated to
‘the mean’) is defined as the sum of all the measurements divided by the
total number of measurements:

x =
1
n

n∑
i=1

xi

See also thetrue mean.

arithmetic operations The operations of addition, subtraction, multiplication and
division.

axis (of a graph) A horizontal or vertical reference line which carries a set of
divisions. In the case of abar chartthe divisions may be a list of categories.
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In the case of agraphthe divisions indicate alinearor logarithmic scale, and
are used to locate points on the graph.

bar chart A diagrammatic method of presenting data grouped into discrete
categories. The categories are listed along one axis (usually the horizontal
axis), and each category is represented by a bar (usually vertical). The bars
are separated by gaps, and their height (or length) isdirectly proportionalto
the number or percentage of things or events in each category. Compare
with histogram

base number When usingexponents, the quantity that is raised to a power, e.g. 5
is the base in the statement 5× 5× 5 = 53 anda is the base in the statement
a3 × a4 = a7.

best-fit line A line (usually a straight line) drawn on agraphand chosen to be the
best representation of the data as a whole. A best-fit line need not
necessarily go through any of the data points (although it will typically go
through some of them), and should be drawn in such a way that there are
approximately the same number of data points above and below the line.

calculus The branch of mathematics which includesdifferentiationand
integration.

cancellation The process of dividing both the numerator and denominator of a
fraction by the same quantity. With numbers it may be quicker to use
cancellation than to work out the value of the numerator and denominator
separately, e.g.
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5×��13

��13× 8
=

5
8

Cancellation is also useful in simplifying algebraic expressions or units, e.g.

�abc2

2�ad
=

bc2

2d

1 N��m
1 kg× 1��m

=
1��kg m s−2

1��kg
= 1 m s−2

categorical level A level of measurementin which the data comprise distinct
non-overlapping classes that cannot logically be ranked (e.g. presence
versus absence, male versus female). See alsoordinal level, interval level.

centi A prefix, used with units, to denote hundredths, and indicated by the symbol
c. Thus one centimetre, denoted 1 cm, is the hundredth part of a metre.
Centi is not one of the recognized submultiples in the system ofSI units, but
is nevertheless in common use, especially in association with units of length
and volume.

χ2 test (chi-squared test) A statistical hypothesis test used to determine whether
there is astatistically significantassociation between twocategorical level
variables.

chord A line drawn between two points on a curve.

common denominator The same number or term occurring as thedenominator
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of two or more fractions. For example, the numerical fractions5
16 and 7

16
have the common denominator 16. It is often necessary to useequivalent
fractionsin order to find common denominators: for example2

5 ( = 6
15 =

12
30

) and 8
15 ( = 16

30 ) have common denominators 15 and 30 (as well as many
other numbers). The algebraic fractionsa

b and c
d have the common

denominatorb× d.

common logarithm Seelogarithm to base 10.

commutative An operation for which the result is unchanged if the order of terms
is reversed is described as commutative. Only two of thearithmetic
operationsare commutative: addition (a+ b = b+ a) and multiplication
(a× b = b× a).

complex number A number of the formn+mi, wheren is anyreal number, m is
any non-zero real number, andi =

√
−1.

component (of a vector) The component of avectoralong a chosenaxisis
obtained by drawing a line from the head of the arrow representing the
vector onto the axis, such that the line meets the axis in aright angle. For
example, thex-component of a vectora is ax = acosθ wherea is the
magnitude of the vector andθ is the angle between thex-axis and the
direction of the vector.

concentric Two circles are described as being concentric if they have the same
centre.
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constant of proportionality The constantfactorthat is required to turn a
proportionality into anequation. Thedirect proportionalityof y ∝ x can be
written asy = kx, wherek is the constant of proportionality.

conversion factor The number by which one needs to divide or multiply in order
to convert from one unit to another.

correlation Two variables atordinal levelor interval levelare said to be
correlated if, as the value of one variable increases, the value of the second
variable either increases (i.e. positive correlation) or decreases (i.e. negative
correlation). If the values of the two variables increase precisely in step with
one another, the positive correlation can be described as ‘perfect’. In a
‘perfect’ negative correlation, the value of one variable decreases precisely
as the other increases. Correlations may or may not bestatistically
significant.

correlation coefficient The correlation coefficient (r) of a ‘perfect’ positive
correlationis +1, while that of a ‘perfect’ negative correlation is−1. When
there is complete lack of correlation between two variables,r = 0. For a
positive correlation that is less than ‘perfect’, 1> r > 0. For a negative
correlation that is less than ‘perfect’, 0> r > −1.

cosine The cosine of an angleθ in a right-angled triangleis defined by

cosθ =
adjacent

hypotenuse

where ‘adjacent’ is the length of the side adjacent toθ and ‘hypotenuse’ is
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the length of the hypotenuse.

critical value At a particular number ofdegrees of freedom(in many statistical
hypothesis tests), the critical value is the most extreme (usually the largest,
but in some statistical tests the smallest) value that thetest statisticis
expected to have for a particular significance level.

deci Prefix, used with units, to denote tenths, and indicated by the symbol d. Thus
one decibel, denoted 1 dB, is equal to one tenth of a bel. Deci is not one of
the recognized submultiples in the system ofSI units, but is commonly used
in certain areas: for example the concentration of a chemical dissolved in a
solvent is often expressed in units of moles per decimetre cubed (mol dm−3).

decimal notation Method of representing numbers, according to which the
integraland fractional parts of a number are separated by a decimal point.
The decimal point is written as a full stop, with the integral part of the
number to the left of it. The first digit after the decimal point indicates the
number of tenths, the second indicates the number of hundredths, the third
the number of thousandths, etc.

decimal placesSeeplaces of decimals.

degree (of arc) A 360th of a complete revolution.

degree-CelsiusAn everyday unit of temperature, given the symbol◦C. Pure
water freezes at 0◦C and boils at 100◦C. Temperatures may be converted
from degrees Celsius to theSI unit of temperature, kelvin, using theword
equation
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(temperature in kelvin)= (temperature in degrees Celsius)+ 273.15

degrees of freedomA device used in many statistical hypothesis tests to allow for
the fact that the more data that are collected, the more scope there is for the
test statisticto deviate from the value expected (generally, zero) if thenull
hypothesiswere true.

denominator The number or term on the bottom of a fraction. For example, in

the fraction
1

2π
, the denominator is 2π; in the fraction

mn
pq

, the denominator

is pq. See also:numerator.

dependent variable A quantity whose value is determined by the value of one or
more other variables. On agraph, the dependent variable is, by convention,
plotted along the verticalaxis. Compare with:independent variable.

derivative The derivative (or derived function) of afunction f (x) with respect tox
is another function ofx that is equal to the rate of change off (x) with

respect tox. Its value at any given value ofx is equal to the ratio
∆ f
∆x

in the

limit as∆x becomes very small, and is usually written as
d f
dx

or f ′(x). The

value of
d f
dx

at each value ofx is also equal to the gradient of the graph off

plotted againstx at that value ofx. A derivative of the type is sometimes
called the first derivative to distinguish it from the second derivative of the
function.
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derived function Seederivative.

differentiation A mathematical process that enables thederivativeof a function
to be determined.

directly proportional (quantities) Two quantitiesx andy are said to be directly
proportional to each other if multiplying (or dividing)x by a certain amount
automatically results iny being multiplied (or divided) by the same amount.
Direct proportionality betweenx andy is indicated by writingy ∝ x. The
direct proportionality can also be written as an equation of formy = kx,
wherek is a constant called theconstant of proportionality. A graphin
whichy is plotted againstx will be a straight line withgradientequal tok.
See alsoinversely proportional.

elimination A method of combining two or moreequationsby eliminating
variablesthat are common to them.

equation An expression containing an equals sign. What is written on one side of
the equation must always be equal to what is written on the other side.

equivalent fractions Fractions that have the same value, e.g.2
3, 4

6, 8
12, 20

30, etc.

estimated standard deviation of a populationThe best estimate that can be
made for thestandard deviationof some quantity for a wholepopulation.
This estimate is usually set equal tosn−1, which is calculated from
measurements of the quantity made on an unbiasedsampledrawn from the
population. If the sample consists ofn members and the quantityx is
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measured once for each member, then

sn−1 =

√√
1

n− 1

n∑
i=1

(xi − x)2

wherex is thearithmetic meanof the measurements. The symbolσn−1 is
also widely used (especially on calculators) as an equivalent tosn−1.

evaluate An instruction to work out the value of an expression.

exponent When raising quantities to powers, the number to which a quantity is
raised, e.g. in the term 23, the exponent is 3.

exponential decayDecay in which the time taken for a quantity to fall to half its
original value is always the same; this time is known as thehalf-life. A
quantityN with an initial value ofN0 at timet = 0 decays exponentially if
N = N0e−λt, whereλ is a constant known as the decay constant.

exponential function A functionof the typey = Cekx whereC andk are

constants. A function of this type has the property that
dy
dx

is proportional to
y.

exponential growth Growth in which the quantity being measured increases by a
constant factor in any given time interval. A quantityn with a starting value
of n0 at timet = 0 grows exponentially ifn = n0eat, wherea is a positive
constant.
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expression A combination of variables (such asaxt or ux + axt). Unlike an
equation, an expression is unlikely to contain an equals sign.

extrapolation The process of extending a graph beyond the highest or lowest data
points in order to find the values of one or both of the plotted quantities
outside the original range within which data were obtained.

factor A termwhich when multiplied to other terms results in the original
expression, so 6 and 4 are factors of 24 and (a− 3) and (a+ 5) are factors of
a2 + 2a− 15.

factorize To find thefactorsof anexpression.

first derivative Seederivative.

formula A rule expressed in algebraic symbols.

fraction A number expressed in the form of oneintegerdivided by another, e.g.
1
4

;
3
8

;
21
13

. One algebraictermdivided by another may also be described as a

fraction. See also:improper fraction, mixed number, equivalent fractions,
numeratoranddenominator.

function If the value of avariable f depends on the value of another variablex,
then f is said to be a function ofx and is written asf (x). In general, there is
only one value off (x) for each value ofx.

gradient (of a graph) The slope of a line on agraph. The gradient is a measure of
how rapidly the quantity plotted on the verticalaxischanges in response to a
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change in the quantity plotted on the horizontal axis. If the graph is a
straight line, then the gradient is the same at all points on the line and may
be calculated by dividing the vertical ‘rise’ between any two points on the
line by the horizontal ‘run’ between the same two points. If the graph is a
curved line, the gradient at any point on the curve is defined by the gradient
of thetangentto the curve at that point. See also:derivative.

graph A method of illustrating the relationship between two variable quantities
by plotting the measured values of one of the quantities using alinearor
logarithmic scalealong a horizontalaxis, and the measured values of the
other quantity using a linear or logarithmic scale along a vertical axis. See
also:dependent variable, independent variable, sketch graph.

half-life The time taken for half the nuclei in a radioactive sample to decay. See
alsoexponential decay.

histogram A diagrammatic method of presenting data, in which the horizontal
axisis divided into (usually equal) intervals of a continuously variable
quantity. Rectangles of width equal to the interval have a height scaled to
show the value of the quantity plotted on the vertical axis that applies at the
particular interval. For example, the intervals could be the months in the
year and the vertical axis could represent themean(monthly) rainfall in
millimetres. Compare withbar chart.

hyperbola A curve, part of which may be obtained by plottinginversely
proportionalquantities against each other on a.
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hypotenuse The side opposite to theright-anglein a right-angled triangle.

hypothesis A plausible idea tentatively put forward to explain an observation.
Traditionally, a hypothesis is tested by making predictions that would follow
if the hypothesis is correct. If these predictions are borne out by experiment
or further observation, then this lends weight to the hypothesisbut does not
prove it to be correct. If the predictions are not borne out, then the
hypothesis is either rejected or modified.

imaginary number A number of the formmi, wherem is any non-zeroreal
numberandi =

√
−1.

improper fraction A fraction in which thenumeratoris greater than the

denominator, e.g.
12
7

. An improper fraction may also be written as amixed

number.

independent variable The quantity in an experiment or mathematical
manipulation whose value(s) can be chosen at will within a given range. On
agraph, the independent variable, is by convention, plotted along the
horizontalaxis. Compare withdependent variable.

index (plural indices) Seeexponent.

integer A positive or negative whole number (including zero).

integral Pertaining to an integer. For example the statement thatm can take
integral values from−2 to+2 means that the possible values ofm are−2,
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−1, 0, 1 and 2.

intercept The value on oneaxisof agraphat which a plotted straight line crosses
that axis, provided that axis does pass through the zero point on the other
axis. If the plotted line has an equation of formy = mx+ c, the intercept on
they axis is equal toc.

interpolation The process of reading between data points plotted on agraph, in
order to find the value of one or both of the plotted quantities at intermediate
positions.

interval level A level of measurementin which theactualvalues of measurements
or counts are known and used in statistical analysis (e.g. dry mass in grams,
number of flowers per plant). See alsocategorical level, ordinal level.

inverse cosinex is the inverse cosine (arccosine) ofy if x is the angle whose
cosineis y. i.e. x = cos−1 y (x = arccosy) if y = cosx.

inverse sine x is the inverse sine (arcsine) ofy if x is the angle whosesineis y. i.e.
x = sin−1 y (x = arcsiny) if y = sinx.

inverse tangent x is the inverse tangent (arctangent) ofy if x is the angle whose
tangentis y, i.e. x = tan−1 y (x = arctany) if y = tanx.

inverse trigonometric function If y is atrigonometric ratioof the anglex, thenx
is the inverse trigonometric function ofy. For example, ify = sinx, the
inverse trigonometric function isx = sin−1 y (or arcsiny) where sin−1 y
(arcsiny) is the angle whose sine isy.
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inversely proportional (quantities) Two quantitiesx andy are said to be inversely
proportional to each other if an increase inx by a certain factor
automatically results in a decrease iny by the same factor (e.g. if the value
of x doubles, then the value ofy halves). Inverse proportionality betweenx

andy is indicated by writingy ∝
1
x
. A graph in whichy is plotted againstx

will be ahyperbola. See also:directly proportional.

irrational number A number that cannot be obtained by dividing oneintegerby
another, e.g.π,

√
2 and e. See alsorational number.

latitude Part of the specification of the position of a point on the Earth’s surface:
the distance north or south of the Equator measured indegrees. A line of
latitude is an imaginary circle on the surface of the Earth.

level of measurementThe three levels of measurement that data may be known
or analysed at arecategorical level, interval levelor ordinal level.

linear scale A scale on which the steps between adjacent divisions correspond to
the addition or subtraction of a fixed quantity.

logarithm The logarithm of a number to a given base is the power to which the
base must be raised in order to produce the number.

logarithm to base 10 The logarithm to base 10 (or ‘common logarithm’, log10) of
p is the power to which 10 must be raised in order to equalp. i.e. if p = 10n,
then log10 p = n.
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logarithm to base e The logarithm to base e (or ‘natural logarithm’) ofp is the
power to which e must be raised in order to equalp, i.e. if p = eq, then
ln p = q.

logarithmic scale Scale on which the steps between adjacent divisions correspond
to multiplication or division by a fixed amount, usually a power of ten.

log-linear graph A graphof thelogarithmof one quantity against the actual
value of another quantity. For anexponential functionof the typey = Cekx,
graphs of log10 y againstx and of lny againstx will both be straight lines.

log-log graph A graphof thelogarithmof one quantity against the logarithm of
another quantity. For afunctionof the typey = axb (e.g.y = 2x3) graphs of
log10 y against log10 x and of lny against lnx will both be straight lines.

longitude Part of the specification of the position of a point on the Earth’s
surface. A line of longitude is an imaginary semicircle that runs from one
pole to the other. The line of zero longitude passes through Greenwich in
London. Other lines of longitude are specified by the angle east or west of
the line of zero longitude.

lowest common denominatorThe smallestcommon denominatorof two or more
fractions.

magnitude The size of a quantity, also referred to as the ‘modulus’.Vector
quantities have both magnitude and direction;scalarquantities have only
magnitude.
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matched samplesWhen data are collected from twosamplessuch that each item
of data from one sample can be uniquely matched with just one item of data
from the other sample (e.g. blood glucose levels measured in individuals
before and after they have taken medication), the samples are described as
matched. See alsounmatched samples.

mean Term commonly used as an abbreviation forarithmetic mean.

median The middle value in a series when the values are arranged in either
increasing or decreasing order. If the series contains an odd number of
items, the median is the value of the middle item; if it contains an even
number of items, the median is thearithmetic meanof the values of the
middle two items.

minute (of arc) A 60th part of andegree(of arc).

mixed number A number consisting of a non-zerointegerand afraction, e.g. 3
1
2

.

Any improper fractionmay also be written as a mixed number: for example
8
3
= 2

2
3

.

mode The most frequently occurring value in a set of data.

modulus Seemagnitude.

multiplication rule for probabilities A rule stating that if a number of outcomes
occur independently of one another, theprobabilityof them all happening
together is found by multiplying the individual probabilities.
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natural logarithm Seelogarithm to base e.

normal distribution Distribution of measurements or characteristics which lie on
a bell-shaped curve that is symmetric about its peak, with the peak
corresponding to themeanvalue. Repeated independent measurements of
the same quantity approximate to a normal distribution, as do quantitative
characters in natural populations (e.g. height in human beings).

null hypothesis A ‘no difference’ hypothesis proposed at the start of a statistical
hypothesis test (e.g. that themeansof two populationsare identical,
µ1 = µ2). Compare withalternative hypothesis.

numerator The number or term on the top of a fraction. For example, in the

fraction
3
4

, the numerator is 3; in the fraction
a+ b

c
, the numerator isa+ b.

See alsodenominator.

opposite (trigonometry) The side opposite to a particular angle in aright-angled
triangle.

order of magnitude The approximate value of a quantity, expressed as the nearest
power of ten. If the value of the quantity is expressed inscientific notation
asa× 10n, then the order of magnitude of the quantity is 10n if a < 5 and
10n+1 if a > 5. The phrase is also used to compare the sizes of quantities, as
in ‘a metre is three orders of magnitude longer than a millimetre’ or ‘a
picogram is twelve orders of magnitude smaller than a gram’.

ordinal level A level of measurementin which the data can be logically ranked
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but in which theactualvalues of the measurements or counts are either not
known or not used in statistical analysis (e.g. tallest to shortest, heaviest to
lightest). See alsocategorical level, interval level.

origin (of a graph) The point on a graph at which the quantities plotted on the
horizontalaxisand the vertical axis are both zero.

parabola A curve that may be described by an equation of the form
y = ax2 + bx+ c, wherex andy are variables,a is a non-zero constant, andb
andc are constants that may take any value.

percentage A way of expressing a fraction with adenominatorof 100. For
example, 12 per cent (also written 12%) is equivalent to twelve parts per

hundred or
12
100

.

places of decimalsIn decimal notation, the number of digits after the decimal
point (including zeroes). Thus 21.327 and 3.000 are both given to three
places of decimals.

population Statistical term used to describe the complete set of things or events
being studied.

power Seeexponent.

powers of ten notation A method of representing a number as a larger or smaller
number multiplied by ten raised to the appropriate power. For example,
2576 can be written in powers of ten notation as 25.76× 102 or 2.576× 103,
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or 0.02576× 105 or 257600× 10−2. See alsoscientific notation.

precise Description of a set of measurements for which the random uncertainty is
small. Compare withaccurate.

probability If a process is repeated a very large number if times, then the
probability of a particular outcome may be defined in terms of results
obtained as the fraction of results corresponding to that particular outcome.
If the process has n equally likely outcomes and q of those outcomes
correspond to a particular event, then the probability of that event is defined
as q/n. There are, for example, 6 equally likely outcomes for the process of
rolling a fair die. Only one of those outcomes corresponds to the event
‘throwing a six’, so the probability of throwing a six is16. Five of the
outcomes correspond to the event ‘not throwing a six’, so the probability of
not throwing a six is5

6.

product The result of a multiplication operation. For example, the product of 3
and 5 is 15.

proportional Seedirectly proportional, inversely proportional.

Pythagoras’ Theorem The square of thehypotenuseof a right-angled triangleis
equal to the sum of the squares of the other two sides.

quadratic equation An algebraicequationfor x of the formax2 + bx+ c = 0,
wherea , 0 andb andc can take any value. For example, 2x2 − x+ 3 = 0 is
a quadratic equation.
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quadratic equation formula Thesolutionsof aquadratic equationof the form
ax2 + bx+ c = 0 are given by the formula

x =
−b±

√
b2 − 4ac

2a

radian The anglesubtendedat the centre of a circle by an arc equal in length to
the radius. In general, the angleθ subtended by an arc lengths in a circle of

radiusr is given byθ (in radians)=
s
r
.

random uncertainty Measured values of one quantity that are scattered over a
limited range about ameanvalue are said to be subject to random
uncertainty. The larger the random uncertainty associated with the
measurements, the larger will be the scatter. See alsopreciseandsystematic
uncertainty.

ratio The relationship between the sizes of two comparable quantities. For
example, if a group of 11 people is made up of 8 women and 3 men, the
ratio of women to men is said as 8 to 3 and written as 8 : 3. Ratios may be

fairly easily converted intofractions. In this particular example
8

8+ 3
=

8
11

of the group are women and
3
11

are men.

rational number Any number that can be written in the form
a
b

, wherea andb

areintegersandb , 0, e.g. 7=
7
1

; −6 =
−6
1

; −
1
3

; 3.125=
25
8

. Every
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terminating orrecurring decimalis a rational number. See also:irrational
number.

real number A number that can be placed on the number line. The set of real
numbers is made up of all therationalandirrational numbers.

reciprocal A termthat is related to another as
2
3

is related to
3
2

. The reciprocal of
y
x

is
x
y

, and vice versa, for any non-zero values ofx andy. The reciprocal of

Nm is N−m and vice versa.

recurring decimal A number in which the pattern of digits after the decimal
point repeats itself indefinitely. Every recurring decimal is arational number

and can therefore be written as a fraction, e.g. 0.3333. . . =
1
3

;

0.123 123 123. . . =
41
333

; 0.2345 2345 2345. . . =
2345
9999

.

right angle The angle between two directions that are perpendicular (i.e. at 90◦)
to each other.

right-angled triangle A triangle where the angle between two of the sides is a
right angle.

rounding error An error introduced into a calculation by working to too few
significant figures. To avoid rounding errors you should work to at least one
more significant figure than is required in the final answer, and just round at
the end of the whole calculation.
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sample Statistical term used to describe an unbiased sub-set of apopulation.

sample standard deviation Seeestimated standard deviation of a population.

scalar A quantity withmagnitudebut no direction. Compare withvector.

scientific notation Method of writing numbers, according to which anyrational
numbercan be written in the forma× 10n wherea is either anintegeror a
number written indecimal notation, 1 ≤ a < 10, andn is aninteger. Thus
5 870 000 may be written in scientific notation as 5.87× 106, and 0.003 261
may be written in scientific notation as 3.261× 10−3. The terms ‘standard
form’ and ‘standard index form’ are equivalent to the term scientific
notation.

second (of arc) Seearcsec.

second derivative A derivativeof a derivative, for example the derivative of
d f
dx

with respect tox. A second derivative is usually written as or
d2 f

dx2
or f ′′(x).

SI units An internationally agreed system of units. In this system, there are seven
base units (which include the metre, kilogram and the second) and an
unlimited number of derived units obtained by combining the base units in
various ways. The system recognizes a number of standard abbreviations (of
which SI, standing for Système International, is one). The system also uses
certain standard multiples and submultiples, represented by standard
prefixes. See alsocentianddeci.
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significance levelThe probability that the value of atest statisticcould be as
extreme (usually as large, but in some statistical tests as small) as the value
obtained in a statistical hypothesis test if thenull hypothesiswere true.

significant figures The number of digits, excluding leading zeroes, quoted for the
value of a quantity, and defined as the number of digits known with certainty
plus one uncertain digit. Thus if a measured temperature is given as 23.7◦C
(i.e. quoted to three significant figures) this implies that the first two digits
are certain, but there is some uncertainty in the final digit, so the real
temperature might be 23.6◦C or 23.8◦C. The larger the number of significant
figures quoted for a value, the smaller is the uncertainty in that value.
Leading zeroes in decimal numbers do not count as significant figures (e.g.
0.002 45 is expressed to three significant figures). Numbers equal to or
greater than 100 can be unambiguously expressed to two significant figures
only by the use ofscientific notation(e.g. 450 can only be unambiguously
expressed to two significant figures by writing it in the form 4.5× 102).
Similarly, scientific notation must be used to express numbers equal to or
greater than 1000 unambiguously to 3 significant figures.

similar Two triangles (or other objects) are described as being similar if they have
the same shape but different size.

simplify To write anequationor expressionin its simplest form.

simultaneous equationsTwo or moreequationswhich must hold true
simultaneously.
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sine The sine of an angleq in a right-angled triangleis defined by

sin(θ) =
opposite

hypotenuse

where ‘opposite’ is the length of the sideoppositeθ and ‘hypotenuse’ is the
length of thehypotenuse.

sketch graph A graphdrawn to illustrate the nature of the relationship between
quantities, but not involving accurate plotting. On a sketch graph theorigin
is usually indicated, but theaxesare not scaled.

skewed Description of distributions that are not symmetric about theirmean
value.

small angle approximation For small angles (less than about 0.1 radian)
cosθ ≈ 1, and if the angle is stated inradians, sinθ ≈ θ, tanθ ≈ θ.

solution The answer, especially numerical value or values which satisfy an
algebraicequation.

solve To find an answer, usually to find the numerical values which satisfy an
algebraicequation.

Spearman rank correlation coefficient (rs) A test statisticcalculated in a
statisticalhypothesistest used to determine whether or not there is a
statistically significantcorrelationbetween twoordinal levelvariables.

square root The number or expression that multiplied by itself givesN is called
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the square root ofN. The positive square root ofN can be written as either
√

N or N
1
2 .

standard deviation A quantitative measure of the spread of a set of
measurements. Forn repeated measurements of a quantity, with arithmetic
meanx, the standard deviationsn is given by

sn =

√√
1
n

n∑
i=1

(xi − x)2

The symbolσn is also widely used (especially on calculators) as an
equivalent tosn. See also:sample standard deviation, estimated standard
deviation of a population.

standard form Seescientific notation.

standard index form Seescientific notation.

statistically significant In science, the result of a statistical hypothesis test is
conventionally regarded as statistically significant if theprobabilityof the
value of thetest statisticbeing as large (or, in some statistical tests, as small)
as the one obtained is less than 0.05.

subject The term written by itself, usually to the left of the equals sign in a
mathematicalequation.

subtend A straight line rotating about a certain point is said to subtend the angle
it passes through.
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sum The result of an addition operation. For example, the sum of 3 and 2 is 5. A
summation sign may be used as shorthand for more complicated addition
operations, e.g.

n∑
i=1

xi = x1 + x2 + . . . + xn.

systematic uncertainty Measured values of one quantity that are consistently too
large or too small because of bias in the measuring instrument or the
measurement technique are said to be subject to systematic uncertainty. See
alsoaccurate, random uncertainty.

t-test One of a number of statistical tests of ahypothesisused to determine
whether there is astatistically significantdifference between the estimated
population means calculated from twosamples. Different versions of the test
are available formatched samplesandunmatched samples.

tangent (to a curved graph) The tangent to a curve at a given point P is the
straight line that just touches the curve at P and has the samegradientas the
curve at the point P.

tangent (trigonometry) The tangent of an angleθ in a right-angled triangleis
defined by

tanθ =
opposite
adjacent
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where ‘opposite’ is the length of the sideoppositeand ‘adjacent’ is the
length of the sideadjacentto θ.

term A singlevariable(such asvx or ux in the equationvx = ux + axt) or a
combination of variables, such asaxt.

test of associationA statisticalhypothesistest used to determine whether there is
astatistically significantassociation between twocategorical levelvariables
(e.g.χ2 test) or a statistically significantcorrelationbetween two variables at
ordinal level(e.g.Spearman rank correlation(rs)) or atinterval level(other
correlation coefficients(r)).

test of difference A statisticalhypothesistest used to test whether there is a
statistically significantdifference between, for example, the estimated
population means (e.g.t-tests) or estimated populationmedians(other tests)
calculated from two samples.

test statistic In most statistical tests of ahypothesis, the value of a test statistic is
calculated using anequation. The value of the test statistic is then compared
with a table ofcritical valuesin order to determine whether thenull
hypothesisought to be accepted or rejected at a particularsignificance level.

trigonometric ratios The ratios of the sides of aright-angled triangle, including
tangent, sine, cosine.

trigonometry The branch of mathematics which deals with the relations between
the sides and angles of triangles, usuallyright-angled triangles.
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true mean Thearithmetic meanof some quantity for a wholepopulation, usually
denoted by the symbolµ. For a large population, the true mean is generally
unknowable and the best estimate that can be made of it is the mean of the
quantity for an unbiasedsampledrawn from the population.

unmatched samplesWhen data are collected from two samples such that there is
no logical connection between any particular item of data from one sample
and any particular item of data from the other sample (e.g. the heights of
plants randomly assigned to either an experimental or a control group), the
samples are described as unmatched. See alsomatched samples.

variable A quantity that can take a number of values.

vector A physical quantity that has a definitemagnitudeand points in a definite
direction.

word equation An equationin which the quantities under consideration are
described in words.
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Hidden material

This ‘chapter’ contains material which you won’t normally read through in se-
quence, but will access it through the links from the main text.
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Question 1.1 (a)

(−3)× 4 = −12
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Question 1.1 (b)

(−10)− (−5) = −5
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Question 1.1 (c)

6÷ (−2) = −3
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Question 1.1 (d)

(−12)÷ (−6) = 2
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Question 1.2

The lowest temperature in the oceans, which corresponds to the freezing point, is
31.9 Celsius degrees colder than the highest recorded temperature, which is
30.0 ◦C.

Therefore, freezing point of seawater= 30.0 ◦C− 31.9 ◦C

= −1.9 ◦C
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Question 1.3 (a)

117− (−38)+ (−286)= −131
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Question 1.3 (b)

(−1624)÷ (−29)= 56
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Question 1.3 (c)

(−123)× (−24)= 2952
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Question 1.4 (a)

The lowest common denominator is 6, so

2
3
−

1
6
=

2× 2
3× 2

−
1
6
=

4
6
−

1
6
=

3
6

Dividing top and bottom by 3 gives

3
6
=

1
2

Alternatively,

2
3
−

1
6
=

2× 6
3× 6

−
1× 3
6× 3

=
12
18
−

3
18
=

9
18

Dividing top and bottom by 9 gives

9
18
=

1
2

as before.
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Question 1.4 (b)

The lowest common denominator is 30, so

1
3
+

1
2
−

2
5
=

1× 10
30

+
1× 15

30
−

2× 6
30

=
10
30
+

15
30
−

12
30

=
13
30
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Question 1.4 (c)

In this case, the lowest common denominator isn’t immediately obvious, but a
common denominator will certainly be given by the product of 3 and 28, so

5
28
−

1
3
=

5× 3
28× 3

−
1× 28
3× 28

=
15
84
−

28
84

= −
13
84
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Question 1.5 (a)

The original fraction,
4
16
=

1
4
= 0.25.

You may have chosen any number for your calculations. In this answer the number
2 is used, but the principles hold good whatever choice of (non-zero) number is
made.

Suppose we were to add 2 to the numerator and to the denominator

4+ 2
16+ 2

=
6
18
= 0.333 to three places of decimals

This is not the same as the original fraction. (There is just one special case in
which this kind of operation would not change the value of the fraction and that is
adding 0 to top and bottom, which obviously leaves the fraction unchanged.)
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Question 1.5 (b)

Suppose we were to subtract 2 from the numerator and from the denominator

4− 2
16− 2

=
2
14
= 0.143 to three places of decimals

This is not the same as the original fraction. (Again, subtracting 0 from top and
bottom is the only case in which this operation leaves the fraction unchanged.)
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Question 1.5 (c)

If we square the numerator and the denominator

4× 4
16× 16

=
16
256
= 0.0625

This is not the same as the original fraction.
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Question 1.5 (d)

If we take the square root of the numerator and of the denominator

√
4
√

16
=

2
4
= 0.5

This is not the same as the original fraction.

Incidentally, checking a general rule by trying out a specific numerical example is
a helpful technique, which will be useful for algebra in Chapter 4.

Back 564



Contents �

Question 1.6 (a)

2
7
× 3 =

2× 3
7
=

6
7
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Question 1.6 (b)

5
9
÷ 7 =

5
9
×

1
7
=

5× 1
9× 7

=
5
63
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Question 1.6 (c)

1/6
1/3
=

1
6
÷

1
3
=

1
6
×

3
1
=

3
6
=

1
2
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Question 1.6 (d)

3
4
×

7
8
×

2
7
=

3× 7× 2
4× 8× 7

=
42
224

Dividing top and bottom by 2, and then by 7

42
224
=

21
112
=

3
16

Alternatively, the original could have been simplified in the same way before
carrying out any multiplication:

3

��42
×

��71

8
×

��21

��71
=

3
16
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Question 1.7 (a)

2−2 =
1

22
=

1
2× 2

=
1
4

You might have gone one step further and expressed this in decimal notation as
0.25.
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Question 1.7 (b)

1

3−3
= 33 = 3× 3× 3 = 27
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Question 1.7 (c)

1

40
=

1
1
= 1
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Question 1.7 (d)

1

104
=

1
10 000

= 0.000 1
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Question 1.8 (a)

29 = 512
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Question 1.8 (b)

3−3 =
1

33
= 0.037 to three places of decimals

It doesn’t matter if you quoted more digits in your answer than this. There is more
explanation in Chapter 2 about how and when to round off the values given on
your calculator display.
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Question 1.8 (c)

1

42
= 4−2 = 0.0625
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Question 1.9 (a)

230× 22 = 2(30+2) = 232
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Question 1.9 (b)

325× 3−9 = 3(25+(−9)) = 316
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Question 1.9 (c)

102/103 = 102 ÷ 103 = 10(2−3) = 10−1 (or 1/10)
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Question 1.9 (d)

102/10−3 = 102 ÷ 10−3 = 10(2−(−3)) = 105

or alternatively

102/10−3 = 102 ×
1

10−3
= 102 × 103 = 105
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Question 1.9 (e)

10−4 ÷ 102 = 10(−4−2) = 10−6
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Question 1.9 (f)

105 × 10−2

103
= 10(5+(−2)−3) = 100 (or 1)
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Question 1.10 (a)(
416

)2
= 416×2 = 432
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Question 1.10 (b)(
5−3

)2
= 5(−3)×2 = 5−6

This could also be written as
1

56
.
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Question 1.10 (c)(
1025

)−1
= 1025×(−1) = 10−25

This could also be written as
1

1025
.
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Question 1.10 (d)(
1

33

)6

=
16(
33)6 = 1

33×6
=

1

318

or alternatively(
1

33

)6

=
(
3−3

)6
= 3−3×6 = 3−18 =

1

318
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Question 1.11 (a)

FromEquation 1.3(
24

)1
2 = 2

(
4×1

2

)
= 22 = 4
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Question 1.11 (b)

FromEquation 1.3√
104 =

(
104

)1
2 = 104×1

2 = 102 = 100
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Question 1.11 (c)

FromEquation 1.3

100
3
2 =

(
100

1
2

)3
= 103 = 1000

Alternatively

100
3
2 =

(
1003

)1
2 =

(
106

)1
2 = 106/2 = 103 = 1000
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Question 1.11 (d)

125−1/3 =
1

1251/3
=

1
5
= 0.2

Since the cube root of 125 is 5.
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Question 1.12 (a)

Multiplication takes precedence over subtraction, so

35− 5× 2 = 35− (5× 2)

= 35− 10

= 25
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Question 1.12 (b)

Here the brackets take precedence, so

(35− 5)× 2 = 30× 2

= 60
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Question 1.12 (c)

Again, the brackets take precedence over the (implied) multiplication, so

5(2− 3) = 5× (−1)

= −5
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Question 1.12 (d)

Here the exponent takes precedence:

3× 22 = 3× 4

= 12

Back 593



Contents �

Question 1.12 (e)

The exponent takes precedence again:

23 + 3 = 8+ 3

= 11
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Question 1.12 (f)

Here both brackets take precedence over the (implied) multiplication:

(2+ 6)(1+ 2) = 8× 3

= 24
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Question 2.1 (a)

5.4× 104 = 5.4× 10 000

= 54 000
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Question 2.1 (b)

2.1× 10−2 = 2.1×
1

100

=
2.1
100

= 0.021
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Question 2.1 (c)

0.6× 10−1 = 0.6×
1
10

=
0.6
10

= 0.06
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Question 2.2 (a)

215= 2.15× 100

= 2.15× 102
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Question 2.2 (b)

46.7 = 4.67× 10

= 4.67× 101
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Question 2.2 (c)

152× 103 = 1.52× 100× 103

= 1.52× 102 × 103

= 1.52× 10(2+3)

= 1.52× 105
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Question 2.2 (d)

0.000 0876=
8.76

100 000

=
8.76

105

= 8.76× 10−5
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Question 2.3 (a)

A kilometre is 103 times bigger than a metre, so

3476 km= 3.476× 103 km

= 3.476× 103 × 103 m

= 3.476× 106 m
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Question 2.3 (b)

A micrometre is 103 times bigger than a nanometre, so

8.0 µm = 8.0× 103 nm
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Question 2.3 (c)

A second is 103 times bigger than a millisecond, so

0.8 s= 0.8× 103 ms

To express this in scientific notation, we need to multiply and divide the right-hand
side by 10:

0.8× 103 ms= (0.8× 10)×
103

10
ms

= 8×
(
103 × 10−1

)
ms

= 8× 10(3−1) ms

= 8× 102 ms
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Question 2.4 (a)

One million= 106, so the distance is

5900× 106 km = 5.9× 109 km

∼ 1010 km (or 1013 m)
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Question 2.4 (b)

The diameter of a spherical object is given by twice its radius. So for the Sun,

diameter= 2× 6.97× 107 m

= 13.94× 107 m

= 1.394× 108 m

∼ 108 m
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Question 2.4 (c)

2π = 2× 3.14 (to two places of decimals)

= 6.28

This is greater than 5, so can be rounded up to the next power of ten to give the
order of magnitude, i.e. 2π ∼ 10 (or 101).
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Question 2.4 (d)

7.31× 10−26 kg ∼ 10× 10−26 kg

∼ 10(−26+1) kg

∼ 10−25 kg
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Question 2.5 (a)

(i) 100 m = 1 m and 10−2 m = 0.01 m, so the difference between them is
(1− 0.01) m= 0.99 m.

(ii) 102 m = 100 m and 100 m = 1 m, so the difference between them is 99 m.

(iii) 104 m = 10 000 m and 102 m = 100 m, so the difference between them is
9900 m.

It is quite clear that as one goes up the scale the interval between each successive
pair of tick marks increases by 100 times.

Back 610



Contents �

Question 2.5 (b)

The height of a child is about 100 m, i.e. 1 m. The height of Mount Everest is
about 104 m (actually 8800 m, but it is not possible to read that accurately from
the scale on Figure 2.2). So Mount Everest is∼104 times taller than a child.
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Question 2.5 (c)

The length of a typical virus is 10−8 m and the thickness of a piece of paper is
10−4 m, so it would take∼ 10−4/10−8 = 10−4−(−8) = 10−4+8 = 104 viruses laid end
to end to stretch across the thickness of a piece of paper.
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Question 2.6

Magnitude 7 on the Richter scale represents four points more than magnitude 3,
and each point increase represents a factor 10 increase in maximum ground
movement. So a magnitude 7 earthquake corresponds to 104 (i.e. 10 000) times
more ground movement than a magnitude 3 earthquake.
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Question 2.7

Each of the quantities is quoted to four significant figures.
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Question 2.8 (a)

The third digit is an 8, so the second digit must be rounded up:

−38.87 ◦C = −39 ◦C to two significant figures
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Question 2.8 (b)

There is no way of expressing a number greater than or equal to 100
unambiguously to two significant figures except by the use of scientific notation.
The third digit is a 5, so again the second digit must be rounded up.

−195.8 ◦C = −1.958× 102 ◦C

= −2.0× 102 ◦C to two significant figures

{Note that the final zero does count.}
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Question 2.8 (c)

Again, this quantity cannot be expressed unambiguously to two significant figures
without the use of scientific notation. The third digit is an 8, so the second digit
must be rounded up.

1083.4 ◦C = 1.0834× 103 ◦C

= 1.1× 103 ◦C to two significant figures
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−5 × 100

−5 × 100

−500 −300 −200 −100−400

−5 × 102

5 × 101

5 × 10−2

−50 −10−20−30−40

−5 × 10−1

−10 −2−4−6−8

−5 × 10−1

−1 −0.5

0 100 200 300 400 500

0 10 20 30 40 50

0 2 4 6 8 10

0 0.5 1

Figure 2.1: Portions of the number line, showing the positions of a few large and
small numbers expressed in scientific notation.
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Lengthin metres

10−18

10−16
10−14

10−12
10−10

10−8
10−6

10−4
10−2

100
102

104
106

108
1010

1012
1014

1016
1018

1020
1022

1024
1026

1028

Quarksmustbe
smallerthan10−18 m

Radiusof aproton

Radiusof ahydrogenatom

Lengthof acoil of DNA

Lengthof a typical virus

Sizeof apollengrain

Thicknessof a
pieceof paper

Sizeof apinhead

Heightof a four
yearold child Heightof Mt Everest

Radiusof theEarth

Radiusof theSun

Averagedistanceto the
furthestplanet(Pluto)

Distanceto theneareststarto
theSun(ProximaCentauri)

Diameterof the
Milk y Waygalaxy

Distanceto theedge
of theobservable
Universe

Figure 2.2: The scale of the known Universe.
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soundlevel in dB

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Thresholdof
humanhearing

Rustlingleaves

Quietwhisper

Pedestrianizedcity street

Ordinaryconversation

Alarm clock

Foodblender

Undergroundtrain

Rockgroup

Thresholdof pain

Pneumaticdrill (at 2m)

Jettakingoff (at 30m)

Figure 2.3: Some common sounds on the decibel scale of sound level.

Click onBackto return to text

Back 620



Contents �

Question 3.1

(inch)2, cm2 and square miles all have units of (length)2, so they are all units of
area.

s2 cannot be a unit of area because the unit which has been squared, the second, is
a unit of time not of length.

m−2 cannot be a unit of area because the metre is raised to the powerminus2, not
2.

km3 cannot be a unit of area because the kilometre is cubed not squared. In fact, it
is a unit of volume.
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Question 3.2 (a)

6.732
1.51

= 4.458= 4.46 to three significant figures.

{6.732 is known to four significant figures, and 1.51 is known to three significant
figures. The number of significant figures in the answer is the same as in the input
value with the fewest significant figures, i.e. three.}
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Question 3.2 (b)

2.0× 2.5 = 5.0 to two significant figures.

{2.0 and 2.5 are both given to two significant figures, so the answer is given to two
significant figures too.}
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Question 3.2 (c)

Working to three significant figures and rounding to two significant figures at the
end of the calculation gives:(

4.2
3.1

)2

= (1.35)2 = 1.82= 1.8 to two significant figures.

{Squaring is repeated multiplication, so it is reasonable to quote the final answer
to two significant figures. However, working to two significant figures throughout
introduces a sizeable rounding error and gives a final answer of 2.0.}
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Question 3.2 (d)

The total mass= 3× 1.5 kg= 4.5 kg.

{Note that you have exactly 3 bags of flour, so it would not be correct to round the
answer to one significant figure.}
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Question 3.3 (a)

(3.0× 106) × (7.0× 10−2) = (3.0× 7.0)× 106+(−2)

= 21× 104

= 2.1× 105

{Note that 21× 104 is a correct numerical answer to the multiplication, but it is not
given in scientific notation.}
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Question 3.3 (b)

8× 104

4× 10−1
=

8
4
× 104−(−1) = 2× 105
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Question 3.3 (c)

104 × (4× 104)

1× 10−5
= 4×

104+4

10−5
= 4× 108−(−5) = 4× 1013
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Question 3.3 (d)

(
3.00× 108

)2
= (3.00)2 ×

(
108

)2

= 9.00× 108×2

= 9.00× 1016
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Question 3.4

Area=
(
9.78× 10−3 m

)2

=
(
9.78× 10−3

)2
m2

= 9.56× 10−5 m2 to three significant figures.
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Question 3.5

To one significant figure,

distance to Proxima Centauri≈ 4× 1016 m

distance to the Sun≈ 2× 1011 m

Thus,

distance to Proxima Centauri
distance to the Sun

≈
4× 1016 m

2× 1011 m

≈
4
2
×

1016 m

1011 m
≈ 2× 1016−11

≈ 2× 105

Thus Proxima Centauri is approximately 2× 105 times further away than the Sun.
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Question 3.6 (a)

1 m= 100 cm, so 1 m2 = 1002 cm2

Thus 1.04 m2 = 1.04× 1002 cm2 = 1.04× 104 cm2
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Question 3.6 (b)

1 m= 106 µm, so 1 m2 =
(
106

)2
µm2

Thus 1.04 m2 = 1.04×
(
106

)2
µm2 = 1.04× 1012 µm2
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Question 3.6 (c)

1 km= 103 m, so 1 km2 =
(
103

)2
m2

Thus 1 m2 =
1(

103)2 km2

and 1.04 m2 =
1.04(
103)2 km2 = 1.04× 10−6 km2
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Question 3.7 (a)

1 km= 103 m, so 1 km3 =
(
103

)3
m3 = 109 m3

Volume of Mars= 1.64× 1011 km3

= 1.64× 1011× 109 m3

= 1.64× 1020 m3
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Question 3.7 (b)

1 m= 103 mm, so 1 m3 =
(
103

)3
mm3 = 109 mm3

Thus 1 mm3 =
1

109
m3 = 10−9 m3

Volume of ball bearing= 16 mm3

= 16× 10−9 m3

= 1.6× 10−8 m3

Back 636



Contents �

Question 3.8 (a)

1 m= 100 cm

So

1 cm=
1

100
m

Thus

1 cm day−1 =
1

100
m day−1

and

12 cm day−1 =
12
100

m day−1

= 0.12 m day−1
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Question 3.8 (b)

1 day= 24× 60× 60 s= 8.64× 104 s

So

1 cm day−1 =
1

8.64× 104
cm s−1

and

12 cm day−1 =
12

8.64× 104
cm s−1

= 1.4× 10−4 cm s−1
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Question 3.9 (a)

1 m= 103 mm, so 1 mm=
1

103
m = 10−3 m

1 year= 365× 24× 60× 60 s= 3.154× 107 s

To convert from mm year−1 m s−1 we need tomultiplyby 10−3 (to convert the mm
to m) anddivideby 3.154× 107 (to convert the year−1 to s−1).

1 mm year−1 =
10−3

3.154× 107
m s−1

so

0.1 mm year−1 = 0.1×
10−3

3.154× 107
m s−1

= 3× 10−12 m s−1 to one significant figure

So the stalactite is growing at about 3× 10−12 m s−1.
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Question 3.9 (b)

1 m= 100 cm, so 1 cm=
1

100
m = 10−2 m

1 day= 24× 60× 60 s= 8.64× 104 s

To convert from cm day−1 to m s−1 we need tomultiplyby 10−2 (to convert the cm
to m) anddivideby 8.64× 104 (to convert the day−1 to s−1).

1 cm day−1 =
10−2

8.64× 104
m s−1

12 cm day−1 = 12×
10−2

8.64× 104
m s−1

= 1.4× 10−6 m s−1

So the glacier is moving at about 1.4× 10−6 m s−1.
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Question 3.9 (c)

1 km= 103 m

1 Ma= 106 × 365× 24× 60× 60 s= 3.154× 1013 s

To convert from km Ma−1 to m s−1, we need tomultiplyby 103 (to convert the km
to m) anddivideby 3.154× 1013 (to convert the Ma−1 to s−1).

1 km Ma−1 =
103

3.154× 1013
m s−1

35 km Ma−1 = 35×
103

3.154× 1013
m s−1

= 1.1× 10−9 m s−1 to two significant figures.

So the plates are moving apart at an average rate of 1.1× 10−9 m s−1.

Comparing the answers to parts (a), (b) and (c) shows that the tectonic plates are
moving apart approximately 300 times faster than the stalactite is growing. The
glacier under consideration moves about 1000 times faster still, but remember that
there is considerable variation in the speeds at which all of these processes take
place.
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Question 3.10 (a)

1 l = 103 ml

To convert fromµg l−1 to µg ml−1 we need todivideby 103.

1 µg l−1 =
1

103
µg ml−1 = 10−3 µg ml−1

10µg l−1 = 10× 10−3 µg ml−1

= 1.0× 10−2 µg ml−1 to two significant figures.
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Question 3.10 (b)

Note that 10µg l−1 = 10µg dm−3, since 1 litre is defined to be equal to 1 dm3

(Section 3.4.2).

1 mg= 103 µg

so

1 µg =
1

103
mg= 10−3 mg

To convert fromµg dm3 to mg dm3 we need tomultiplyby 10−3.

1 µg dm3 = 10−3 mg dm3

10µg dm3 = 10× 10−3 mg dm3

= 1.0× 10−2 mg dm3 to two significant figures.

So a concentration of 10µg l−1 is equal to 1.0× 10−2 mg dm3.
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Question 3.10 (c)

Note that 10µg l−1 = 10µg dm−3.

1 g= 106 µg

so 1µg =
1

106
g = 10−6 g

1 m= 10 dm

so 1 m3 = 103 dm3

and 1 dm3 =
1

103
m3 = 10−3 m3

To convert fromµg dm−3 to g m−3 we need tomultiplyby 10−6 (to convert theµg
to g) anddivideby 10−3 (to convert the dm−3 to m−3).

1 µg dm−3 =
10−6

10−3
g m−3
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10µg dm−3 = 10×
10−6

10−3
g m−3

= 10× 10−6−(−3) g m−3

= 10× 10−3 g m−3

= 1.0× 10−2 g m−3 to two significant figures.

So a concentration of 10µg l−1 is equal to 1.0× 10−2 g m−3.
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Question 3.11

(i) and (iii) are equivalent. Multiplication is commutative, sox(y+ z) = (y+ z)x

(ii) and (v) are equivalent. Both multiplication and addition are commutative, so
xy+ z= z+ yx

Note that (i) is not equivalent to (ii) since, in (i), the whole of (y+ z), not justy, is
multiplied byx.

Substitutingx = 3, y = 4 andz= 5 gives

(i) a = x(y+ z) = 3× (4+ 5) = 27

(ii) a = xy+ z= (3× 4)+ 5 = 17

(iii) a = (y+ z)x = (4+ 5)× 3 = 27

(iv) a = x+ yz= 3+ (4× 5) = 23

(v) a = z+ yx= 5+ (4× 3) = 17
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Question 3.12

The equivalent equations are (i) and (iii), since

a
bc2

d
=

abc2

d
=

bac2

d

Note that only thec is squared, so (ii)m= a
b2c2

d
and (v)m=

b2a2c2

d
are different.

Only the numerator of the fraction is multiplied bya, so (iv)m=
abc2

ad
is different

too.
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Question 3.13

NPP= 1.06× 108 kJ

R= 3.23× 107 kJ

FromEquation 3.8,

GPP= NPP+ R

= 1.06× 108 kJ+ 3.23× 107 kJ

= 1.38× 108 kJ to three significant figures.
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Question 3.14

λ = 621 nm, f = 4.83× 1014 Hz

Converting to SI base units gives

λ = 621× 10−9 m = 6.21× 10−7 m

f = 4.83× 1014 Hz = 4.83× 1014 s−1

FromEquation 3.13,

v = fλ

= 4.83× 1014 s−1 × 6.21× 10−7 m

= 3.00× 108 m s−1 to three significant figures.

{Note that this is the speed of light in a vacuum. Light of this frequency and
wavelength is in the red part of the visible spectrum.}
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Question 3.15 (a)

FromEquation 3.5

V =
4
3
π r3

r = 6.38× 103 km = 6.38× 103 × 103 m = 6.38× 106 m

So

V =
4
3
π

(
6.38× 106 m

)3

= 1.09× 1021 m3 to three significant figures.

The Earth’s volume is 1.09× 1021 m3.
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Question 3.15 (b)

FromEquation 3.18

Fg = G
m1m2

r2

G = 6.673× 10−11 N m2 kg−2

m1 = 5.97× 1024 kg

m2 = 7.35× 1022 kg

r = 3.84× 105 km

= 3.84× 105 × 103 m

= 3.84× 108 m

Substituting values into the equation gives

Fg = 6.673× 10−11 N m2 kg−2 ×
5.97× 1024 kg× 7.35× 1022 kg(

3.84× 108 m
)2

Rearranging to collect the units together

Fg =
6.673× 10−11× 5.97× 1024× 7.35× 1022 N m2 kg−2 kg kg(

3.84× 108)2 m2
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Many of the units can be cancelled

Fg =
6.673× 10−11× 5.97× 1024× 7.35× 1022 N��m2

���kg−2
��kg��kg(

3.84× 108)2 ��m2

Calculating the numeric value gives

Fg = 1.99× 1020 N to 3 significant figures.

{Note that there was no need to express the newtons in terms of base units on this
occasion; all the other units cancelled to leave N as the units of force, as expected.}

The magnitude of the gravitational force between the Earth and the Moon is
1.99× 1020 N.
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length in mm

in km3
volumevolume volume

in mm3 in m3

to convert divide by (103)3 to convert divide by (103)3

to convert multiply by (10
3 )3 to convert multiply by (10

3 )3

area
in km2

areaarea
in mm2 in m2

to convert multiply by (10
3 )2 to convert multiply by (10

3 )2

to convert divide by (103)2 to convert divide by (103)2

to convert multiply by 10
3

to convert divide by 103

length in m length in km

to convert multiply by 10
3

to convert divide by 103

Figure 3.8: Unit conversions for length, area and volume.
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u
x
 = 1.5m s−1

a
x
 = 9.81  m s−2

Figure 3.11: A stone being thrown from a cliff.
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Box 3.4 Some scientific formulae

C = 2π r (3.3)

whereC is the circumference of a circle of radiusr.

A = π r2 (3.4)

whereA is the area of a circle of radiusr.

V =
4
3
π r3 (3.5)

whereV is the volume of a sphere of radiusr.

F = ma (3.6)

whereF is the magnitude of force on an object,m is its mass anda is the
magnitude of its acceleration.
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E = mc2 (3.7)

whereE is energy,m is mass andc is the speed of light.

GPP= NPP+ R (3.8)

whereGPP is the gross primary production of energy by plants in an
ecosystem,NPP is net primary production andR is energy used in plant
respiration.

ρ =
m
V

(3.9)

whereρ is the density of an object of massm and volumeV.

vs =

√
µ

ρ
(3.10)

wherevs is the speed of an S wave travelling through rocks of densityρ and
rigidity modulusµ.
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P = ρgh (3.11)

whereP is the pressure at depthh in a liquid of densityρ, andg is the
acceleration due to gravity.

PV = nRT (3.12)

whereP is the pressure ofn moles of a gas in a container of volumeV held at
temperatureT andR is a constant called the gas constant.

v = fλ (3.13)

wherev is the speed of a wave,f is its frequency andλ is its wavelength.

q = mc∆T (3.14)

whereq is the heat transferred to an object,m is its mass,c is its specific heat
capacity and∆T is the change in its temperature.
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vav =
vi + vf

2
(3.15)

wherevav is average speed,vi is initial speed andvf is final speed.

vx = ux + axt (3.16)

whereux, vx andax are respectively initial speed, final speed and acceleration,
all in the direction of thex-axis, andt is time.

sx = uxt +
1
2

axt
2 (3.17)

wheresx, ux andax are respectively distance, initial speed and acceleration, all
in the direction of thex-axis, andt is time.
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Fg = G
m1m2

r2
(3.18)

whereFg is the magnitude of the gravitational force between two objects of
massesm1 andm2, a distancer apart.G is a constant called Newton’s universal
gravitational constant.

vesc=

(
2GM

R

)1/2

(3.19)

wherevesc is the escape speed, i.e. the speed with which an object must be fired
from the surface of a planet of massM and radiusR in order just to escape
from it. G is Newton’s universal gravitational constant.

d = [L/ (4π F)]1/2 (3.20)

whered is the distance at which light from a star of luminosityL has a flux
density ofF.

Return toSection 3.5.2
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alpha A α nu (new) N ν

beta B β xi (csi) Ξ ξ

gamma Γ γ omicron O o

delta ∆ δ pi (pie) Π π

epsilon E ε rho (roe) P ρ

zeta Z ζ sigma Σ σ

eta H η tau (taw) T τ

theta Θ θ upsilon Y υ

iota I ι phi (fie) Φ φ

kappa K κ chi (kie) X χ

lambda Λ λ psi Ψ ψ

mu (mew) M µ omega Ω ω

Table 3.1: The Greek alphabet. The pronunciation is given in parentheses where it
is not obvious.

Click onBackto return to text
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Question 4.1 (a)

v = fλ can be reversed to givefλ = v.

To isolatef we need to removeλ, and f is currentlymultipliedby λ so, according
to Hint 3, we need todivideby λ. Remember that we must do this toboth sides of
the equation, so we have

fλ
λ
=

v
λ

Theλ in the numerator of the fraction on the left-hand side cancels with theλ in
the denominator to give

f =
v
λ

Back 661



Contents �

Question 4.1 (b)

Etot = can be reversed to giveEk + Ep = Etot.

To isolateEk we need to removeEp, andEp is currentlyaddedto Ek so, according
to Hint 1, we need tosubtract Ep. Remember that we must do this toboth sides of
the equation, so we have

Ek + Ep − Ep = Etot − Ep

Ep − Ep = 0, so

Ek = Etot − Ep
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Question 4.1 (c)

ρ =
m
V

can be reversed to give
m
V
= ρ

To isolatem we need to removeV, andm is currentlydividedby V so, according
to Hint 4, we need tomultiplyby V. Remember that we must do this toboth sides
of the equation, so we have

mV
V
= ρV

TheV in the numerator of the fraction on the left-hand side cancels with theV in
the denominator to give

m= ρV
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Question 4.2 (a)

b = c− d + ecan be written asc− d + e= b (with eon the left-hand side).

Addingd to both sides gives

c− d + e+ d = b+ d

i.e.

c+ e= b+ d

Subtractingc from both sides gives

c+ e− c = b+ d − c

i.e.

e= b+ d − c.
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Question 4.2 (b)

p = ρghcan be written asρgh= p (with h on the left-hand side).

Dividing both sides byρ gives

ρgh
ρ
=

p
ρ

i.e.

gh=
p
ρ

Dividing both sides byg gives

gh
g
=

p
ρg

i.e.

h =
p
ρg
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Question 4.2 (c)

v2
esc=

2GM
R

Multiplying both sides byR (to getRonto the left-hand side) gives

v2
escR=

2GMR
R

= 2GM

Dividing both sides byv2
escgives

v2
escR

v2
esc
=

2GM

v2
esc

i.e.

R=
2GM

v2
esc
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Question 4.2 (d)

E = h f − φ

Addingφ to both sides (to getφ onto the left-hand side) gives

E + φ = h f − φ + φ

i.e.

E + φ = h f

SubtractingE from both sides gives

E + φ − E = h f − E

that is

φ = h f − E
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Question 4.2 (e)

We need to start by finding an equation forc2.

a =
bc2

d
can be written as

bc2

d
= a (with c on the left-hand side).

Multiplying both sides byd gives

bc2d
d
= ad

i.e.

bc2 = ad

Dividing both sides byb gives

bc2

b
=

ad
b

i.e.

c2 =
ad
b

Taking the square root of both sides gives

c = ±

√
ad
b
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Question 4.2 (f)

a =

√
b
c

can be written as

√
b
c
= a (with b on the left-hand side)

Squaring both sides gives

b
c
= a2

Multiplying both sides byc gives

bc
c
= a2c

i.e.

b = a2c
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Question 4.3 (a)

We need to start by finding an equation forv2.

Ek =
1
2mv2 can be written as12mv2 = Ek. (with thev2 on the left-hand side).

Multiplying both sides by 2 gives

mv2 = 2Ek

Dividing both sides bym gives

v2 =
2Ek

m

Taking the square root of both sides gives

v = ±

√
2Ek

m

but we are only interested in the positive value on this occasion.
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Question 4.3 (b)

If Ek = 2× 103 J andm= 4× 1021 kg

v =

√
2Ek

m

=

√
2× 2× 103 J

4× 1021 kg

=

√
1× 10−18 ��kg m2 s−2

��kg

= 1× 10−9 m s−1

{At this speed, the plate would move 3 cm in a year.}
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Question 4.3 (c)

If Ek = 2× 103 J andm= 70 kg

v =

√
2Ek

m

=

√
2× 2× 103 J

70 kg

= 8 m s−1

{The sprinter, having a smaller mass, has to move rather faster than the tectonic
plate!}
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Question 4.4 (a)

vx = ux + axt can be written as

ux + axt = vx

Subtractingux from both sides gives

axt = vx − ux

Dividing both sides byt gives

ax =
vx − ux

t
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Question 4.4 (b)

Squaring both sides ofvs =

√
µ

ρ
gives

v2
s =
µ

ρ

Multiplying both sides byρ gives

ρ v2
s = µ

Dividing both sides byv2
s gives

ρ =
µ

v2
s
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Question 4.4 (c)

Multiplying both sides ofF =
L

4πd2
by d2 gives

Fd2 =
L

4π

Dividing both sides byF gives

d2 =
L

4π F

Taking the square root of both sides gives

d = ±

√
L

4π F

{Note that if we consider just the positive value, we have arrived atEquation 3.20,
albeit written rather differently.}
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Question 4.5 (a)

µ0

2π
×

i1i2
d
=
µ0 × i1i2
2π × d

=
µ0i1i2
2πd
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Question 4.5 (b)

Note that
3a
2b

/
2 means

3a
2b

divided by 2.

3a
2b

/
2 =

3a
2b
×

1
2
=

3a
4b
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Question 4.5 (c)

The productc× b will be a common denominator, so we can write

2b
c
+

3c
b
=

2b× b
c× b

+
3c× c
b× c

=
2b2 + 3c2

cb

This is the simplest form in which this fraction can be expressed.
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Question 4.5 (d)

2ab
c
÷

2ac
b
=

2ab
c
×

b
2ac

Cancelling the ‘2a’s gives

2ab
c
÷

2ac
b
=

��2ab
c
×

b

��2ac
=

b2

c2

{Note that, for all parts of Question 4.5 and for many other questions involving
simplification, it is possible to check that the algebraic expression you end up with
is equivalent to the one that you started with by substituting numerical values for
the variables. For example, settinga = 2, b = 3 andc = 4 in the original
expression gives

2ab
c
÷

2ac
b
=

(
2× 2× 3

4

)
÷

(
2× 2× 4

3

)
=

12
4
÷

16
3
= 3÷

16
3
= 3×

3
16
=

9
16

Substituting the same values in the answer gives
b2

c2
=

32

42
=

9
16

}
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Question 4.5 (e)

The productf ( f + 1) will be a common denominator, so we can write

1
f
−

1
f + 1

=
( f + 1)
f ( f + 1)

−
f

( f + 1) f

=
f + 1− f
f ( f + 1)

=
1

f ( f + 1)
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Question 4.5 (f)

2b2

(b+ c)
÷

2c2

(a+ c)
=

AA2b2

(b+ c)
×

(a+ c)

AA2c2

=
b2(a+ c)

c2(b+ c)

The expression can be written as

(
b
c

)2 (a+ c)
(b+ c)

but cannot be simplified further.
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Question 4.6

The equation can be written as

1
f
=

1
u
+

1
v

=
v
uv
+

u
vu

(taking the productuvas the common denominator)

=
v+ u
uv

Taking the reciprocal of both sides of the equation gives

f =
uv

v+ u
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Question 4.7 (a)

1
2

(vx + ux) t =
1
2

vxt +
1
2

uxt

or alternatively

1
2

(vx + ux) t =
vxt
2
+

uxt
2

or
vxt + uxt

2
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Question 4.7 (b)

(a− b) − (a− c)
2

=
a− b− a+ c

2

=
c− b

2

sincea− a = 0, and−b+ c is more tidily written asc− b.

Back 684



Contents �

Question 4.7 (c)

(k − 2)(k − 3) = k 2 − 3k − 2k + 6

= k 2 − 5k + 6
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Question 4.7 (d)

(t − 2)2 = (t − 2)(t − 2)

= t 2 − 2t − 2 t + 4

= t 2 − 4t + 4
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Question 4.8 (a)

y2 − y = y (y− 1)
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Question 4.8 (b)

x2 − 25= (x+ 5)(x− 5), by comparison withEquation 4.3.

We can check that the factorization is correct by multiplying the brackets out. This
gives

(x + 5)( x − 5) = x 2 − 5x + 5x − 25

= x 2 − 25
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Question 4.9

Both the terms on the right-hand side ofEtot =
1
2mv2+mg∆h includem, so we can

rewrite the equation as

Etot = m
(

1
2v2 + g∆h

)
Reversing the order gives

m
(

1
2v2 + g∆h

)
= Etot

Dividing both sides by
(

1
2v2 + g∆h

)
gives

m=
Etot

1
2v2 + g∆h

This is a perfectly acceptable equation form, but the fraction in the denominator
looks a little untidy. Multiplying the numerator and denominator by 2 gives

m=
2Etot

v2 + 2g∆h
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Question 4.10 (a)

From the answer toQuestion 4.7 (c)

k2 − 5k+ 6 = (k− 2)(k− 3)

Thus, ifk2 − 5k+ 6 = 0, then (k− 2)(k− 3) = 0 too,
sok− 2 = 0 ork− 3 = 0.
i.e. k = 2 ork = 3

Checking fork = 2:
k2 − 5k+ 6 = 22 − (5× 2)+ 6 = 4− 10+ 6 = 0, as expected.
Checking fork = 3:
k2 − 5k+ 6 = 32 − (5× 3)+ 6 = 9− 15+ 6 = 0, as expected.

So the solutions of the equationk2 − 5k+ 6 = 0 arek = 2 andk = 3.
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Question 4.10 (b)

From the answer toQuestion 4.7 (d)

t2 − 4t + 4 = (t − 2)2

Thus, if t2 − 4t + 4 = 0, then (t − 2)2 = 0 too,
sot − 2 = 0,
i.e. t = 2.

Checking:
t = 2 givest2 − 4t + 4 = 22 − (4× 2)+ 4 = 4− 8+ 4 = 0, as expected.

So the solution of the equationt2 − 4t + 4 = 0 is t = 2.
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Question 4.10 (c)

Comparison ofk2 − 5k+ 6 = 0 with ax2 + bx+ c = 0 shows thata = 1, b = −5 and
c = 6 on this occasion, so the solutions are

k =
−b±

√
b2 − 4ac

2a

=
−(−5)±

√
(−5)2 − (4× 1× 6)

2× 1

=
5±
√

25− 24
2

=
5± 1

2

sok =
5+ 1

2
=

6
2
= 3 ork =

5− 1
2
=

4
2
= 2.

So the solutions of the equationk2 − 5k+ 6 = 0 arek = 2 andk = 3. This is the
same answer as was obtained inpart (a)and could be checked in the same way.
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Question 4.10 (d)

Comparison oft2 − 4t + 4 = 0 with ax2 + bx+ c = 0 shows thata = 1, b = −4 and
c = 4 on this occasion, so the solutions are

k =
−b±

√
b2 − 4ac

2a

=
−(−4)±

√
(−4)2 − (4× 1× 4)

2× 1

=
4±
√

16− 16
2

=
4± 0

2
= 2

So there is just one solution tot2 − 4t + 4 = 0; namelyt = 2. This is the same
answer as was obtained inpart (b)and could be checked in the same way.
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Question 4.11 (a)

Rearrangingp = mvto makev the subject gives

v =
p
m

(dividing both sides bym)

Substituting inEk =
1
2mv2 gives

Ek =
1
2m

( p
m

)2

= 1
2m

p2

m2

=
p2

2m
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Question 4.11 (b)

Since both equations are already written withE (the variable we are trying to
eliminate) as the subject, we can simply set the two equations forE equal to each
other:

1
2mv2 = mg∆h

There is anm on both sides of the equation; dividing both sides of the equation by
m gives

1
2v2 = g∆h

Multiplying both sides of the equation by 2 gives

v2 = 2g∆h

Taking the square root of both sides of the equation gives

v = ±
√

2g∆h
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Question 4.11 (c)

Rearrangingc = fλ to makef the subject gives

f =
c
λ

(dividing both sides byλ)

Substituting inEk = h f − φ gives

Ek =
hc
λ
− φ

Addingφ to both sides of the equation gives

Ek + φ =
hc
λ

SubtractingEk from both sides gives

φ =
hc
λ
− Ek
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Question 4.12

Let the number selected be represented byx:

Adding 5 gives x+ 5

Doubling the result gives 2(x+ 5) = 2x+ 10

Subtracting 2 gives (2x+ 10)− 2 = 2x+ 8

Dividing by 2 gives
2x+ 8

2
= x+ 4

Taking away the number you first thought of gives (x+ 4)− x = 4.
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Question 4.13

Let H represent Helen’s height in cm andT represent Tracey’s height
in cm. Since Tracey is 15 cm taller than Helen we can write

T = H + 15 (i)

The height of the wall is equal to Tracey’s height up to her shoulders
(T − 25) plus Helen’s height up to her eyes (H − 10), thus

(T − 25)+ (H − 10)= 300 (ii)

Simplifying (ii) gives

T + H − 35= 300

Adding 35 to both sides gives

T + H = 335

Substituting forT from (i) gives

(H + 15)+ H = 335

2H + 15= 335

T − 25

wall H − 10

Tracey

Helen

H

T
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Subtracting 15 from both sides gives

2H = 320

Dividing both sides by 2 gives

H = 160

i.e. Helen is 160 cm tall.
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Question 4.14

The equations required areEg = mg∆h (Equation 4.18) andEk =
1
2mv2 (Equation

4.17).

Assuming that the child’s gravitational potential energy is converted into kinetic
energy,Ek = Eg.

1
2mv2 = mg∆h

Dividing both sides bym gives

1
2v2 = g∆h

Multiplying both sides by 2 gives

v2 = 2g∆h

Taking the square root of both sides gives

v = ±
√

2g∆h

On this occasion we are only interested in the positive square root, i.e.v =
√

2g∆h
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Substituting∆h = 1.8 m andg = 9.81 m s−2 gives

v =
√

2× 9.81 m s−2 × 1.8 m

= 5.9 m s−1 to two significant figures

(noting that
√

m2 s−1 = m s−1).

Checking

The units have worked out to be m s−1, as expected.

An estimated value is

v ≈
√

2× 10 m s−2 × 2 m

≈
√

40 m2 s−2

≈ 6 m s−1, since
√

40≈
√

36

The speed seems quite high; in reality not all of the child’s gravitational potential
energy would be converted into kinetic energy.
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c = a + b

(a)

c + 50 = a + b + 50

(b)

c

2
=

a + b

2

(c)

Figure 4.1: (a) The analogy between an equation and a set of kitchen scales. The
scales remain balanced if (b) 50 g is added to both sides or if (c) the weight on both
sides is halved.

Click onBackto return to text

Back 702



Contents �

supergiants

Sun

α Centauri B

Sirius B

white dwarfs

Sirius A
m

ain sequence

Alcyone

lu
m

in
o

s
it
y
 i
n
 W

h
ig

h
 l
u
m

in
o
s
it
y

lo
w

 l
u
m

in
o
s
it
y

photospheric temperature in K

high temperature low temperature

red
giants

Figure 4.2: A Hertzsprung–Russell diagram showing the Sun and a number of other
stars.
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P−wave arrival S−wave arrival

20seconds time

Figure 4.4: Seismogram recorded at the British Geological Survey in Edinburgh on
12 September 1988 at 2.23 p.m.
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Question 5.1

(a) The red lines on the graph show that, by interpolation, when current= 1.5 A
then voltage= 2.0 V.

(b) The line through the data points can be extended at each end, as shown below.
This process of extrapolation to the vertical axis shows that when the current is
zero the voltage has a value of 5.0 V.

(c) Extrapolation to the horizontal axis shows that when the voltage is zero the
current has a value of 2.5 A.

1.0
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5.0
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a

g
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/V

current/A
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Question 5.2

Using the red lines on Figure 5.38,

gradient=
rise
run

=
(170− 10) km

(32− 4) s

=
160 km

28 s
= 5.7 km s−1

Therefore the average speed of the
P waves is 5.7 km s−1 (to two sig-
nificant figures).
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Figure 5.38

{You may have chosen different points from which to calculate your gradient, but
you should still have got the same answer. Note that the scale of the graph does
not really allow points to be specified to more than two significant figures, so this
is the precision to which the answer should be given.}
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Question 5.3

Using the red lines on Figure 5.39,

gradient=
rise
run

=
(32− 2) s

(170− 0) km

=
30 s

170 km
= 0.176 s km−1

Therefore

speed=
1

0.176 s km−1

= 5.7 km s−1 (to two significant figures)

To the precision to which it is possible to read the
graph, this is the same value as before.
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Figure 5.39
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Question 5.4

Using the red lines on Figure 5.40,

gradient=
rise
run

=
(7− 20) ◦C
(2− 0) km

=
−13 ◦C
2 km

= −6.5 ◦C km−1

This could also have been written as−6.5 ◦C/km. The negative
value of the gradient implies that temperature decreases with in-
creasing height above sea-level and your sentence should reflect
this. For example you could write: ‘For each successive kilome-
tre of height gained above sea-level, the atmospheric temperature
falls by 6.5 ◦C’.
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Figure 5.40
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Question 5.5

Using the red lines on Figure 5.41,

gradient=
(−50− (−20)) ◦C

(10− 5.5) km

=
−30 ◦C
4.5 km

= −6.7 ◦C km−1

This agrees quite well with the value obtained in
the answer toQuestion 5.4. In fact temperature
does decrease with altitude at an almost constant
rate through the troposphere.
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Figure 5.41
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Question 5.6

The line corresponding tov = rz has the larger
(steeper) gradient. Thereforer is larger thans.

v = rz

v

z0

v = sz
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Question 5.7

If two quantities are directly proportional to each other, a graph in which one is
plotted against the other will be a straight linethrough the origin. Therefore, only
(c) corresponds to a proportional relationship:u ∝ z. In this case, the gradient is
negative, i.e. the constant of proportionality is negative.

f

0 g

(a)

a

0 b

(b)

u

0 z

(c)
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Question 5.8

SinceM is directly proportional tod3, these are the quantities to plot. The spheres
are selected and then their masses are measured, sod is the independent variable,
and so according to conventiond3 should therefore be plotted on the horizontal
axis. In other words, the convention would be to plotM againstd3.

Slightly rearranging the equation and comparing with the standard equation of a
straight line

M = (+ 0 )

    y =     m       x + c

d 3
πρ
6

shows that the gradient would be
πρ

6
.

{If you chose to defy convention and plotd3 againstM, the gradient would have

the reciprocal value, i.e.
6
πρ

.}
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Question 5.9

There are at least two equally valid ways to plot the data here. Since

T = 2π

√
L
g

squaring both sides gives

T2 =
4π2L

g

L is the independent variable, which according to convention should be plotted on

the horizontal axis. A graph ofT2 againstL has gradient=
4π2

g
so

g =
4π2

gradient

Alternatively, you could have chosen to plotT against
√

L. The gradient of this

line would be
2π
√

g
. So

√
g =

2π
gradient

and

g =
4π2

(gradient)2
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Question 5.10

After n half-lives, the number of radioactive atoms is reduced to
(

1
2

)n
of the

original number.

Since
1
16
=

(
1
2

)4

four half-lives must elapse before the number of radioactive atoms will be1
16 of

the number there are today. So 4× 1600 years= 6400 years must elapse for this to
happen.
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0

N

t1/2 2t1/2

N0

t1/2 = half-life

time t3t1/2

N1 = N0 × 1
2

N2 = N1 × 1
2

N3 = N2 × 1
2

Figure 5.35: Radioactive
decay.

N0 radioactive nuclei are
present at timet = 0.
During each half-life, the
number of radioactive nu-
clei is halved. The half-life
is denoted by the symbol
t1/2.

Click onBackto return to text
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Box 5.3 Sea-floor spreading

Plate tectonics describes how the outer layer of the Earth is made up of a series of
‘plates’ which move relative to one another. The top layer of these plates is known
as the ‘crust’. Ocean crust is about 7 km thick, continental crust up to 80 km thick.
The crust is split at mid-ocean ridges and material is ejected at the ridge crests to
form new sea-floor. This creation of new crust is balanced at the opposite end of the
plate by material being forced under an adjacent plate. As eruption at a mid-ocean
ridge continues, older sea-floor crust is moved aside to make way for younger crust
and the sea-floor ‘spreads’ symmetrically away from the ridge as shown in Figure
5.8a. Recently formed ocean crust is largely inaccessible, so scientists interested in the
speed at which this spreading occurs have to resort to indirect means of measuring it.

ocean

material comes out of the
mid-ocean ridge to form new

ocean crust (sea floor).
ocean crust

moves to the left
ocean crust

moves to the right

Figure 5.8a: Production of new sea-floor at a mid-ocean ridge.
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A record of their age is held in rocks by their magnetism. The orientation of the Earth’s
magnetic field has reversed at irregular intervals throughout its history, and the orienta-
tion of the magnetic field at the time a rock was formed is ‘locked into’ the rock. The
times at which these changes in orientation took place are known from measurements on
a great many surface rocks that can be dated by a variety of means.

Figure 5.8b shows the timescale for reversals in the Earth’s magnetic field over the last
4 Ma. Black denotes ‘normal’ polarity (i.e. what we experience today) and white de-
notes reversed polarity.

Marine magnetic surveys reveal patterns in the orientation of the magnetization of rocks
near mid-ocean ridges; an idealized pattern is shown in Figure 5.8c. Correlation of
patterns like this with the pattern in Figure 5.8b provides a method of dating the rocks at
various distances from a mid-ocean ridge.

magnetic
stripes mid-ocean

ridge

Figure 5.8c: Idealized symmetrical
‘magnetic stripes’ either side of a
ridge; rocks shown black are magne-
tized in the opposite direction to those
shown white and can be matched with
the timescale of Figure 5.8b

Return toSection 5.2.1
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Figure 5.8b
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Question 6.1 (a)

2π radians= 360◦

so 1 radian=
360◦

2π

0.123 radians= 0.123×
360◦

2π
≈ 7.05◦ to three significant figures.
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Question 6.1 (b)

2π radians= 360◦

so
2π
3

radians=
360◦

3
= 120◦
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Question 6.1 (c)

2π radians= 360◦

soπ radians= 180◦

3π
2

radians=
3× 180◦

2
=

540◦

2
= 270◦
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Question 6.2 (a)

360◦ = 2π radians

so 1◦ =
2π
360

radians

36.5◦ = 36.5×
2π
360

radians

≈ 0.637 radians to three significant figures.
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Question 6.2 (b)

360◦ = 2π radians

so 1◦ =
2π
360

radians

90◦ = 90×
2π
360

radians

=
π

2
radians.

{This answer could have been written as 1.57 radians (to 3 significant figures), but

note that
π

2
radians is an exact answer which 1.57 radians is not.}
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Question 6.2 (c)

360◦ = 2π radians

so 1◦ =
2π
360

radians

210◦ = 210×
2π
360

radians

=
7π
6

radians.

{This answer could have been written as 3.67 radians (to 3 significant figures), but

note that
7π
6

radians is an exact answer which 3.67 radians is not.}
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Question 6.3 (a)

We are trying to find lengtha in the diagram.

From Pythagoras’ Theorem

a2 + (1.15 m)2 = (4.50 m)2

so

a2 = (4.50 m)2 − (1.15 m)2

a =
√

20.25 m2 − 1.3225 m2

= 4.35 m to three significant figures.

a

wall

ladder

4.50m

1.15mground

75.2°

θ
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Question 6.3 (b)

We are trying to find angleθ in the diagram.

The interior angles in a triangle add up to 180◦ so

θ + 75.2◦ + 90◦ = 180◦

i.e.

θ = 180◦ − 75.2◦ − 90◦

= 14.8◦. a

wall

ladder

4.50m

1.15mground

75.2°

θ
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Question 6.4 (a)

sin 49◦ = 0.7547
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Question 6.4 (b)

cos
π

8
= 0.9239

{Since the angle was given in radians, your calculator needs to be in ‘radians
mode’ in order to obtain the correct answer to this part.}
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Question 6.4 (c)

tan
π

4
= 1

{Since the angle was given in radians, your calculator needs to be in ‘radians
mode’ in order to obtain the correct answer to this part.}
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Question 6.5 (a)

cos−1(0.5253)= 58.31◦

{Your calculator needs to be in ‘degrees mode’ in order to obtain the correct
answer.}
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Question 6.5 (b)

tan−1(1.5574)= 1.0000 radians

{Your calculator needs to be in ‘radians mode’ in order to obtain the correct
answer.}
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Question 6.6 (a)

cosθ =
adj
hyp

so

cos 32◦ =
4.3 m

h

Multiplying both sides byh gives

hcos 32◦ = 4.3 m

Dividing both sides by cos 32◦ gives

h =
4.3 m

cos 32◦

= 5.1 m to two significant figures.

Back 731



Contents �

Question 6.6 (b)

sinθ =
opp
hyp

so

sin
π

3
=

a
10 m

Multiplying both sides by 10 m gives

a = 10 m× sin
π

3
= 8.7 m to two significant figures.
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Question 6.6 (c)

tanθ =
opp
adj

=
5.0 m
1.0 m

= 5.0

So θ = tan−1(5.0)

= 79◦

{Note that ‘opp’ and ‘adj’ must be the sides opposite and adjacent to the angle you
are trying to find.}
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Question 6.7

H = height of West Tower+ height of base of Cathedral− height of theodolite

= 66 m+ 15 m− 1.5 m

= 79.5 m

θ = 2.27◦

tanθ =
H
D

Multiplying both sides byD gives

D tanθ = H

Dividing both sides by tanθ gives

D =
H

tanθ

=
79.5 m

tan 2.27◦

= 2006 m

≈ 2000 m

So you can estimate the distance of the theodolite from Ely Cathedral to be about
2 km.
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Question 6.8

FromEquation 6.10,

V =W tanθ

whereW = 65 m andθ = 36◦. So

V = 65 m× tan 36◦

= 47 m to two significant figures.

The vertical thickness of the stratum is 47 metres.
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Question 6.9

FromEquation 6.11,

r = hcos 45◦

wherer is the required radius andh = 302 pm. So

r = 302 pm× cos 45◦

= 214 pm to three significant figures.

The radius of a lithium ion is 214 pm (i.e. 2.14× 10−10 m)
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Question 6.10

i = 45.0◦ r = 26.3◦ v1 = 3.00× 108 m s−1

Snell’s law states that

sini
sinr

=
v1

v2

We are trying to findv2, the speed of light in glass.

Multiplying both sides of
sini
sinr

=
v1

v2
by v2 and by sinr gives

v2 sini = v1 sinr

Dividing both sides by sini gives

v2 = v1
sinr
sini

= 3.00× 108 m s−1 ×
sin 26.3◦

sin 45.0◦

= 3.00× 108 m s−1 ×
0.4431
0.7071

= 1.88× 108 m s−1

So the speed of light in glass is 1.88× 108 m s−1.
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Question 6.11

FromEquation 6.13

sinθn =
nλ
d

Reversing the equation and multiplying both sides byd gives

nλ = dsinθn

Dividing both sides byn

λ =
dsinθn

n

d = 1.64× 10−6 m θn = 24.1◦ n = 1

So

λ =
1.64× 10−6 m× sin 24.1◦

1
= 6.70× 10−7 m to three significant figures.
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Question 6.12

Let the distance to car ferry= d.
The length of car ferry= l = 86 m.
The angle subtended= θ = 3.5◦.

Convertingθ to radians:

360◦ = 2π radians

so 1◦ =
2π
360

radians

3.5◦ = 3.5×
2π
360

radians= 0.0611 radians

FromEquation 6.1

θ (in radians)=
s
r

In this cases≈ l andr ≈ d so

θ ≈
l
d

Multiplying both sides byd gives

θ d ≈ l

Dividing both sides byθ gives

d =
l
θ
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So

d ≈
86 m

0.0611
≈ 1408 m

The ferry is approximately 1.4 km away.
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(a) (b) (c)

(d) (e) (f)

β γ

α

βα

β γ

α

γ

α

β

γ

α

β β

α

Figure 6.12: Triangles of various shapes.
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a

b
h

θ

′h
′b

′a

θ

h ′′

a ′′

b ′′

θ

Figure 6.14: Three similar right-angled triangles.
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(a)

y

1

−1

−π−2π π 2π 3π0

θ /radians

−3π

−π−2π π 2π 3π−3π

y

1

−1

0

(b)

θ /radians

Figure 6.17: Graphs of (a)y = asinθ, (b) y = acosθ .
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Question 7.1 (a)

Since 100= 102, log10 100= 2.
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Question 7.1 (b)

Since 0.001= 10−3, log10 0.001= −3.

Back 745



Contents �

Question 7.1 (c)

Since
√

10= 101/2, log10

√
10=

1
2
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Question 7.1 (d)

Since 1.329= 100.1235 (from thesection of textjust above the question),
log10 1.329= 0.1235.
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Question 7.2 (a)

log10 2 = 0.3010
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Question 7.2 (b)

log10 2000= 3.301

{ Note that log10 2000 is exactly 3 greater than log10 2. This result will be
discussed further in Sections 7.2 and 7.3. }
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Question 7.3 (a)

101.5 = 31.62
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Question 7.3 (b)

p = 31.62

{ Because of the way in which log to base 10 is defined, this follows straight from
the answer toQuestion 7.3(a). }
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Question 7.4 (a)

For human blood the hydrogen ion concentration is 4.0× 10−8 mol dm−3, so

pH = − log10

(
4.0× 10−8 mol dm−3

mol dm−3

)
= − log10

(
4.0× 10−8

)
= −(−7.4)

= 7.4
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Question 7.4 (b)

For the hair shampoo, the hydrogen ion concentration is 3.2× 10−6 mol dm−3, so

pH = − log10

(
3.2× 10−6 mol dm−3

mol dm−3

)
= − log10

(
3.2× 10−6

)
= −(−5.5)

= 5.5
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Question 7.5 (a)

log10 300= log10(3× 100)

= log10 3+ log10 100 (fromEquation 7.2)

= 0.4771+ log10 102

= 0.4771+ 2 (fromEquation 7.1)

= 2.477 to four significant figures.
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Question 7.5 (b)

log10 0.03= log10(3÷ 100)

= log10 3− log10 100 (fromEquation 7.3)

= 0.4771− log10 102

= 0.4771− 2 (fromEquation 7.1)

= −1.523 to four significant figures.
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Question 7.5 (c)

log10 9 = log10

(
32

)
= 2 log10 3 (fromEquation 7.4)

= 2× 0.4771

= 0.9542 to four significant figures.
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Question 7.6

The gradient of the line=
2.5− 0.5
1.0− 0.0

=
2.0
1.0
= 2.0.

This is the result expected.

The intercept of the line on the vertical axis is approximately 0.5.

log10π = 0.497 to three significant figures, so the result seems reasonable.
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Question 7.7

Taking the log to base 10 of both sides of the equationy = 2x3 gives

log10 y = log10

(
2x3

)
= log10 2+ log10 x3 (from Equation 7.2)

= log10 2+ 3 log10 x (from Equation 7.4)

We can reverse the order of the two terms on the right-hand side to give

log10 y = 3 log10 x+ log10 2

Comparison with the general equation of a straight-line graph,y = mx+ c, reveals
thatm= 3 andc = log10 2, so the gradient of the graph will be 3 and the intercept
on the vertical axis will be log10 2.
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Question 7.8

n = n0 eat

Taking the log to base 10 of both sides of the equation gives

log10 n = log10

(
n0 eat

)
= log10 n0 + log10 eat (from Equation 7.2)

= log10 n0 + at log10 e (fromEquation 7.4)

We can reverse the order of the two terms on the right-hand side to give

log10 n = at log10 e+ log10 n0

= (a log10 e)t + log10 n0

Comparison with the general equation of a straight-line graph,y = mx+ c, shows
that a graph of log10 n againstt will be a straight line of gradienta log10 e and
intercept on the vertical axis of log10 n0.
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Question 7.9 (a)

ln 4 = 1.386
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Question 7.9 (b)

The number whose natural logarithm is 4 is e4 = 54.60.
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Question 7.10

n = n0 eat

Taking the log to base e of both sides of the equation gives

ln n = ln
(
n0 eat

)
= ln n0 + ln eat (from Equation 7.8)

= ln n0 + at (from Equation 7.7)

We can reverse the order of the two terms on the right-hand side to give

ln n = at+ ln n0

Comparison with the general equation of a straight-line graph,y = mx+ c, shows
that a graph of lnn againstt will be a straight line of gradienta and intercept on
the vertical axis of lnn0.
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Stage Number k value

maximum total number of eggs if
all pairs bred and laid 3 eggs (max-
imum possible)

N0 = 72 k1 = log10

(
N0

N1

)
= log10

(
72
51

)
= 0.1498

maximum possible number of eggs
from the 17 pairs thatdid breed

N1 = 51 k2 = log10

(
N1

N2

)
= log10

(
51
43

)
= 0.0741

actual number of eggs laid N2 = 43 k3 = log10

(
N2

N3

)
= log10

(
43
16

)
= 0.4293

number of eggs that hatched N3 = 16 k4 = log10

(
N3

N4

)
= log10

(
16
15

)
= 0.0280

number of chicks that fledged N4 = 15 k5 = log10

(
N4

N5

)
= log10

( )
=

number of owlets that survive to
form pairs

N5 = 9 ktotal = log10

(
N0

N5

)
= log10

(
72
9

)
= 0.9031

Table 7.1:k-values for various stages in the breeding of 24 pairs of owls in Wytham Wood in 1952–1953
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0 x

(a)

y

log10y

0.6

0.4

0.2

0

−0.2

−0.4

(b)

0.1 0.2 0.3 0.4 0.5 0.6
log10x

−0.6

Figure 7.3: Graphs of (a)y againstx and (b) log10 y against log10 x for the equation
y = 3x−2.
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Figure 7.4: A graph ofT/TE againsta/aE whereT is a
planet’s orbital period anda is the planet’s average distance
from the Sun.TE andaE are the values ofT anda for the
Earth, and the values ofT anda for other planets have been
divided by these so as to make the numbers plotted more
manageable.
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Figure 7.5: A graph of log10(T/TE)
against log10(a/aE) where T is a
planet’s orbital period anda is the
planet’s average distance from the
Sun. TE andaE are the values ofT
anda for the Earth.
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Figure 7.7: A graph of disintegra-
tions per minute (on a log scale)
against time for the radioactive decay
of the excited state of barium-137.
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Question 8.1 (a)

Of the 52 cards in the pack, 13 are hearts. So according toEquation 8.2, the

probability of a card drawn at random being a heart is
13
52
=

1
4

.

{This result also follows from noting that there are 4 suits, each with the same
number of cards, so one-quarter will be hearts.}
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Question 8.1 (b)

Of the 52 cards in the pack, 26 are red (13 hearts and 13 diamonds). So the

probability of a card drawn at random being red is
26
52
=

1
2

.

{Or 2 of the 4 suits are red, so the probability is
2
4
=

1
2

.}
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Question 8.1 (c)

Of the 52 cards in the pack, 4 are aces (one for each suit). So the probability of a

card drawn at random being an ace is
4
52
=

1
13

.
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Question 8.1 (d)

Of the 52 cards in the pack, 12 are picture cards (3 for each suit). So the

probability of a card drawn at random being a picture card is
12
52
=

3
13

.
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Question 8.2 (a)

For any one toss the probability of heads is always the same:1
2.
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Question 8.2 (b)

For the single toss of the third coin, the probability of getting heads is1
2 and that is

unaffected by what has gone before. This is no different to tossing the same coin
three times in succession. Only foolish gamblers believe that because heads have
come up twice running the chances of tails coming up the next time are thereby
increased!
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Question 8.3 (a)

If two coins are tossed simultaneously, there are four possible outcomes, all of
which are equally likely:

Outcome 1 H H
Outcome 2 H T
Outcome 3 T H
Outcome 4 T T

The outcome of two tails can occur in only one way, so the probability of getting
two tails is 1

4.

This result can also be found from the multiplication rule:

the probability that the first coin will show tails is12;

the probability that the second coin will show tails is1
2;

so the probability of getting two tails is12 ×
1
2 =

1
4.
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Question 8.3 (b)

The probability of throwing a six with one dice is16. So the probability of getting a
pair of sixes when throwing two dice is16 ×

1
6 =

1
36.
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Question 8.4 (a)

Assuming the germination probabilities to be independent of one another, the
probability of seeds of both A and B germinating is1

2 ×
1
3 =

1
6.
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Question 8.4 (b)

Assuming the germination probabilities to be independent of one another, the
probability of the seeds of all three species germinating is1

2 ×
1
3 ×

1
4 =

1
24.
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Question 8.4 (c)

Assuming the germination probabilities to be independent of one another,

the probability that a seed of A willnot germinate is1
2;

the probability that a seed of B willnot germinate is2
3;

the probability that a seed of C willnot germinate is3
4;

so the probability that none will germinate is1
2 ×

2
3 ×

3
4 =

1
4.
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Question 8.5

The probability of drawing any one particular card from the pack is1
52. This is true

for each of the three named cards. So the probability of drawing the Jack of
diamondsor the Queen of diamondsor the King of diamonds is1

52 +
1
52 +

1
52 =

3
52.
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Question 8.6

The situation is similar to the one described in Question 8.3. If two coins are tossed
simultaneously, there are four possible outcomes, all of which are equally likely:

Outcome 1 H H
Outcome 2 H T
Outcome 3 T H
Outcome 4 T T

The outcome of a head and a tail can occur in two ways, so the probability of
getting a head and a tail is24 =

1
2.

This result can also be found from a combination of the multiplication and
addition rules. For the combination of one head and one tail:

the probability that the coin on the left will be tails is1
2;

the probability that the coin on the right will be heads is1
2;

So the probability that the combination T H will occur is1
2 ×

1
2 =

1
4.

By similar reasoning, the probability that the combination H T will occur is also1
4.

These possibilities are mutually exclusive, so the probability of getting one head
and one tails is14 +

1
4 =

1
2.
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Question 8.7

The fraction of the atmosphere that is oxygen is

0.26
0.26+ 1

=
0.26
1.26

Expressed as a percentage to 2 significant figures, this fraction is 21%.
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Question 8.8

For the 10 measurements inTable 8.4,

mean= 1.122 mm

standard deviationsn = 0.123 mm
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Question 8.9 (a)

For nine measurements, the median is the 5th measurement in the list (in ascending
or descending order). This is 7.8 cm.
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Question 8.9 (b)

FromEquation 8.3, the mean is
70.4 cm

9
= 7.82 cm.
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Question 8.10

The best estimate that can be made from this data of the mean number,µ, of
flowers per plant in the colony is the mean of the sample,x. In this case,

x = 7.25 flowers

{Note that it is normal practice to quote means and medians in this way, even for
quantities, such as numbers of flowers, which cannot really be fractional!}

The best estimate that can be made of the standard deviation of the population is
the sample standard deviationsn−1. In this case,

sn−1 = 1.94 flowers.
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your guess is as
good as mine

inevitable
outcome

0 1

increasingly likelyincreasingly unlikely

1
2

impossible
outcome

an extremely long shot virtually a certainty

Figure 8.1: The scale of probabilities.
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xi /nm di /nm d2
i /10−5 nm2

2.458 0.0036 1.296
2.452 −0.0024 0.576
2.454 −0.0004 0.016
2.452 −0.0024 0.576
2.459 0.0046 2.116
2.455 0.0006 0.036
2.464 0.0096 9.216
2.453 −0.0014 0.196
2.449 −0.0054 2.916
2.448 −0.0064 4.096

n∑
i =1

xi = 24.544 nm
n∑

i =1

di = 0
n∑

i =1

d2
i = 21.04× 10−5 nm2

x = 2.4544 nm d2
i = 2.104× 10−5 nm2

sn =

√
d2

i

= 4.587× 10−3 nm

= 0.0046 nm

Table 8.3: Calculation of the standard deviation for the set of measurements
originally given inTable 8.2.

Return toPage412
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Question 9.1 (a)

The answer to this question depends on which significance level is used.
Employing the usual convention, i.e. rejecting the null hypothesis ifP < 0.05, the
null hypothesis should be rejected on this occasion, sinceP < 0.01 means thatP
must be less than 0.05. Therefore the alternative hypothesis should be accepted.
However, if it had been decided only to reject the null hypothesis ifP were less
than 0.001, we would not be justified in categorically rejecting the null hypothesis
in this way.
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Question 9.1 (b)

Employing the usual convention, the null hypothesis should be accepted, since
P > 0.05.
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Question 9.1 (c)

This inequality is written in a way that is very unhelpful and ought to be avoided.
We are told thatP > 0.01. But how much greater? IfP > 0.05 then, employing the
usual convention, the null hypothesis must be accepted. However, ifP lies
between 0.05 and 0.01 (i.e. 0.05> P > 0.01) then, employing the usual
convention, the null hypothesis should be rejected and the alternative hypothesis
accepted. In the former situation, the result ought to have been given asP > 0.05;
in the latter it ought to have been given as eitherP < 0.05 or 0.05> P > 0.01.
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Question 9.2 (a)

Since the actual number of parasites per sheep is known, this data is at the interval
level.
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Question 9.2 (b)

Since the sheep are classified into just two contrasting categories (‘parasitized’ and
‘unparasitized’) this data is best treated as being at the categorical level.

{Since there is an element of ranking here, you might have regarded this data as
being at the ordinal level. However, whether ‘unparasitized’ is ‘good’ or ‘bad’
does depend on whether you take the point of view of the sheep or the parasites!
‘Parasitized’ and ‘unparasitized’mightcorrespond to the clear-cut categories
‘susceptible to parasites’ and ‘resistant to parasites’. In general, ordinal level data
is subdivided into more than two classes.}
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Question 9.2 (c)

Since degree of parasitization is recorded, but not precisely how many parasites
there were on each sheep, this data is at the ordinal level.
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Question 9.3

The total number of plants in the next generation was 636 (i.e. 185+ 305+ 146). If the
ratio in a sample of 636 plants were 1 red-flowered : 2 pink-flowered : 1 white-flowered,
then there would be

636
4
= 159 red-flowered plants

636
2
= 318 pink-flowered plants

636
4
= 159 white-flowered plants.

These are therefore the ‘expected’ numbers. Drawing up a table, calculating each
(Oi − Ei)2

Ei
value and then summing these values to obtain the test statistic,χ2:

Flower
colour

Oi Ei (Oi − Ei) (Oi − Ei)2 (Oi − Ei)2

Ei

red 185 159 26 676 4.252
pink 305 318 –13 169 0.531
white 146 159 –13 169 1.063

total 636 636 0 5.846
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The number of degrees of freedom is given by(
number of cells containing
observed numbers

)
− 1

= 3− 1

= 2

Reading across the row for 2 degrees of freedom inTable 9.3, it can be seen that theχ2

value of 5.846 corresponds to a significance level (P) of less than 0.1 but more than 0.05
(i.e. 0.1 > P > 0.05).

Since the probability that the entire population from which the sample of 636 plants was
drawn was in the ratio 1 red-flowered : 2 pink-flowered : 1 white-flowered isgreater
than0.05, the null hypothesis cannot be rejected at the 5% significance level. The
experimental data is therefore compatible with the prediction from genetics theory that
the ratio of plants in the next generation should be in the ratio 1 red-flowered : 2
pink-flowered : 1 white-flowered.
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Question 9.4

The values of (RA)i , (RB)i , Di , D2
i and

n∑
i =1

D2
i are given below.

Vertical
distance/cm

Rank (RA)i Mean water content/
% dry mass

(RB)i Di = (RA)i − (RB)i D2
i

0 1 76 1 0 0
4 2 83 3 −1 1
7 3.5 93 4 −0.5 0.25
9 5 80 2 3 9
7 3.5 102 6 −2.5 6.25

11 7 95 5 2 4
10 6 120 7 −1 1
13 8 130 8 0 0

n∑
i =1

Di = 0
n∑

i =1

D2
i = 21.5

{Since there are two vertical distances of 7 cm, both are given the rank
3+ 4

2
= 3.5 and the next vertical distance (9 cm) is given the rank 5.}
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Substituting
n∑

i =1

D2
i = 21.5 andn = 8 intoEquation 9.2gives

rs = 1−
6× 21.5

8× (82 − 1)
= 0.744

Reading across the row for 8 pairs of measurements inTable 9.8, it can be seen
that 0.05> P > 0.01. SinceP < 0.05, the null hypothesis must be rejected at the
5% significance level and the alternative hypothesis accepted. There is a
statistically significant positive correlation between mean soil water content and
vertical distance from ridge crest.

{Although mean soil water content was significantly correlated with both
horizontal and vertical distance from the nearest ridge crest, the former produced a
value ofrs that was both higher and more significant than the latter (i.e.
rs = 0.905,P < 0.01 compared tors = 0.744,P < 0.05). This was because
horizontal distance from the ridge crest had been arranged to increase regularly.}
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Question 9.5 (a)

These samples are unmatched. There is no logical link between any particular
plant growing in one reserve and any particular plant growing in the other reserve.
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Question 9.5 (b)

These samples are matched. For each sampling station along the stream, the
number of nymphs is known for two species of Stonefly.
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Question 9.6

In this casex1 = 7.7, x2 = 7.2, s1 = 2.7, s2 = 2.1, n1 = 18 andn2 = 15.

Substituting fors1, s2, n1 andn2 into Equation 9.5gives

(Sc)
2 =

(18− 1)(2.7)2 + (15− 1)(2.1)2

(18− 1)+ (15− 1)

=
(17× 7.29)+ (14× 4.41)

17+ 14
= 5.989

Substituting for(Sc)2, n1 andn2 into Equation 9.4gives

SED =

√
5.989

18
+

5.989
15

= 0.856

Substituting forx1, x2 andSED into Equation 9.3gives

t =
7.7− 7.2

0.856
= 0.584 to three places of decimals.

In this case, the number of degrees of freedom is

(18− 1)+ (15− 1) = 31.

The value oft (i.e. 0.584) is smaller thananyof the critical values in the row for
30 degrees of freedom (the nearest equivalent to 31) inTable 9.13. The probability
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of obtaining a value oft as large as this by chance if the null hypothesis were true
is therefore greater than 0.1 (i.e.P > 0.1), probably much greater. The difference
in number of flowers per plant growing either side of this ridge is not statistically
significant.

{Note: If you worked to a different number of significant figures in this question
you may have obtained a slightly different value fort. However, your conclusion
— that the difference in number of flowers per plant growing either side of this
ridge is not statistically significant — should be have been the same.}
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Degrees of
freedom

P = 0.1 P = 0.05 P = 0.01 Degrees of
freedom

P = 0.1 P = 0.05 P = 0.01

1 2.706 3.841 6.635 16 23.542 26.296 32.000
2 4.605 5.991 9.210 17 24.769 27.587 33.409
3 6.251 7.815 11.341 18 25.989 28.869 34.805
4 7.779 9.488 13.277 19 27.204 30.144 36.191
5 9.236 11.070 15.086 20 28.412 31.410 37.566
6 10.645 12.592 16.812 21 29.615 32.671 38.932
7 12.017 14.067 18.475 22 30.813 33.924 40.289
8 13.362 15.507 20.090 23 32.007 35.172 41.638
9 14.684 16.919 21.666 24 33.196 36.415 42.980

10 15.987 18.307 23.209 25 34.382 37.652 44.314
11 17.275 19.675 24.725 26 35.563 38.885 45.642
12 18.549 21.026 26.217 27 36.741 40.113 46.963
13 19.812 22.362 27.688 28 37.916 41.337 48.278
14 21.064 23.685 29.141 29 39.087 42.557 49.588
15 22.307 24.996 30.578 30 40.256 43.773 50.892

Table 9.3: Critical values ofχ2 for different degrees of freedom and at three levels of
significance. The null hypothesis is usually rejected if, for the appropriate number
of degrees of freedom, the calculated value ofχ2 is greater than the value tabulated
at theP = 0.05 significance level.

Click onBackto return to text
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Number of pairs
of measurements

P = 0.1 P = 0.05 P = 0.01

7 0.714 0.786 0.929
8 0.643 0.738 0.881
9 0.600 0.683 0.833

10 0.564 0.648 0.794
12 0.506 0.591 0.777
14 0.456 0.544 0.715
16 0.425 0.506 0.665
18 0.399 0.475 0.625
20 0.377 0.450 0.591
22 0.359 0.428 0.562
24 0.343 0.409 0.537
26 0.329 0.392 0.515
28 0.317 0.377 0.496
30 0.306 0.364 0.478

Table 9.8: Critical values for the Spearman rank corre-
lation coefficient (rS) for different numbers of pairs of
measurements and at three levels of significance

Note: (i) The null hypothesis is usually
rejected if, for the appropriate number
of pairs of measurements, the calculated
value ofrS is greater than or equal to the
value tabulated at theP = 0.05 signifi-
cance level.

(ii) The lower part of Table 9.8 does not
have entries for odd numbers of pairs of
measurements. Should the data you are
analysing comprise (say) 17 pairs of mea-
surements, it is better to err on the side
of caution and compare your value of the
test statistic with the critical values for 16
pairs rather than those for 18 pairs. Be-
cause each critical value for 16 pairs of
measurements is higher than the corre-
sponding value for 18 pairs, this makes it
less likely that you will mistakenly reject
a true null hypothesis.

Click onBackto return to text
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Water
speed/m s−1

Rank
(RA)i

Number of
nymphs

Rank
(RB)i

Di = (RA)i − (RB)i D2
i

0.8 9 35 12 -3 9
1.1 11 28 11 0 0
0.5 5.5 11 6 -0.5 0.25
0.7 7.5 12 7 0.5 0.25
0.2 2.5 7 4 -1.5 2.25
0.4 4 5 1 3 9
0.5 5.5 6 2.5 3 9
1.3 12 21 9 3 9
0.9 10 23 10 0 0
1.7 13 43 13 0 0
0.2 2.5 10 5 -2.5 6.25
0.1 1 6 2.5 -1.5 2.25
0.7 7.5 19 8 -0.5 0.25

n∑
i =1

Di = 0
n∑

i =1

D2
i = 47.5

Table 9.10: Extension ofTable 9.9to include ranks ((RA)i and (RB)i), differences between ranks (Di)
and values ofD2

i

Click onBackto return to text
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Degrees of
freedom

P = 0.1 P = 0.05 P = 0.01 Degrees of
freedom

P = 0.1 P = 0.05 P = 0.01

1 6.314 12.706 63.657 18 1.734 2.101 2.878
2 2.920 4.303 9.925 19 1.729 2.093 2.861
3 2.353 3.182 5.841 20 1.725 2.086 2.845
4 2.132 2.776 4.604 21 1.721 2.080 2.831
5 2.015 2.571 4.032 22 1.717 2.074 2.819
6 1.943 2.447 3.707 23 1.714 2.069 2.807
7 1.895 2.365 3.499 24 1.711 2.064 2.797
8 1.860 2.306 3.355 25 1.708 2.060 2.787
9 1.833 2.262 3.250 26 1.706 2.056 2.779

10 1.812 2.228 3.169 27 1.703 2.052 2.771
11 1.796 2.201 3.106 28 1.701 2.048 2.763
12 1.782 2.179 3.055 29 1.699 2.043 2.756
13 1.771 2.160 3.012 30 1.697 2.042 2.750
14 1.761 2.145 2.977 40 1.684 2.021 2.704
15 1.753 2.131 2.947 60 1.671 2.000 2.660
16 1.746 2.120 2.921 120 1.658 1.980 2.617
17 1.740 2.110 2.898 ∞ 1.645 1.960 2.576

Click onBackto return to text

Table 9.13: Critical values oft for the t-test for unmatched samples for different
degrees of freedom at three levels of significance. The null hypothesis is usually
rejected if the calculated value oft is greater than the value given for theP = 0.05
significance level at the appropriate number of degrees of freedom.
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Question 10.1 (a)

The gradient of the tangent drawn to the graph ofy = x2 at
x = 1 is

gradient=
rise
run
=

(3.0− 0.0)
(2.0− 0.5)

=
3.0
1.5
= 2.0

So the gradient of the curve atx = 1 is 2.0 to two significant
figures.

y

tangent
at x = 1

tangent
at x = 3
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Question 10.1 (b)

The graph showsy = x2 with a tangent drawn atx = 2. The
gradient of this tangent is

gradient=
rise
run
=

(12.0− 0.0)
(4.0− 1.0)

=
12.0
3.0
= 4.0

So the gradient of the curve atx = 2 is 4.0 to two significant
figures.

{Note that drawing accurate tangents is difficult; values for
the gradient ofy = x2 at x = 2 found by this method could
reasonably be anything between 3.5 and 4.5.

A comparison of the values for gradient atx = 1, x = 2 and
x = 3 shows that the gradient increases asx increases. This
is consistent with the observed increase in the gradient of
the graph asx increases.}
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Question 10.2 (a)

y = x4 soC = 1 andn = 4

dy
dx
= 1× 4x3 = 4x3

Whenx = 4,
dy
dx
= 4× 43 = 44 = 256

So atx = 4 the gradient of the graph is 256.
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Question 10.2 (b)

y = 5x soC = 5 andn = 1 so

dy
dx
= 5x1−1 = 5x0 = 5

The gradient of the graph is 5 for all values ofx.

{You may have been able to give this result without differentiatingy = 5x, from
your knowledge of the gradient of straight-line graphs.}
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Question 10.2 (c)

y = 3x2 soC = 3 andn = 2

dy
dx
= 3× 2x2−1 = 6x

Whenx = 4,
dy
dx
= 6× 4 = 24

So atx = 4 the gradient of the graph is 24.
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Question 10.2 (d)

y = 5 soC = 5 andn = 0

dy
dx
= 5× 0× x−1 = 0

The gradient of the graph is 0 for all values ofx.

{You may have been able to give this result without differentiatingy = 5.}
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Question 10.3 (a)

y =
1
√

x
= x−1/2 soC = 1 andn = −1

2

dy
dx
= −

1
2

x−1/2−1 = −
x−3/2

2
= −

1

2x3/2

This could also be written as

dy
dx
= −

1

2x
√

x

Whenx = 4,

dy
dx
= −

1

2× 4×
√

4
= −

1
2× 4× 2

= −
1
16

So atx = 4 the gradient of the graph is−1/16.
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Question 10.3 (b)

y =
2

x2
= 2x−2 soC = 2 andn = −2

dy
dx
= 2× (−2)x−2−1 = −4x−3 = −

4

x3

Whenx = 4,

dy
dx
= −

4

43
= −

1

42
= −

1
16

So atx = 4 the gradient of the graph is−1/16.
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Question 10.4 (a)

x = t7

so

dx
dt
= 7t 7−1 = 7t 6
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Question 10.4 (b)

E =
C
r
= C r −1

so

dE
dr
= C × (−1) r −1−1 = −Cr −2 = −

C

r 2
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Question 10.5

z= 4y2 + y

Differentiating each of the terms separately gives

dz
dy
= (4× 2y2−1) + (1× y1−1)

= 8y1 + y0

= 8y+ 1
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Question 10.6 (a)

x = 2t3 + 4t2 − 2t + 3

Differentiating this with respect tot gives

dx
dt
= (2× 3t2) + (4× 2t) − 2 = 6t2 + 8t − 2

Differentiating again gives

d2x

dt2
= (6× 2t) + 8 = 12t + 8
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Question 10.6 (b)

z=
2
y
= 2y−1

Differentiating with respect toy gives

dz
dy
= 2× (−1)y−1−1 = −2y−2 = −

2

y2

Differentiating again gives

d2z

dy2
= −2× (−2)y−2−1 = 4y−3 =

4

y3
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Question 10.7 (a)

y = 2 ex soC = 2 andk = 1.

dy
dx
= 2× 1 ex = 2 ex = y (sincey = 2 ex).
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Question 10.7 (b)

z= et/2 soC = 1 andk = 1
2

dz
dt
= 1

2 et/2 =
z
2

(sincez= et/2).
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Figure 10.4: A graph
to show the increasing
concentration of hypo-
bromite ions in a partic-
ular chemical reaction,
at 25◦C.
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Box 10.4 Differentiating y = x2 − 4x+ 3 from first principles

The graph ofy = x2 − 4x + 3 is shown again in
Figure 10.9 and, as in the previous differentiation
from first principles, P and Q represent any two
points on the curve.

Since both points lie on the curve, we can say

y = x2 − 4x+ 3 (10.1)

and

(y+ ∆y) = (x+ ∆x)2 − 4(x+ ∆x) + 3 (10.6)

Multiplying out the brackets on the right-hand side
of Equation 10.6 gives

y+ ∆y = x2 + 2x∆x+ (∆x)2 − 4x− 4∆x+ 3

and rearranging gives

y+ ∆y = (x2 − 4x+ 3)+ 2x∆x− 4∆x+ (∆x)2

y

0

1

2

3

1 2 x3 4

−1

∆y

∆x
P

Q

Figure 10.9: Points P and Q on the curvey =
x2 − 4x+ 3.
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Sincey = x2 − 4x+ 3 (from Equation 10.1), we can subtracty from the left-
hand side and (x2 − 4x+ 3) from the right-hand side to give

∆y = 2x∆x− 4∆x+ (∆x)2

Dividing both sides by∆x gives

∆y
∆x
= 2x− 4+ ∆x

In the limit as∆x approaches zero, the final term on the right-hand side will

disappear, and
∆y
∆x

will become equal to
dy
dx

, so we can say

dy
dx
= 2x− 4

Return toSection 10.2.4
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Figure 10.10: Graphs of (a)y againstx, (b)
dy
dx

againstx and (c)
d2y

dx2
againstx for y = x2 − 4x+ 3.

Click onBackto return to text
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Figure 10.11: An object being dropped from the Clifton Suspension Bridge.

Click onBackto return to text
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Figure 10.12: Graphs to show the variation of (a) distance, (b) speed and (c) acceleration with time for
an object dropped from a bridge. Note that distance from the bridge, speed and acceleration are all
measured in a downwards direction.
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Figure 10.13: A graph ofy = ex.
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Question A.1

cosα =
adj
hyp
=

vx

v
so

vx = vcosα

= 8.6 m s−1 × cos 42◦

= 6.4 m s−1 to two significant figures.

sinα =
opp
hyp
=

vy

v
so

vy = vsinα

= 8.6 m s−1 × sin 42◦

= 5.8 m s−1 to two significant figures.

y

x

vy
v

vx

α
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Question A.2

F2 = F2
x + F2

y

So

F =
√

F2
x + F2

y

=

√
(4.0 N)2 + (3.0 N)2

= 5.0 N

tanβ =
opp
adj

=
Fy

Fx

=
3.0 N
4.0 N

= 0.75

So β = tan−1(0.75) = 37◦ to two significant
figures.

So the resultant vectorF has a magnitude of
5.0 N and acts at an angle of 37◦ to the hori-
zontal axis.

y

x

Fy
F

Fx
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Index

absolute value,474
absolute zero of temperature,285
accuracy,407
addition rule (probability),395
algebra,131, 154
algebraic fractions,183
al-Khwarizmi,176
alternative hypothesis,438
angle,294
angle of dip,327
ångström,71
arc,302
arccos,318
arcsec,301
arcsin,318
arctan,318
area,91, 107, 276
arithmetic mean,410
Arrhenius equation,379

average,410, 422
Avogadro’s number,68
axis (of graph),240

bar chart,235
base number,40
base units,66
BEDMAS, 53
bell-shaped curve,409, 419
bequerel (unit),288
best-fit line,250
brackets,15, 53, 137, 192

calculator use,20, 43, 100, 316, 350,
373, 417, 430

cancellation,29
categorical level,443
Celsius degree,67, 287
centi (prefix),71
checking,198, 219
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chemical reactions,379, 482
χ2-test,446
χ2-test (critical values),802
chord,483
combining equations,203
combining probabilities,391
common denominator,28
common logarithm,347
common population variance,472
commutative operation,17, 136
complex number,13
component (of vector),515
concentration,125, 482
constant of proportionality,266
correlation,459
correlation coefficient,459
cosine,313
critical value,440
critical values (tables),802, 803, 805
cube root,50
cystic fibrosis,392

decay constant,378
deci (prefix),71
decibel,80, 352

decimal notation,10, 42, 390
decimal places,11, 416, 450
degree (of arc),296
degree (temperature),67, 287
degrees of freedom,451, 474
denominator,24
density,127
dependent variable,258
derivative,484
derived units,144
descriptive statistics,405
difference of squares,196
differentiation,483
differentiation from first principles,486,

822
diffraction,336, 406
direct proportionality,265

e,290, 505
elimination,204
energy,223
equation,131, 155
equation of straight-line graph,272,

277
equivalent fraction,25
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estimated standard deviation of a pop-
ulation,430

estimating,102
expected numbers,448
exponent,40
exponential decay,288, 370, 376, 505,

510
exponential function,505
exponential growth,292, 372, 379, 505
expression,156
extrapolation,246

factor,195
factorize,195
femto (prefix),69
Fibonacci numbers,14
first derivative,484
formulae,132, 655
fractional exponent,50, 492
fractions,24, 183, 390
function,261, 493
function notation,495

giga (prefix),69
gradient,252, 479

graph,234
Greek letters,133, 660
Green-winged Orchid,434, 446, 471
gun clinometer,323

half-life, 290, 378
hertz (unit),144
histogram,237
hyperbola,282
hypotenuse,310
hypothesis,435
hypothesis testing,435

imaginary number,13, 201
improper fraction,28
independent outcomes (probability),391
independent variable,258
index (plural indices),40
inheritance,392, 398
integer,10
intercept,272
interpolation,245
interval level,443
inverse cosine,318
inverse proportionality,282
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inverse sine,318
inverse tangent,318
inverse trigonometric function,318
irrational number,12

joule (unit),144

kelvin (unit),66
Kepler’s third law,368
kilo (prefix), 69
kilogram,66
k-value analysis,360

latitude,298
Leibniz, Gottfried Wilhelm,496
level of measurement,443
linear relationship,250
linear scale,78
litre, 112
log–linear graph,370
log–log graph,364
logarithm,346
logarithm to base 10,347
logarithm to base e,373
logarithmic scale,78, 352
longitude,298

lowest common denominator,28

Ma (million years),71
magnitude,512
mass,66
matched samples,470
mean,410
median,424
mega (prefix),69
Mendel’s peas,398
metre,66
micro (prefix),69
milli (prefix), 69
minute of arc,300
mixed number,28
mode,423
modulus,514
mole,66
multiplication rule (probability),391
mutually exclusive outcomes (proba-

bility), 395

nano (prefix),69
Napier, John,346
Napier’s bones,346
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natural logarithm,373
negative angles,321
negative correlation,459
negative exponent,41, 114, 492
negative numbers,15
newton (unit),144
Newton, Sir Isaac,496
normal distribution,409, 419
null hypothesis,437
number line,10, 618
numerator,24

observed numbers,448
order of arithmetic operations,53
order of magnitude,74
ordinal level,443
origin (of graph),246

parabola,276, 501
pascal (unit),144
percentage,26, 390
pH scale,353
photoelectric effect,255, 274
pico (prefix),69
population,427

population mean,428
positive correlation,459
power,39
powers of powers,48
powers of ten,42, 59, 98
precedence,53
precision,406, 421
probability,385, 440
problem solving,217
proportionality,265
Pythagoras,310
Pythagoras’ Theorum,310, 516

radian,302
radioactive decay,288, 291, 378, 510,

767
random uncertainty,406
ranked data,443, 461, 465
rate of change,479
ratio,398
rational number,12
real number,13
rearranging equations,155
reciprocal,41
recurring decimal,12
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repeated measurements,406
replicate samples,458
resolving vectors,515
Richter scale,81, 352
ridge-and-furrow,434
right angle,297
right-angled triangle,310
root,50
rounding,74, 85
rounding error,94

sample,427
sample standard deviation,429
scalar,512
scientific notation,60, 97
sea-floor spreading,716
second (of arc),301
second (time),66
second derivative,500
semi-log graph paper,372
SI units,66, 144
significance,441
significance level,440
significant figures,84, 93, 317, 416
simplifying equations,183

simultaneous equations,207
sine,313
sketch graph,267
skewed distribution,422
small angle approximation,338
Snell’s law,333
Spearman rank correlation coefficient,

460
Spearman rank correlation coefficient

(critical values),803
speed,113, 115, 512
square root,21, 50, 159, 160
standard deviation,413
standard error,471
standard index form,60
statistically significant,441
statistics,405, 433
straight-line graph,248, 277
Student’s t-test,469
Student’s t-test (critical values),805
subject (of equation),154
substitution,141, 203
subtend,295
symbols,133
systematic uncertainty,407
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tangent (to a curved graph),479
tangent (trigonometry),313
tera (prefix),69
term,156
test of association,435
test of difference,435
test statistic,439, 449, 463, 471
trigonometric ratios,313
trigonometry,312
true mean,428
t-test,469
t-test (critical values),805

unit conversions,106
units,65, 92, 141
units (on axes of graphs),240
unmatched samples,470

vector,512
velocity,512
volume,110

watt (unit),144
wave motion,321
weight,68, 144
word equation,131

writing maths,105

zero,23
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