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Data Assimilation

DA is the 'art' of combining information from different 
sources in an 'optimal'' way. Generally, these sources are 
modelsmodels and observationsobservations. 

This has the aim of getting a better estimate of the state of 
a system. 

Optimal includes –among other things- considering the 
uncertainty (or conversely, the precision) of the sources. 
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Data Assimilation
Consider we are interested in a (physical / dynamical) 
system.

Then, DA has two main objectives:

a. To find a current estimatecurrent estimate that can be used to 
produce forecasts.

b. To quantify the uncertainty of the estimateuncertainty of the estimate, and to 
know the time evolution of this uncertainty.
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Our system of interest
State variables:

4

Meteorological 
variable

Longitude

Latitude

Vertical 
level

The state variables of the 
system are: meteorological 
variables (wind speed, 
temperature, etc) in every single 
gridpoint.
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Two challenges

1.1. Determining the current estate of the system (all 
state variables) at a given moment of time. This is 
estimationestimation.
 

2.2. Given some initial conditions, determine the future 
state of the system (all state variables). This is 
predictionprediction. 

Contrast these with the aims of DA!
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Two sources of information

None of them are perfect! The both have errors and we 
must take them into consideration when combining them. 

• Observations
– How accurate?
– How dense?
– How do they relate to 

the state variables?

• Models 
–  Diagnostic equations

 
– Prognostic equations (future)
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Observations

• In situIn situ observations: 

   They are direct, but they 
can be irregular in 
space and time, e.g. 
sparse hydrographic 
observations. 

• Remote sensingRemote sensing 
observations: They are 
indirect. E.g. satellites 
measuring the sea-
surface temperature.
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Observation coverage
.
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Observation coverage
.

Great coverage nowadays. Nonetheless we do not observe every single 
variable at every single model gridpoint. The system is partially observed.



10

Observations
.

The observations are not 
perfect. Errors come from:
a. Instrument capabilities.
b. Representativity: i.e. 
observations and models may 
have a different resolution.
c. Characterising the 
observation operator incorrectly. 
...

Usually:

Transformation of 
the state variables via an 
observation operator.
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Observation operators

Retrieving the value(s) of the state variable(s) from the observation(s) is called 
the inverse problem inverse problem. This is a related problem. 

Variable: 
Temperature at a 
point

Observation: 
Temperature at a 
point

Operator: Identity 

Variable: 
Temperature at a 
vertical level

Observation: Total 
radiance coming from 
a vertical column

Operator: Integral 
transformation

Variable: Temperature 
at  gridpoints 

Observation: 
Temperature outside a 
gridpoint

Operator: Interpolator

Grid point

Observation 
location
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ModelsModels
.

The models are not perfect. 
Errors come from:
a. Unknown physics
b. Numerical error in the 
time/space discretisation of 
continuous equations.
c. Subgrid processes that need 
to be parameterised.
...

Evolution operator

Previous value of the 
variable. 
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ForecastForecast with different lead-times
.

Should we consider the three of forecasts to have the same 
accuracy (different lead-times)? 

Accuracy

Lead-time

Climatological level
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A perfect modelmodel with uncertain initial 
conditions

uncertainty
?

point estimate
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Deterministic chaos
.

Consider the model to be perfect. Then the state of 
the system –at any time- is completely determined 
by the initial conditions.

Can we determine with absolute precisionabsolute precision? No.

How sensitive is the forecast to these errors in initial 
conditions? 

In chaotic systems –like the atmosphere- it matters a 
lot. 
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Sensitivity to initial conditions
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Example: Lorenz 1963 model
.
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Example: Lorenz 1963 model
.
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Example: Lorenz 1963 model
.

The trajectories are so different they may as well have been chosen 
randomly from climatology. 
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Example: Lorenz 1963 model
.

saturation

~size of the attractor

Initial exponential error growth
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Evolution of the 500-hPa geopotential height in CP

The atmosphere is chaotic
.
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Weather is chaotic
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Weather is chaotic
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Sensitivity to initial conditions can 
depend on the situation
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What can we do?

DA gives the tools to achieve these.
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This example uses a 3-member ETKF in the Lorenz 1963 
model. You will learn about this later.

26

Some members 
miss the regime 
transition, but 
this is corrected.

Revisiting forecastsforecasts
26
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DADA: Combining models and observations

We need to develop a general theory on how to 
combine observations and models.

That framework does exist: Bayes' Theorem!Bayes' Theorem!

We will derive Bayes' TheoremBayes' Theorem and show how all 
existing methods can be shown to be approximations 
of Bayes' Theorem.

But first, let us start with intuitive ideas.
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How do we process new data?

♬
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A process description

● Prior knowledge, from a model, a cat.

● Observations, the dog.

● Posterior knowledge, improvement of the 
model, the dog that has eaten the cat.
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What is missing?

UncertaintyUncertainty !!! !!!
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Basics on probability and statistics

- Deterministic experiment: We know the result before it 
happens.

- Random experiment: We do not know the result, but we 
know the set to which it belongs (sample space), and we 
know something about the chances of different outcomes.

- Random variable: mapping from the sample space into the 
real numbers. Described by a probability mass function 
(discrete case) or a probability density function (continuous 
case).

- Stochastic process: a repetition of random experiments 
through time. 
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1.00.5

Probability density functions. 
Univariate case
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Parametric distributions (1D)
Logistic distribution Gamma distribution

Statistics: - Central tendency: mean, median, mode
- Dispersion / variability: variance, range
- Shape: skeweness, kurtosis
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Errors are often considered to be Gaussian.
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More on PDFs

Consider two variables:

Marginal pdf's

Joint pdf
Conditional pdf's
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Bayes' theorem

Also:

Using the two equalities for the joint pdf we get:

Relationship between joint and marginal pdf:

This is Bayes' theoremBayes' theorem, a really powerful result. It can be 
considered the basis of DAbasis of DA. Let us do a simple example to 
understand it before moving on.
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A (really) simple example on conditional 
probabilities

DA conference:
- 20 attendees, 12 female and 8 male. 
- 4 females wear glasses, 6 males wear glasses.
- If a person is picked at random and this person wears glasses, what 
is the probability of the person being a male?

Gender

Wearing glasses

Variables Permissible values
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Example on conditional probabilities

female

male

glasses

no glasses

glasses

no glasses
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Example on conditional probabilities

Original probability

New probability

Observation: the person wears glasses!

I have updated my knowledge!
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Bayes' theorem in DA

Posterior pdf. Pdf 
of the state 
variables given the 
observations.  

Marginal pdf of the 
observations. It is often 
the case we do not need to 
compute this, since it acts 
as a normalisation 
constant. 

Prior pdf. Pdf of 
the state variables 
coming from the 
model

Likelihood. Pdf of the 
observations given a value of 
the state variable.
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Examples of Bayes' 
theorem in action
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Reality bites

Estimating these pdf's in large dimensional systems is virtually 
impossible. Approximate solutionsApproximate solutions lead to DA methods:

- Variational methods: solves for the mode of the posterior.

- Kalman-based methods: solve for the mean and covariance of 
the posterior.

- Particle filters: find a weak (sample) representation of the 
posterior pdf.
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The Gaussian world

Considering errors to be Gaussian can be quite convenient. 
The pdf is completely determined by the mean and covariance.

 

 

 

Prior

Likelihood

Posterior
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x

p (x|y)

For a Gaussian distribution the mean and mode coincide.

Maximum a-posteriori estimator 
(MAP)
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The Gaussian world
Recalling the posterior in this case.

We need the minimiser of the exponent (which we call cost-
function)

Which for linear H is:

The matrices are huge! How to solve in practice?
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1. Variational methods

x

J(x)

 

Find the minimum of the cost function via (iterative) optimisation 
techniques. One needs the gradient of the cost function.

The background error covariance is static. 
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2. Kalman filter

 

Solve directly.

- It is exact in the linear case.
- The covariance is updated.
- It can be extended to non-linear case via linearisation.
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3. Ensemble Kalman filter

Use sample estimators with the KF equations. 

Uncertainty at 
analysis time

Uncertainty at forecast time with 
covariance P 
(Gaussian)

Nonlinear model forecasts
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3. Hybrid methods

- Different flavours.
- For example, use sample covariances within the 
variational framework.
- Use 4D (space-time) covariances.

4. Particle filters
- Generate samples from the posterior (using tricks like 
importance sampling).
- Does not require the Gaussian assumption.
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Time

x

Observation
Analysis

Filters
Assimilate every time observations are available.
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Time

x

Observation
Analysis

Smoothers
Assimilate observations over a time window. 
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Characteristics of traditional DA methods

Solution is got 
using (iterative) 
minimisation 
techniques. Solution is got 

using explicit 
linear algebra. Estimation is 

done for an 
instant.

Estimation is 
done within a 
time window.

Uncertainty is 
considered 
fixed in time.

Uncertainty 
evolves in time.
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