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Data Assimilation

DA is the 'art' of combining information from different
sources in an 'optimal’ way. Generally, these sources are
models and ohservations.

This has the aim of getting a better estimate of the state of
a system.

Optimal includes —among other things- considering the
uncertainty (or conversely, the precision) of the sources.



Data Assimilation

Consider we are interested in a (physical / dynamical)
system.

Then, DA has two main objectives:

a. To find a current estimate that can be used to
produce forecasts.

b. To quantify the uncertainty of the estimate, and to
know the time evolution of this uncertainty.



Our system of interest
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Two challenges

1. Determining the current estate of the system (all
state variables) at a given moment of time. This is

estimation.

2. Given some Initial conditions, determine the future
state of the system (all state variables). This is

prediction.

Contrast these with the aims of DA!



Two sources of information

- Observations * Models
— How accurate? — Diagnostic equations
— How dense? P = ,OART
— How do they relate to k
the state variables? V= 7 X Vp®

— Prognostic equations (future)
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None of them are perfect! The both have errors and we
must take them into consideration when combining them.’



Observations

* |In situ observations:

They are direct, but they
can be irregular in
space and time, e.q.
sparse hydrographic
observations.

* Remote sensing
observations: They are
indirect. E.g. satellites
measuring the sea-
surface temperature.




Observation coverage
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Observatlon coverage
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Great coverage nowadays. Nonetheless we do not observe every single
variable at every single model gridpoint. The system is partially observed.



Observations

y = h (x) + error

A N

y € RNy The observations are not
perfect. Errors come from:
Usually: Ny < N, a. Instrument capabilities.

b. Representativity: i.e.
observations and models may
have a different resolution.

c. Characterising the
observation operator incorrectly.

Transformation of
the state variables via an
observation operator.
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Observation operatorsx)
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point

Operator: Identity

y =X

Grid point
° e
Observation
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Variable: Variable: Temperature
Temperature at a at gridpoints
vertical level
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Temperature outside a
gridpoint

Observation: Total

radiance coming from

a vertical column
Operator: Interpolator

Operator: Integral

transformation y = Hx

Ztop
4
y = / UBolth(Z) dz H < RNyXN:v
0

Retrieving the value(s) of the state variable(s) from the observation(s) is called 11
the inverse problem. This is a related problem.



Models

x! = mt~171 (Xt_l) + error
P N
t N

x €R The models are not perfect.
Errors come from:
a. Unknown physics
b. Numerical error in the
time/space discretisation of
continuous equations.

c. Subgrid processes that need
to be parameterised.

Evolution operator

Previous value of the
variable.
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Should we consider the three of forecasts to have the same
accuracy (different lead-times)?

Accuracy

— Climatological level

Lead-time 13



A perfect model with uncertain initial
conditions

point estimate ® ®

uncertainty

e
T
e
=
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Deterministic chaos

Xt _ m0—>t (Xt)

Consider the model to be perfect. Then the state of
the system -at any time- is completely determined
by the initial conditions.

Can we determine with absolute precision?

How sensitive Is the forecast to these errors in initial
conditions?

In chaotic systems —like the atmosphere- it matters a
lot.

15



Sensitivity to initial conditions

* Perturb the initial conditions and run the
multiple forecasts (a.k.a. ensemble forecasts)

More certain

T=t0 T=t1l T=t0 T=t1l



Example: Lorenz 1963 model
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Example: Lorenz 1963 model

A
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Example: Lorenz 1963 model

The trajectories are so different they may as well have been chosen

randomly from climatology. \
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Example: Lorenz 1963 model

~size of the attracto
| VARYiaY .\ o

19F Initial exponential error growth
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height [dam]

The atmosphere Is chaotic
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Weather i1s chaotic

NCEP ENSEMBLE 500mb 7 NCEP ENSEMBLE 500mb 7

048H Forecast from: C0Z Sat JUL,07 2012
0Z4H Forecast from: 00Z Sat JUL,O07 2012 A :
Valid time: 00Z Sun JUL,08 2012 Valid time: 00Z Mon JUL,03 2012

00z Runs:(lz‘l) 00z Runs:(lﬂ) - B 172 Runs:{21)
B760m — Cntrl 00z ——Cnirl 122 — CLIM a7e0em — Cntrl 00z —Cntrl 12z — CLIM




Weather i1s chaotic

NCEP ENSEMBLE 500mb 7Z NCEP ENSEMBLE 500mb Z
120H Forecast fram: 00Z Sat JUL,07 2012 T68H Forecast from: DOZ Sat JUL,07 2012
Valid time: 00Z Thu JUL,12 2012 Valid time: 007 Saot JUL,14 20712

00z Runs:(lﬂ) . B 122 Runs:{21)
B760m — Cntrl 00z —Cntrl 12z ——CLIM

00z Runs:(IE‘l) 12z Runs:{21)

S760m — Cntrl 00z  —Cntrl 12z ——CLIM




Sensitivity to initial conditions can
depend on the situation

More predictable| o Less predictable

N
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Very unpredictable



What can we do?

 Obtain more accurate initial conditions

— More observations oy, 3,

— Better data assimilation methods

* Understand the error growth

— Better understand the dynamics and physics

* Predict the predictability

— Let users know how (un)certain the forecasts.

DA gives the tools to achieve these.



Revisiting forecasts
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This example uses a 3-member ETKF in the Lorenz 1963
model. You will learn about this later.
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DA: Combining models and observations

We need to develop a general theory on how to
combine observations and models.

That framework does exist: Bayes' Theorem!

We will derive Bayes' Theorem and show how all
existing methods can be shown to be approximations
of Bayes' Theorem.

But first, let us start with intuitive ideas.

27



How do we process new data?

28



A process description

* Prior knowledge, from a model, a cat.
* Observations, the dog.

* Posterior knowledge, improvement of the
model, the dog that has eaten the cat.

29



What Is missing?

Uncertainty !!!

30



Basics on probability and statistics

- Deterministic experiment: We know the result before it
happens.

- Random experiment: We do not know the result, but we
know the set to which it belongs (sample space), and we
know something about the chances of different outcomes.

- Random variable: mapping from the sample space into the
real numbers. Described by a probability mass function
(discrete case) or a probability density function (continuous
case).

- Stochastic process: a repetition of random experiments
through time.

31



pdf [u]

Probabllity density functions.
Univariate case

0.5 1.
0 U [ms_l] 32



Parametric distributions (1D)

o Logistic distribution 0 Gamma distribution
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Statistics: - Central tendency: mean, median, mode
- Dispersion [ variability: variance, range
- Shape: skeweness, kurtosis



The Gaussian distribution

Errors are often considered to be Gaussian.

pdf ()
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More on PDFs

Consider two variables: {u, v}

0.4 [
0.2

()

0
-5 i 5
0 0
U : ()

5 -5

pdf (u), pdf(v) Marginal pdf's  — pdf (vu = u”) .

, .conditional pdf's

pdf (u,v) Joint pdf pdf (u|lv = v™)

35



Bayes' theorem

Relationship between joint and marginal pdf:

pdf (u) = /_ ) pdf (u,v)dv pdf (v) = /_ ) pdf (u, v)du
Also: pdf (w,v) =pdf (v|u)pdf (u)
=pdf (ulv)pdf (u)

Using the two equalities for the joint pdf we get:

This is Bayes' theorem, a really powerful result. It can be
considered the basis of DA. Let us do a simple example to

understand it before moving on. %



A (really) simple example on conditional
probabilities

DA conference:

- 20 attendees, 12 female and 8 male.

- 4 females wear glasses, 6 males wear glasses.

- If a person is picked at random and this person wears glasses, what

IS the probability of the person being a male?

Variables Permissible values
L Gender (), = {male, female}
Yy Wearing glasses Qy — {yes, no}
12 3 _ 10
pmf(:(;:Female):%:g pmf(y—YeS)—2—0—§
8 2 B 101
pmf($:Male):%:g pmf(y_NO)_%_i 37



Example on conditional probabilities

1©) = 3 ]
= (e glasses p(xz = female,y = yes) = -

2
no glassew(z = female,y = no) =
2
3
3
glasses p(z = male,y = yes) = o
%) 1

N noglasses P(z =male,y =no) = -5

-4



Example on conditional probabilities

p(y = yes|x = male)p(z = male)
p(y = yes)

p(x = male|y = yes) =

W QO
alno

3
5

l\Dlr—\‘

2
Original probability p(z = male) = -

Observation: the person wears glasses!

. 3
New probability p(gj — male|y — yes) — g

| have updated my knowledge! 39



Bayes' theorem in DA

Likelihood. Pdf of the
observations given a value of Prior pdf. Pdf of

the state variable. \ the state variables
coming from the
Fobordi ™
pajly |Xx)p
pdf (x|y) =

/4 p(Y)\

Marginal pdf of the

Posterior pdf. Pdf observations. It is often
of the state the case we do not need to
variables given the compute this, since it acts
observations. as a normalisation

constant. 40



Examples of Bayes'
theorem In action

b (x]y) = p(X)p(y|x)
p(y)

0.5
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Reality bites
_ pdf(y|x)pdf (x)

Estimating these pdf's in large dimensional systems is virtually
impossible. Approximate solutions lead to DA methods:

- Variational methods: solves for the mode of the posterior.

- Kalman-based methods: solve for the mean and covariance of
the posterior.

- Particle filters: find a weak (sample) representation of the
posterior pdf.

42



The Gaussian world

Considering errors to be Gaussian can be quite convenient.
The pdf is completely determined by the mean and covariance.

Prior
1 1 S
p(x) = )2 |PT exp{ _E(X_xb) P~ (x—x,)}

Likelihood

1
p(ylx) = exp{— (Y — H(®) R™' (y — H(x))}

(2m)P/2|R|P/?

Posterior

p(xly) o exp{ —3{(x —x,) P~ 1(x —x,) + (y — HX) R (y — H®))} }

43



Maximum a-posteriori estimator
(MAP)

For a Gaussian distribution the mean and mode coincide.

0.5

Prior
= = = | jkelihood |
Posterior
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The Gaussian world

Recalling the posterior in this case.

p(xly) o exp{ —{(x—x,)"P"1(x —x,) + (y — HR) R~ (y — H(X))} }

We need the minimiser of the exponent (which we call cost-

function)
Jx) = x—x,) P 1 (x—x,)+ (y— HX)' R Ny — HX))

Which for linear H Is:

x = x5, + PTHT(HPHT + R)"1(y — H(x}))

The matrices are huge! How to solve in practice?



1. Variational methods

Jx) = (x—x,) P l(x—x,) + (y — HX)) R (y — H(X))

Jx) 9

Find the minimum of the cost function via (iterative) optimisation
techniques. One needs the gradient of the cost function.

The background error covariance is static.



2. Kalman filter

Solve directly.
x = x, + PTHT(HPHT + R)~1(y — H(x,))

- It Is exact in the linear case.
- The covariance Is updated.
- It can be extended to non-linear case via linearisation.



3. Ensemble Kalman filter

Use sample estimators with the KF equations.

Nonlinear model forecasts

Uncertainty at Uncertainty at forecast time with
analysis time covariance P
(Gaussian)



3. Hybrid methods

- Different flavours.

- For example, use sample covariances within the
variational framework.

- Use 4D (space-time) covariances.

4. Particle filters

- Generate samples from the posterior (using tricks like
Importance sampling).
- Does not require the Gaussian assumption.



Filters

Assimilate every time observations are available.

*Observation
@ Analysis
X A

* o
*

Time



Smoothers

Assimilate observations over a time window.

*Observation
@ Analysis

Time



Characteristics of traditional DA methods

Method Observations Covariance
Variational | Kalman || Sequential | Smoother || Static | Dynamic
3DVar v v v
4DVar v v (V') v
Optimal Interpolation v v v
Kalman Filters v v v
Kalman Smoother v v v
Solution is got
using (iterative) . :
minimisation ::Jonnc;eigtearlendty 'S
techniques. Solution is got fixed in time.
using explicit
linear algebra. Estimation is Estimation is

done for an

instant.

done within a

time window.

Uncertainty
evolves in {jime.
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