
Notes on adjoints

November 9, 2023

A linear operator may be represented as a matrix operation, A (having an input u, and an output, v):

v = Au. (1)

If u has nu elements and v has nv elements, then A is an nv × nu matrix. This is shorthand for the following
element-by-element operations:

vi =

nu∑
j=1

Aijuj . (2)

Thus element Aij is the coe�cient that contributes to element i in the output vector v due to element j in the
input vector u. This is sometimes called the forward operator.

The transpose of this linear operation may be represented as the following matrix operation:

û = A⊺v̂, (3)

where û has nu elements, v̂ has nv elements, and A⊺ is the nu × nv matrix found by transposing A (rows
become columns, and vice-versa). This is shorthand for the following:

ûj =

nv∑
i=1

A⊺
jiv̂i. (4)

Thus element A⊺
ji is the coe�cient that contributes to element j in the output vector û due to element i in the

input vector v̂. Let us assume here that an adjoint is the same thing as a transpose.
This method of producing an adjoint is straightforward when the linear operations are represented as ma-

trices. Many linear operators are represented as lines of code in a subroutine though, so we need a procedure
to produce the adjoint version of any linear operator.

Note that A⊺
ji = Aij , which makes (4) into

ûj =

nv∑
i=1

Aijv̂i. (5)

What does this tell us about how to produce the adjoint version of lines of forward code? Let us compare (2)
and (5). Suppose that in the forward code we have an operation that is something like

v ( i ) = f * u( j )

The fact that vi is being updated using information from uj means that, from (2), the factor f is e�ectively
matrix element Aij . This is exactly the same matrix element that appears in (5), which means that in the
adjoint code, the same factor, f , is used to update ûj using information from v̂i:

u_hat ( j ) = u_hat ( j ) + f * v_hat ( i )

Notice that the output component is being incremented instead of being just set. This is done because this
operation may not be the only one that contributes to ûj . For instance, there may be another line in the forward
code

v ( i 1 ) = g * u( j )

This is equivalent to matrix element Ai1j . In the adjoint, this will also update element j:

u_hat ( j ) = u_hat ( j ) + g * v_hat ( i 1 )

Since this is an incremental form, the output vector is normally inititialised to zero at the start (unless the
particular routine represents just part of the operator A or A⊺, in which case the initialisation is done outside
of the particular adjoint subroutine). This incremental form should be used unless it is clear that a step like

1



v ( i ) = f * u( j )

is the only step in the forward code that depends on the particular element uj .
Once the forward and adjoint routines have been coded (e.g. as follows):

subrout ine A (u , v )
double p r e c i s i on , i n t en t ( in ) : : u ( : )
double p r e c i s i on , i n t en t ( out ) : : v ( : )
. . .
end subrout ine A

subrout ine A_adj (v_hat , u_hat )
double p r e c i s i on , i n t en t ( in ) : : v_hat ( : )
double p r e c i s i on , i n t en t ( out ) : : u_hat ( : )
. . .
end subrout ine A_adj

it should be checked that the adjoint is correctly coded. This can be done with the adjoint test as follows

does (Au)
⊺
(Au) = u⊺A⊺Au? (6)

This test is performed by the following procedure with respect to the left hand side (LHS) and right hand side
(RHS) of (6).

1. Set u to some random numbers.

2. Let v = Au by calling the forward subroutine.

3. Let û = A⊺v by calling the adjoint subroutine.

4. Calculate the LHS: LHS = v⊺v.

5. Calculate the RHS: RHS = u⊺û.

6. If LHS = RHS to machine precision, then the adjoint test is passed.

2


