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1. Introduction
A new approach to data assimilation is expected to be required for meteorological systems that
involve convective-scale motion, as opposed to synoptic and global-scale motion which is cur-
rently considered.  For synoptic and global scales the atmosphere has certain physical properties
(viz. geostrophic and hydrostatic balance), which are exploited for the purpose of modelling the
background error covariances.  These properties may break down at convective- scales which
leads us to re-examine the data assimilation problem for such motions.

Background error covariance statistics describe the probability density function of (Gaussian)
background errors of the variables that are usually represented in a model forecast (the so-called
'model variables').  These statistics are a very important part of data assimilation as they specify
how a background state (otherwise known as an 'a-priori' or a 'first guess' state) is allowed to be
modified by observations.  The success of a data assimilation system can depend strongly on
how the background error covariances are specified.  For instance they can make the difference
between a data assimilation system that produces realistic and sufficiently smooth analyses
which are appropriate to the system, and one that does not.

Background error covariances are modelled using a technique called control variable transforms
(CVTs).  This technique attempts to re-express the cost function from one in terms of model
variables to another in terms of new variables (called 'control variables') whose background er-
rors are uncorrelated (for a review, see e.g. Bannister 2008).  This is difficult to do exactly as
the variables that are uncorrelated are usually unknown, but schemes can be proposed thatas-
sume certain carefully chosen variables are uncorrelated.  Such assumptions form the basis of a
model of the background error covariances.  Such a model gives rise to so-called implied back-
ground error covariances of model variables which should be as close as possible to the actual
background error covariances (a subset of which can usually be estimated explicitly to help
evaluate the implied covariances).

Currently, the Met Office's control variables are streamfunction (), unbalanced velocity po-
tential ( ), geostrophically unbalanced pressure () and a relative humidity variable (),
where the  preceding each variable denotes an error (or perturbation) in each quantity.  It is as-
sumed that background errors between the control variables are uncorrelated.  This choice of
variables is most appropriate at larger-scales, where it is possible to assume that geostrophic and
hydrostatic balances are important.  The scheme works in the data assimilation by recovering
the model variables from these control variables using a CVT.  The inverse CVT is also needed
to derive control variables from model variables, which is an essential off-line step needed to
determine the spatial statistics of the control variables.   For instance, is found from  and
total pressure error () using a balance relation - specifically the linear balance equation (LBE)
(roughly equivalent to geostrophic balance) as follows

δψ
δχu δpA δµ
δ

pA δψ
δp

δpA = δp − Lδψ, (1.1)

 Lδψ = ∇−2
h [∇h ⋅ (fρ∇hδψ)] , (1.2)where
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is the diagnosed balanced pressure.  Here is the Coriolis parameter, is reference state den-
sity,  is the horizontal gradient operator and is the linear balance operator defined in (1.2).
This scheme is useful at scales where the LBE holds by assuming that all of the field is bal-
anced (i.e. there is no unbalanced streamfunction).  The scheme works even in the tropics where
the balance diminishes in a specified way (  as the latitude ).  Hence at the equator,
all pressure errors are unbalanced, .  In a similar way temperature () can be di-
agnosed from  using an operator that can be derived from hydrostatic balance - see e.g. Ban-
nister (2008)

f ρ
∇h L

δψ

f → 0 → 0
δpA = δp δT

δp

δT =
g

cp
(∂Π
∂ z )−1 

Π (∂Π
∂ z )−1 ∂

∂ z
− 1



κΠ
p
δp. (1.3)

Here  is the acceleration due to gravity, is the specific heat capacity at constant pressure, is
height,  is the ratio of specific heats, is the reference state pressure and is the reference
state exner pressure.  (N.B. there is also a moisture contribution to, which has been ne-
glected in the above.)

g cp z
κ p Π

δT

At convective scales, the importance of linear and hydrostatic balances are known to diminish
(e.g. Vetra-Carvalho et al., 2010; Bannister et al., 2011).  In the case of extremely small scales
for instance, where geostrophic balance does not hold at all, we would expect all pressure errors
to be unbalanced, .  Equation (1.1), however, is inconsistent with this expectation giv-
en that  may have a substantial value.  Unfortunately, unlike the midlatitude vs. tropical
scenarios (where linear balance respectively does and doesn't apply), there is nothing in (1.1) to
distinguish between large and small scales (this can be seen easily in the case when and  are
constants where (1.2) becomes ).  A similar argument holds for hydrostatic bal-
ance, where (1.3) would not be the correct relation to use to diagnose, although the extent to
which (1.3) is inappropriate in not yet clear (Bannister et al., 2011).

δpA ≈ δp
Lδψ

f ρ
Lδψ = fρδψ

δT

There are two problems here.  The first is to decide what to do specifically for convective-scale
flows where (1.1)-(1.3) may be inappropriate (called the 'convective-scale' problem), and the
second is to decide how to treat the convective-scale flows simultaneously with the large-scale
part of the problem where (1.1)-(1.3) remain appropriate (called the 'multi-scale' problem).  The
following possible strategies may apply for the convective-scale problem and each recognises
the diminished roles of geostrophic and hydrostatic balances at convective scales.

I. Do not decompose variables into balanced and unbalanced variables, i.e. treat 'model
variables' themselves as control variables.

II. Use the same control variables that are used currently, but turn-off balance relations.
III. Introduce extra control variables that reflect the unbalanced nature of the atmos-

phere at convective-scales.
IV. Propose alternative diagnostic relationships that do hold at convective-scales, to re-

place or complement the traditional balance relations.
V. Introduce a set of purely statistical relationships (instead of diagnostic relationships)

in the control variable transforms, which are valid at convective-scales.
VI. Define forecast errors in the representation of the normal modes of the forecast

model (linearized about the background).  (This strategy has been taken by Ruth Pe-
trie for her PhD thesis - see refs.).

The following possible strategies may apply for the multi-scale problem.

i. Look for universally relevant variables, which are always approximately uncorrelated
where the associated 'balance' relationships (yet to be determined) inherently adjust to
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the dynamic regime (i.e. midlatitudes, tropics, large-scale or convective-scale).
ii. Use regime-dependent variables.  This means two sets of variables, each representing

a different scale regime (i.e. one set that applies at large-scales and one set that ap-
plies at convective-scales).  A cross-over length scale must be applied.

iii. Run an assimilation where only the convective-scales are adjusted by the main con-
trol variables.  Large-scale information (from a conventional assimilation performed
beforehand) may be introduced by means of a separate constraint in the cost function
(the so-called  term as in Fischer et al., 2005).JK

Clearly, these are complicated issues and there will not be time to develop and compare all in
full.  In this working paper the current scheme is outlined and then two significant modifications
are made using III, IV and ii above.  It is assumed that the best approach is to solve the syn-
optic/convective-scales together in the same data assimilation problem and so option iii is not
considered here.
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2.1 The current Tp-transform

2. The current transforms
In the current scheme, the model variables are, , , , ,  and  and the control
variables are , , , .  There are seven model variables, but only four control variables.
When converting from control-to-model variables, the three missing fields come from imposing
hydrostatic balance, the ideal gas law and incompressibility.

δu δv δw δθ δρ δp δqT

δψ δχu δpA δµ

2.1 The current Tp-transform

Input fields
, , ,  and δu δv δθ δp δqT

Output fields
, , , δψ δχu δpA δµ

The Tp-transform is shorthand for the set of transformations that go from model to control
variables that are thought to be uncorrelated.  The current Tp-transform is the following (see
Met Office, 2010).  In the following, many of the steps are intermediate.  The steps that result
in the control variable fields are marked with an asterisk.  A shorthand form of each equation
(assuming a matrix/vector notation) is given with each step with equation numbers appended
with an "a".

Tp.1.  Calculate the virtual potential temperature

δθv = [1 + (ε−1 − 1) q] δθ + θ (ε−1 − 1)δqT, (2.1)

δθv = Θθδθ + ΘqδqT, (2.1a)
where  is the ratio of the molecular weight of water to the molecular weight of dry air.ε

Tp.2.  Calculate the hydrostatic exner pressure by integrating the hydrostatic equation

δΠH
k + ½ = δΠH

k − ½ +
g (zk + ½ − zk + ½)

cpθv2 δθv, (2.2)

δΠH = P−1
0 δθv, (2.2a)

where  is the hydrostatic exner pressure, is the acceleration of gravity, is the specific
heat capacity at constant pressure and  is the model level height.

ΠH g cp

z

Tp.3.  Calculate the moisture control variable

δµ = a ( 1
qs
δqT − h1

qΠ
qs

d ln es

dT
δθ − h2

q

pqs

κΠθ
d ln es

dT
− 1 δp) , (2.3 )*

δµ = MqδqT + Mθδθ + Mpδp, (2.3a)
where  is a normalization constant, in the saturated humidity mixing ratio, is the saturat-
ed vapour pressure of water, is the ratio of specific heats, and and  are known correla-
tion coefficients.  To introduce a language, may be referred to as an 'unbalanced' variable
because the 'balanced' contributions from and  have been removed.  The contributions to

 from  and  are termed "balanced" because they are associated with (or in 'balance'
with)  and .  The words "balanced" and "unbalanced" have different meanings to those
used with respect to balance relations like hydrostatic or geostrophic balance.

a qs es

κ h1 h2

δµ
δθ δp

δµ δθ δp
δθ δp

Tp.4.  Calculate the streamfunction
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δψ = ∇−2
h







k ⋅







∇ × ( )










, (2.4 )
δu
δv
0

*

δψ = Yδuw = 0, (2.4a)
where  is the vertical unit vector,  comprises the horizontal components of the gradient
vector,  comprises all three components of the gradient vector and  is a 3-D wind vec-
tor with zero vertical component.

k ∇h

∇ δuw = 0

Tp.5.  Calculate the velocity potential

δχ = ∇−2
h







∇ ⋅ ( )






. (2.5)
δu
δv
0

δχ = Cδuw = 0, (2.5a)

Tp.6.  Calculate the balanced component of the velocity potential

δχb = Bχψ
v Bψψ

v

−1
δψ, (2.6)

= Xδψ, (2.6a)
where  is the vertical error covariance between and , and  is the vertical error co-
variance between  and itself.

Bχψ
v δψ δχ Bψψ

v

δψ

Tp.7.  Calculate the unbalanced component of the velocity potential

δχu = δχ − δχb, (2.7 / 2.7a)*

Tp.8.  Calculate the level-by-level geostrophically balanced pressure

δpG = ∇−2
h {∇h ⋅ [fρ∇hδψ]} , (2.8)

δpG = Lδψ. (2.8a)

Tp.9.  Calculate the vertically regressed geostrophically balanced pressure

δpF = BpFpG

v BpGpG

v

−1
δpG, (2.9)

δpF = GδpG. (2.9a)
The geostrophically balanced pressure calculated in step 7 has to be regressed vertically to en-
sure vertical consistency between levels.  Performing step 7 alone, which is performed level-
by-level, is problematic as it does not ensure continuity between neighbouring levels.

Tp.10.  Calculate the hydrostatic pressure

δpH =
pH

κΠH
δΠH, (2.10)

δpH = P−1
1 δΠH. (2.10a)

Combining (2.10a) with (2.2a) gives the shorthand
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δpH = P−1δθv, (2.10b)
where .P−1 = P−1

1 P−1
0

Tp.11.  Calculate the geostrophically unbalanced pressure (ageostrophic pressure)

δpA = δpH − δpF. (2.11 2.11a)*/

Note that in this Tp-transform the model variables and  are not used and  is used only
in the calculation of  and to define the lower boundary condition in the calculation of
(not shown here).  The Tp-transform is used only when VAR outer loops are invoked and for
the (off-line) calibration procedure.

δw δρ δp
δµ δΠH

2.2 The current Up-transform

Input fields
, , , δψ δχu δpA δµ

Output fields
, , , , ,  and δu δv δw δθ δρ δp δqT

The Up-transform is shorthand for the set of transformations that go from control to model
variables.  The current Tp-transform is the following (see Met Office, 2010).  The Up-
transform is used at every VAR iteration and so efficiency is a very important consideration
for its implementation.  The steps that result in the model fields are marked with an asterisk.
The same shorthand form of each equation as used alongside the Tp-transform (assuming a
matrix/vector notation) is given with each step with equation numbers appended with an "a".

Up.1.  Calculate the balanced velocity potential (as Tp.6)

δχb = Bχψ
v Bψψ

v

−1
δψ, (2.12)

= Xδψ. (2.12a)

Up.2.  Calculate the velocity potential (as Tp.7)

δχ = δχu + δχb. (2.13/ 2.13a)

Up.3.  Calculate the horizontal wind components (as Tp.4 and Tp.5)

( ) = ∇hδχ + k × ∇δψ, (2.14 )δu
δv

*

δu2 = C−1δχ + Y−1δψ, (2.14a)
where  is a 2-D (horizontal) wind vector.δu2

Up.4.  Calculate the level-by-level geostrophically balanced pressure (as Tp.8)

δpG = ∇−2
h {∇h ⋅ [fρ∇hδψ]} , (2.15)

δpG = Lδψ. (2.15a)

Up.5.  Calculate the vertically regressed geostrophically balanced pressure (as Tp.9)

δpF = BpFpG

v BpGpG

v

−1
δpG, (2.16)
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δpF = GδpG. (2.16a)

Up.6.  Calculate the hydrostatically balanced pressure (as Tp.11)

δpH = δpA + δpF. (2.17/ 2.17a)

Up.7.  Calculate the virtual potential temperature (as Tp.2/Tp.10)

δθv =
κg

cp
(∂Π
∂ z )−2 ∂

∂ z (ΠHδpH

pH ) , (2.18)

δθv = PδpH. (2.18a)

Up.8.  Calculate the pressure

δp = δpH, (2.19 )*

(as all pressure is assumed to be hydrostatic).

Up.9.  Calculate together the potential temperature and the total specific humidity (as Tp.1
and Tp.3)

δqT = {ah1
qΠ
qs

d ln es

dT
δθv + [1 + (ε−1 − 1) q] δµ +

[1 + (ε−1 − 1) q] ah2
q

pqs

κΠθ
d ln es

dT
− 1 δp} /

{ah1
qΠ
qs

d ln es

dT
θ (ε−1 − 1) + [1 + (ε−1 − 1) q]

a

qs
} , (2.20 )*

δqT = A−1 {Θθδµ − Mθδθv − ΘθMpδp} , (2.20a)

δθ = { a

qs
δθv − θ (ε−1 − 1)δµ − θ (ε−1 − 1) ah2

q

pqs

κΠθ
d ln es

dT
− 1 δp} /

{ah1
qΠ
qs

d ln es

dT
θ (ε−1 − 1) + [1 + (ε−1 − 1) q]

a

qs
} , (2.21 )*

δθ = A−1 {Θqδµ − Mqδθv − ΘqMpδp} , (2.21a)
which form the solution of (2.1) and (2.3) solved simultaneously.  In (2.20a) and (2.21a),  isA

A = ΘθMq − ΘqMθ. (2.22)

Up.10.  Calculate the density

δρ = ρ (1 − κ
p

δp −
1
θv
δθv) , (2.23 )*

δρ = Rpδp + Rθδθv, (2.23a)
which is the linearization of the equation of state, , where .p = ρRTv Tv = (p / p1000)κ θv

Up.11.  Calculate the vertical velocity component by solving either the incompressible
equation
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2.3 The implied background error covariance matrix for the current transforms

∂ (δwρy)
∂ z

+
∂ (δρyw)

∂ z
= −∇h ⋅ 


ρy ( ) − ∇h ⋅ 


δρy ( ) , (2.24 )δu

δv
u
v

*

δw ≈ Wδu2, (2.24a)
where  is the 'dry density', or by solving Richardson's equation (not shown).  For simplicity,
the matrix/vector version of (2.24) does not include the  contribution.

ρy

δρ

2.3 The implied background error covariance matrix for the current transforms
We now examine the implied background error covariance matrix for the current transforms.
The expressions can become very complicated, even for this simple scheme and so we exam-
ine the implied covariances for the variables, ,  and  only.  Consequently, we need
to involve the control variables ,  and  only.  First, a summary of the current Up-
transform for this reduced variable set

δψ δχ δp δθv

δψ δχu δpA

( ) = ( ) ( ) . (2.25)

δψ
δχ
δp

δθv

I 0 0
X I 0

GL 0 I
PGL 0 P

δψ
δχu

δpA

The implied covariances are

Bimp = UpBpU
T
p , (2.26)

where  is the background error covariance matrix of the variables,  and  (which is
block diagonal).  This expands to

Bp δψ δχu δpA

Bimp = ( ) ( ) ( ) , (2.27)

I 0 0
X I 0

GL 0 I
PGL 0 P

Bψ
p 0 0

0 Bχu

p 0

0 0 BpA

p

I XT LTGT LTGTPT

0 I 0 0
0 0 I PT

= ( Bψ
p Bψ

p XT Bψ
p LTGT

XBψ
p XBψ

p XT + Bχu

p XBψ
p LTGT

GLBψ
p GLBψ

p XT GLBψ
p LTGT + BpA

p

PGLBψ
p PGLBψ

p XT PGLBψ
p LTGT + PBpA

p

) .(2.28)

Bψ
p LTGTPT

XBψ
p LTGTPT

GLBψ
p LTGTPT + BpA

p PT

PGLBψ
p LTGTPT + PBpA

p PT

– 8 –



3.1 The Tp-transform under option A

3. Option A: Allow for a non-hydrostatic potential temperature (with multi-scale option ii)
This is the first option for use for convective scale data assimilation.  In this case, the control
variables that are assumed to be uncorrelated are the same control variables as the standard set
plus one extra - see below.  The balance conditions are switched off in the convective-scale con-
trol variable transform.  This scheme must be used with multi-scale option ii since using no bal-
ance conditions is not a good approach for larger scales.  The extra control variable mentioned
above is the convective-scale contributions to potential temperature.  Even though we include a
convective-scale potential temperature (which is not in hydrostatic balance with pressure), all of
the pressure increment is still used with the hydrostatic relation.

3.1 The Tp-transform under option A

Input fields

, , , ,  and δu δv δw δθ δp δqT

Output fields

, , , , δψ δχu δpA δθvCS δµ

Tp.1.  Calculate the convective-scale component of the virtual potential temperature - see
(2.1) and (2.18)

δθvCS
= [1 + (ε−1 − 1) q] δθ + θ (ε−1 − 1)δqT −

κg

cp
(∂Π
∂ z )−2 ∂

∂ z (ΠHδp

pH ) , (3.1 )*

δθvCS
= Θθδθ + ΘqδqT − Pδp. (3.1a)

This calculation is based on the total virtual potential temperature minus the potential temper-
ature that is in hydrostatic balance with pressure.

Tp.2.  Calculate the moisture control variable - see (2.3)

δµ = a ( 1
qs
δqT − h1

qΠ
qs

d ln es

dT
δθ − h2

q

pqs

κΠθ
d ln es

dT
− 1 δp) , (3.2 )*

δµ = MqδqT + Mθδθ + Mpδp. (3.2a)

Tp.3.  Calculate the streamfunction - see (2.4)

δψ = ∇−2
h







k ⋅







∇ × ( )










, (3.3 )
δu
δv
0

*

δψ = Yδu. (3.3a)

Tp.4.  Calculate the velocity potential - see (2.5)

δχ = ∇−2
h







∇ ⋅ ( )






. (3.4)
δu
δv
0

δχ = Cδu, (3.4a)

Tp.5.  Calculate the balanced component of the velocity potential - see (2.6)

δχb = Bχψ
v Bψψ

v

−1
SLS

G δψ, (3.5)
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3.2 The Up-transform under option A

= XSLS
G δψ, (3.5a)

where  is a filter that allows through only scales where the geostrophic balance approxima-
tion is valid.  At smaller scales, it is assumed that there is no balanced velocity potential.

SLS
G

Tp.6.  Calculate the unbalanced component of the velocity potential - see (2.7)

δχu = δχ − δχb, (3.6 / 3.6a)*

Tp.7.  Calculate the level-by-level geostrophically balanced pressure - see (2.8)

δpG = ∇−2
h {∇h ⋅ [fρ∇hS

LS
G δψ]} , (3.7)

δpG = LSLS
G δψ. (3.7a)

Note the presence of the large-scale filter, , which is not present in the standard transforms.SLS
G

Tp.8.  Calculate the vertically regressed geostrophically balanced pressure - see (2.9)

δpF = BpFpG

v BpGpG

v

−1
δpG, (3.8)

δpF = GδpG. (3.8a)

Tp.9.  Calculate the geostrophically unbalanced pressure (ageostrophic pressure) - see (2.11)

δpA = δp − δpF. (3.9 3.9a)*/

As in the standard transforms, here the model variables  and  are not used.δw δρ

3.2 The Up-transform under option A

Input fields

, , , , δψ δχu δpA δθvCS δµ
Output fields

, , , , ,  and δu δv δw δθ δρ δp δqT

Up.1.  Calculate the balanced velocity potential (as Tp.5)

δχb = Bχψ
v Bψψ

v

−1
SLS

G δψ, (3.10)

= XSLS
G δψ. (3.10a)

Up.2.  Calculate the velocity potential (as Tp.6)

δχ = δχu + δχb. (3.11/ 3.11a)

Up.3.  Calculate the horizontal wind components (as Tp.3 and Tp.4)

( ) = ∇hδχ + k × ∇δψ, (3.12 )δu
δv

*

δu2 = C−1δχ + Y−1δψ, (3.12a)
where  is a 2-D (horizontal) wind vector.δu2
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3.  Option A: Allow for a non-hydrostatic potential temperature (with multi-scale option ii)

Up.4.  Calculate the level-by-level geostrophically balanced pressure (as Tp.7)

δpG = ∇−2
h {∇h ⋅ [fρ∇hS

LS
G δψ]} , (3.13)

δpG = LSLS
G δψ. (3.13a)

Up.5.  Calculate the vertically regressed geostrophically balanced pressure (as Tp.8)

δpF = BpFpG

v BpGpG

v

−1
δpG, (3.14)

δpF = GδpG. (3.14a)

Up.6.  Calculate the pressure (as Tp.9)

δp = δpA + δpF. (3.15/ 3.15a)

Up.7.  Calculate the large-scale virtual potential temperature (this operator appears in Tp.1)

δθvLS
=

κg

cp
(∂Π
∂ z )−2 ∂

∂ z (ΠHδp

pH ) , (3.16)

δθvLS
= Pδp, (3.16a)

(all pressure is assumed to be hydrostatic).

Up.8.  Calculate the total virtual potential temperature (this step is linked to Tp.1)

δθv = δθvCS
+ δθvLS

. (3.17/ 3.17a)

Up.9.  Calculate together the potential temperature and the total specific humidity (using the
definition of virtual potential temperature,
(used in Tp.1, and Tp.2)

δθv = [1 + (ε−1 − 1) q] δθ + θ (ε−1 − 1)δqT

δqT = {ah1
qΠ
qs

d ln es

dT
δθv + [1 + (ε−1 − 1) q] δµ +

[1 + (ε−1 − 1) q] ah2
q

pqs

κΠθ
d ln es

dT
− 1 δp} /

{ah1
qΠ
qs

d ln es

dT
θ (ε−1 − 1) + [1 + (ε−1 − 1) q]

a

qs
} , (3.18 )*

δqT = A−1 {Θθδµ − Mθδθv − ΘθMpδp} , (3.18a)

δθ = { a

qs
δθv − θ (ε−1 − 1)δµ − θ (ε−1 − 1) ah2

q

pqs

κΠθ
d ln es

dT
− 1 δp} /

{ah1
qΠ
qs

d ln es

dT
θ (ε−1 − 1) + [1 + (ε−1 − 1) q]

a

qs
} , (3.19 )*

δθ = A−1 {Θqδµ − Mqδθv − ΘqMpδp} . (3.19a)

Up.10.  Calculate the density
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3.3 The implied background error covariance matrix for option A

δρ = ρ (1 − κ
p

δp −
1
θv
δθv) , (3.20 )*

δρ = Rpδp + Rθδθv. (3.20a)

Up.11.  Calculate the vertical velocity component by solving either the incompressible
equation

∂ (δwρy)
∂ z

+
∂ (δρyw)

∂ z
= −∇h ⋅ 


ρy ( ) − ∇h ⋅ 


δρy ( ) , (3.21 )δu

δv
u
v

*

δw ≈ Wδu, (3.21a)
or by solving Richardson's equation (not shown).  For simplicity, the matrix/vector version of
(3.21) does not include the  contribution.δρ

It has been demonstrated that  under the proviso that the total pressure increment is
always considered hydrostatic (and thus used with the hydrostatic balance equation).

TpUp = I

3.3 The implied background error covariance matrix for option A
We now examine the implied background error covariance matrix for option A.  The
expressions can become very complicated and so we examine the implied covariances for the
variables , ,  and  only.  Consequently, we need to involve the control variables,

,  and  only.  First, a summary of the Up-transform for this reduced variable set
δψ δχ δp δθv δψ

δχu δpA δθvCS

( ) = ( ) ( ) . (3.22)

δψ
δχ
δp

δθv

I 0 0 0
XSLS

G I 0 0

GLSLS
G 0 I 0

PGLSLS
G 0 P I

δψ
δχu

δpA

δθvCS

The implied covariances are

Bimp = UpBpU
T
p , (3.23)

where  is the background error covariance matrix of the variables, ,  and
(which is block diagonal).  This expands to

Bp δψ δχu δpA δθvCS

Bimp = ( ) ( ) ( ) ,

I 0 0 0
XSLS

G I 0 0

GLSLS
G 0 I 0

PGLSLS
G 0 P I

Bψ
p 0 0 0

0 Bχu

p 0 0

0 0 BpA

p 0

0 0 0 Bθv
p

I SLS
G

TXT SLS
G

TLTGT SLS
G

TLTGTPT

0 I 0 0
0 0 I PT

0 0 0 I

(3.24)

= ( Bψ
p Bψ

p SLS
G

TXT Bψ
p SLS

G
TLTGT

XSLS
G Bψ

p XSLS
G Bψ

p SLS
G

TXT + Bχu

p XSLS
G Bψ

p SLS
G

TLTGT

GLSLS
G Bψ

p GLSLS
G Bψ

p SLS
G

TXT GLSLS
G Bψ

p SLS
G

TLTGT + BpA

p

PGLSLS
G Bψ

p PGLSLS
G Bψ

p SLS
G

TXT PGLSLS
G Bψ

p SLS
G

TLTGT + PBpA

p
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3.3 The implied background error covariance matrix for option A

) .(3.25)

Bψ
p SLS

G
TLTGTPT

XSLS
G Bψ

p SLS
G

TLTGTPT

GLSLS
G Bψ

p SLS
G

TLTGTPT + BpA

p PT

PGLSLS
G Bψ

p SLS
G

TLTGTPT + PBpA

p PT + Bθv
p

This result can now be compared to (2.28) for the standard scheme.  The only differences are
the inclusion of the scale filter  and the modification to the virtual potential temperature
covariances with  (some components of the -matrix will be different between the
schemes - even for variables that have the same name in each scheme).

SLS
G

Bθv

p Bp
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4.1 Field decomposition

4. Option B: Allow for a non-hydrostatic potential temperature and non-hydrostatic
pressure

A covariance model based on balances that are not valid at convective-scales (such as geo-
strophic and/or hydrostatic balance) is likely to lead to analysis increments that are inappropri-
ate.  In a conventional data assimilation system which invokes geostrophic and hydrostatic bal-
ances, a single observation will give rise to an innovation that will adjust the fields non-locally
according to these balances.  These include non-local increments to the mass and horizontal
wind fields and adjustments in the vertical to maintain hydrostatic balance.  In the event that the
innovation has arisen due to forecast errors of a convective system that is ageostrophic and non-
hydrostatic, these analysis increments would be inappropriate and may, e.g., remove
convective-scale features that are important.  The balance constraints may be lifted by use of op-
tion A above, but which still makes the assumption that all pressure is hydrostatically balanced.
Although an improvement on the standard scheme, this scheme may still be significantly sub-
optimal when used for the convective-scale problem.

Anelastic balance (Pielke, 2002) is an alternative balance that we would like to investigate for
the convective-scale data assimilation problem.  Subsections 4.1 to 4.7 are concerned with de-
veloping equations associated with anelastic balance.

4.1 Field decomposition
In order to study anelastic balance in a multi-scale system, we need to first introduce the fol-
lowing notation for the decomposition of fields

φ = φ̄ + φ′, (4.1)

φ̄ = φLS + φCS, (4.2)
where  is a generic atmospheric variable.  In (4.1), is the value of the field at a particular
position and time which is decomposed into grid-box mean,, and sub-grid-scale, , parts.
In (4.2) the grid-box-mean is itself decomposed into large-scale,, and convective-scale,

, parts.  The large-scale part is assumed to be in hydrostatic balance.  Pielke (2002, Sec.
4.1) makes a similar decomposition, but here we use a slightly different notation for clarity.
In incremental data assimilation, we have a reference state (e.g. the background) and an in-
crement.  Incremental quantities are decomposed as (4.2) (there are no sub-grid-scale data as-
similation increments), but are preceded by a  (as before)

φ φ
φ̄ φ′

φLS

φCS

δ

δφ̄ = δφLS + δφCS. (4.3)

4.2 Momentum equations for the grid-box-mean variables
[Note that readers wishing to skip the derivation of the anelastic equations may go straight to
the result (4.26).]  Pielke (2002, Eqs. (4.21)) gives the equations of motion for the grid-box-
mean winds (by Reynolds averaging), which provide the starting point for this discussion

∂ ū

∂ t
= −ū

∂ ū

∂ x
− v¯

∂ ū

∂ y
− w̄

∂ ū

∂ z

−αLS ∂
∂ x

ρLSu′u′


− αLS ∂
∂ y

ρLSv′u′


− αLS ∂
∂ z

ρLSw′u′


− αLS∂ (pCS + pLS)
∂ x

+ f v¯ , (4.4)

∂ v¯
∂ t

= −ū
∂ v¯
∂ x

− v¯
∂ v¯
∂ y

− w̄
∂ v¯
∂ z
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4.3 Three-dimensional divergence of the momentum equations

−αLS ∂
∂ x

ρLSu′v′


− αLS ∂
∂ y

ρLSv′v′


− αLS ∂
∂ z

ρLSw′v′


− αLS∂ (pCS + pLS)
∂ y

− f ū, (4.5)

∂ w̄

∂ t
= −ū

∂ w̄

∂ x
− v¯

∂ w̄

∂ y
− w̄

∂ w̄

∂ z

−αLS ∂
∂ x

ρLSu′w′


− αLS ∂
∂ y

ρLSv′w′


− αLS ∂
∂ z

ρLSw′w′


− αLS∂ pCS

∂ z
+ g

αCS

αLS
, (4.6)

where

α =
1
ρ

, (4.7)

is the specific volume.  Many terms are kept in these equations at this stage, for instance the
sub-grid-scale momentum fluxes.  These equations, and the decomposition (4.1)-(4.3), will re-
sult in some relatively involved, but straightforward, algebra.  The large-scale fields are taken
to be in hydrostatic balance

αLS∂ pLS

∂ z
= −g. (4.8)

The Boussinesq approximation has been used to give (4.6) which can be understood as fol-
lows.  Consider  when decomposed into large- and convective-scalesᾱ∂ p¯ / ∂ z + g

ᾱ
∂ p¯
∂ z

+ g = (αLS + αCS)
∂ (pLS + pCS)

∂ z
+ g,

= αLS∂ (pLS + pCS)
∂ z

+ αCS∂ (pLS + pCS)
∂ z

+ g,

= αLS∂ pCS

∂ z
+ αCS∂ (pLS + pCS)

∂ z
,

= αLS∂ pCS

∂ z
− g

αCS

αLS
+ αCS∂ pCS

∂ z
,

= (αLS + αCS)
∂ pCS

∂ z
− g

αCS

αLS
,

≈ αLS∂ pCS

∂ z
− g

αCS

αLS
. (4.9)

It is the approximation made to give the last line (that  except when multiplying)
that is the Boussinesq approximation.

αCS ≪ αLS g

4.3 Three-dimensional divergence of the momentum equations
As done in Pielke (2002, Secs. 4.2 and 4.3), multiply (4.4)-(4.6) by (assume that
is negligible) and calculate the 3-D divergence

ρLS ∂ ρLS/ ∂ t

∂
∂ t (∂ ρLSū

∂ x
+
∂ ρLSv¯
∂ y

+
∂ ρLSw̄

∂ z ) = −
∂
∂ x (ρLSū

∂ ū

∂ x ) −
∂
∂ y (ρLSū

∂ v¯
∂ x) −

∂
∂ z (ρLSū

∂ w̄

∂ x )
−
∂
∂ x (ρLSv¯

∂ ū

∂ y) −
∂
∂ y (ρLSv¯

∂ v¯
∂ y) −

∂
∂ z (ρLSv¯

∂ w̄

∂ y )
−
∂
∂ x (ρLSw̄

∂ ū

∂ z ) −
∂
∂ y (ρLSw̄

∂ v¯
∂ z) −

∂
∂ z (ρLSw̄

∂ w̄

∂ z )
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4.4 Anelastic balance and a diagnostic equation for convective-scale pressure

−
∂
∂ x

∂
∂ x

ρLSu′u′


−
∂
∂ y

∂
∂ x

ρLSu′v′


−
∂
∂ z

∂
∂ x

ρLSu′w′


−
∂
∂ x

∂
∂ y

ρLSv′u′


−
∂
∂ y

∂
∂ y

ρLSv′v′


−
∂
∂ z

∂
∂ y

ρLSv′w′


−
∂
∂ x

∂
∂ z

ρLSw′u′


−
∂
∂ y

∂
∂ z

ρLSw′v′


−
∂
∂ z

∂
∂ z

ρLSw′w′


−
∂ 2 (pCS + pLS)

∂ x2
−
∂ 2 (pCS + pLS)

∂ y2
−
∂ 2pCS

∂ z2

+
∂ ρLSf v¯
∂ x

−
∂ ρLSf ū

∂ y
+ g

∂
∂ z (ρLSαCS

αLS) , (4.10)

∂
∂ t

∇ ⋅ (ρLSū) = −
∂
∂ x

ρLSū ⋅ ∇ū −
∂
∂ y

ρLSū ⋅ ∇v¯ −
∂
∂ z

ρLSū ⋅ ∇w̄

−
∂
∂ x

∇ ⋅ ρLSu′u′


−
∂
∂ y

∇ ⋅ ρLSu′v′


−
∂
∂ z

∇ ⋅ ρLSu′w′


−∇2
hp

LS − ∇2pCS + k ⋅ ∇ × ρLSf ū + g
∂
∂ z (ρLSαCS

αLS) .(4.11)

Equation (4.11) is the same as (4.10), but in a compact notation where comprises the hori-
zontal components of the gradient vector and comprises all three components of the gradi-
ent vector.

∇h

∇

4.4 Anelastic balance and a diagnostic equation for convective-scale pressure
The anelastic approximation states that

∂
∂ t

∇ ⋅ (ρLSū) = 0. (4.12)

This gives a diagnostic equation for convective-scale pressure pCS

∇2pCS − g
∂
∂ z (ρLSαCS

αLS) = −
∂
∂ x

ρLSū ⋅ ∇ū −
∂
∂ y

ρLSū ⋅ ∇v¯ −
∂
∂ z

ρLSū ⋅ ∇w̄

−
∂
∂ x

∇ ⋅ ρLSu′u′


−
∂
∂ y

∇ ⋅ ρLSu′v′


−
∂
∂ z

∇ ⋅ ρLSu′w′


−∇2
hp

LS + k ⋅ ∇3 × ρLSf ū. (4.13)
The convective-scale term  has been put on the left hand side because it has a dependency
upon  via the ideal gas law.  The ideal gas law may be developed as follows

αCS

pCS

pα = RTv,

ln p + lnα = ln R + ln Tv,
which may be linearized as follows

dp

p
+

dα
α

=
dTv

Tv
. (4.14)

When the linearization state comprises the large-scale fields and the convective-scale compo-
nents are small, (4.14) leads to the following
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4.5 Comment on the diagnostic pressure equation

pCS

pLS
+
αCS

αLS
=

TvCS

TvLS. (4.15)

This can be written in terms of potential temperature, , which may be line-
arized as follows

Tv = (p / p1000)κ θv

ln Tv = ln θv + κ (ln p − ln 1000) ,

TvCS

TvLS =
θvCS

θvLS + κ
pCS

pLS
. (4.16)

Eliminating  between (4.15) and (4.16) givesTvCS

pCS

pLS
+
αCS

αLS
=

θvCS

θvLS + κ
pCS

pLS
,

αCS

αLS
=

θvCS

θvLS + (κ − 1)
pCS

pLS
,

αCS

αLS
=

θvCS

θvLS −
cv

cp

pCS

pLS
, (4.17)

where .  Substituting (4.17) into (4.13) allows the convective-scale pressure
contribution to be separated from the other variables

κ − 1 = −cv / cp

∇2pCS + g
cv

cp

∂
∂ z (ρLSpCS

pLS) = −
∂
∂ x

ρLSū ⋅ ∇ū −
∂
∂ y

ρLSū ⋅ ∇v¯ −
∂
∂ z

ρLSū ⋅ ∇w̄

−
∂
∂ x

∇ ⋅ ρLSu′u′


−
∂
∂ y

∇ ⋅ ρLSu′v′


−
∂
∂ z

∇ ⋅ ρLSu′w′


−∇2
hp

LS + k ⋅ ∇ × ρLSf ū + g
∂
∂ z (ρLSθvCS

θvLS) . (4.18)

This may be written in the following compact form (the sub-grid-scale terms are ignored from
now on - there may scope in later work to include them in a parametrised form - and the over-
bar notation is dropped)

∇2pCS + g
cv

cp

∂
∂ z ( 1

αLS

pCS

pLS) = −∇ ⋅ ( 1
αLS

(u ⋅ ∇3) u)
−∇2

hp
LS + k ⋅ ∇ × ( f

αLS
u) + g

∂
∂ z ( 1

αLS

vθCS

θvLS) . (4.19)

This is a diagnostic equation for .pCS

4.5 Comment on the diagnostic pressure equation
A state that happens to satisfy hydrostatic balance

α
∂ p

∂ z
= −g, (4.20)

has the following linearization

α
∂ dp

∂ z
+
∂ p

∂ z
dα = 0. (4.21)

When the linearization state comprises the large-scale fields and the convective-scale compo-
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4.6 Strategy for the design of a diagnostic relationship for use in incremental data assimilation

nents are small, (4.21) leads to the following

αLS∂ pCS

∂ z
+
∂ pLS

∂ z
αCS = 0,

αLS∂ pCS

∂ z
= g

αCS

αLS
,

= g
θvCS

θvLS − g
cv

cp

pCS

pLS
, (4.22)

where (4.17) has been used in the last line.  Multiplying by and differentiating with respect
to  gives

ρLS

z

∂ 2pCS

∂ z2
= g

∂
∂ z (ρLSθvCS

θvLS) − g
cv

cp

∂
∂ z (ρLSpCS

pLS) . (4.23)

Substituting this into (4.19) and ignoring advection terms leaves

∇2pCS −
∂ 2pCS

∂ z2
= −∇2

hp
LS + k ⋅ ∇ × ρLSf u,

∇2
hp

CS = −∇2
hp

LS + k ⋅ ∇ × ρLSf u,

∇2
hp = k ⋅ ∇ × ρLSf u, (4.24)

which is geostrophic balance.  Therefore when anelastic balance holds (and when the advec-
tion terms can be ignored), there appears to be a mutual correspondence between the satisfac-
tion of geostrophic and hydrostatic balances.  It is not yet clear how useful this observation
might be in the design of a control variable transform.

4.6 Strategy for the design of a diagnostic relationship for use in incremental data
assimilation

In the incremental data assimilation method, an increment is added to a reference state at the
level of grid-box-mean quantities.  The increments are specified according to the notation in
Sec. 4.1 (from now on though sub-grid-scale quantities will be neglected and the overbars will
be dropped since all quantities will exist at the level of grid-box-mean).  Large-scale quan-
tities (reference and incremental states) will be assumed to be in exact hydrostatic balance, but
not necessarily in exact geostrophic balance.

Data assimilation increments are introduced by linearization of (4.19).  There are a number of
strategies and each leads to a possible way that the convective-scale assimilation problem may
be solved.  One is considered below and another is considered in Sec. 5.

4.7 Linearization #1 of the anelastic diagnostic equation
Equation (4.19) is linearized as follows

∇2δpCS − g
cv

cp

∂
∂ z (δαLS

αLS2

pCS

pLS) + g
cv

cp

∂
∂ z ( 1

αLS

δpCS

pLS ) − g
cv

cp

∂
∂ z ( 1

αLS

pCS

pLS2δpLS) =

∇ ⋅ (δαLS

αLS2 (u ⋅ ∇) u) − ∇ ⋅ ( 1
αLS

(δu ⋅ ∇) u) − ∇ ⋅ ( 1
αLS

(u ⋅ ∇)δu)
−∇2

hδpLS − k ⋅ ∇ × (f δαLS

αLS2 u) + k ⋅ ∇ × ( f

αLS
δu)
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4.  Option B: Allow for a non-hydrostatic potential temperature and non-hydrostatic pressure

−g
∂
∂ z (δαLS

αLS2

θvCS

θvLS) + g
∂
∂ z ( 1

αLS

δθvCS

θvLS ) − g
∂
∂ z ( 1

αLS

θvCS

θvLS2δθ
vLS) . (4.25)

In the above there are large-scale increments (,  and ), convective-scale incre-
ments (  and ) and general increments .  If the large-scale increments are known
separately (see e.g. multi-scale option ii in Sec. 1), then (4.25) is a diagnostic equation relating

 and .  This means that a convective-scale control variable transform based on (4.25)
would not require either a pressure-related or a temperature-related control variable.  For ex-
ample, if  is an extra control variable associated with convective-scales, then could
be diagnosed from (4.25).  For the convective-scales this would effectively replace the hydro-
static balance step in the current scheme, e.g. (2.2), with the solution of (4.25) for (al-
though hydrostatic balance would still be used at large-scales).

δαLS δpLS δθvLS

δpCS δθCS δu

δpCS δθvCS

δθvCS δpCS

δpCS

In (4.25), the large-scale increments are ,  and , but recall that the usual (i.e.
large-scale) control variables are, ,  and .  Let us assume that we can, as part of a
grand control variable transform, diagnose the former large-scale increments from the stan-
dard control variables whilst maintaining a large/convective-scale separation.  Then,

,  and , would lead to the following rearrangement of (4.25)

δαLS δpLS δθvLS

δψ δχu δpA δµ

δαLS

δpLS δθvLS δu



∇2 •  + g

cv

cp

∂
∂ z ( 1

αLS

•
pLS) δpCS =



g

cv

cp

∂
∂ z ( •

αLS2

pCS

pLS) + ∇ ⋅ ( •
αLS2 (u ⋅ ∇) u) − k ⋅ ∇ × (f •

αLS2u) − g
∂
∂ z ( •

αLS2

θvCS

θvLS)

 δαLS

+ 

g

cv

cp

∂
∂ z ( 1

αLS

pCS

pLS2 •) − ∇2
h •


 δpLS

−g
∂
∂ z ( 1

αLS

θvCS

θvLS2 •)δθvLS

+g
∂
∂ z ( 1

αLS

•
θvLS)δθvCS

+ {−∇ ⋅ ( 1
αLS

(• ⋅ ∇) u) − ∇ ⋅ ( 1
αLS

(u ⋅ ∇) •) + k ⋅ ∇ × ( f

αLS
•)} δu,

(4.26)

ΠδpCS = PαδαLS + PpδpLS + PθLS

δθvLS
+ PθCS

δθvCS
+ Puδu, (4.26a)

= PαδαLS + PpδpLS + PθLS

δθvLS
+ PθCS

δθvCS
+ Pu

hδu2 + Pu
vδw,

= PαδαLS + PpδpLS + PθLS

δθvLS
+ PθCS

δθvCS
+ (Pu

h + Pu
v W)δu2,

= PαδαLS + PpδpLS + PθLS

δθvLS
+ PθCS

δθvCS
+ Pu

2δu2, (4.26b)
Equation (4.26a) has been developed into (4.26b) by first splitting the operator into hori-
zontal  and vertical  parts, then writing the vertical wind in terms of the horizontal
wind using (3.21a).  The operator is defined as .  Forms (4.26a) and
(4.26b) are both used in the rest of this document.  In addition to the expressions in the stan-
dard Up-transform in Sec. 2.2 to determine , ,  and , the following is also
required

Pu

(Pu
h) (Pu

v )
Pu

2 Pu
2 = Pu

h + Pu
v W

δαLS δpLS δθvLS δu
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4.8 The Tp-transform for option B

δαLS = αLS2
δρLS, (4.27)

δαLS = AρδρLS. (4.27a)
The LS/CS scale separation would be maintained in and  only for constant .  This
is not constant but, as before, we put this issue to one side for now.

δρLS δαLS αLS

4.8 The Tp-transform for option B

Input fields

, , , ,  and δu δv δw δθ δp δqT

Output fields

, , , , , δψLS δχu δpA δψCS δθvCS δµ

This Tp-transform is designed to be the inverse of the Up-transform given below.  To under-
stand this Tp-transform, it is recommended that Sec. 4.9 is read first.

Tp.1.  Calculate the streamfunction - see (2.4)

δψ = ∇−2
h







k ⋅







∇ × ( )










, (4.28 )
δu
δv
0

*

δψ = Yδuw = 0, (4.28a)
where  is a 3-D wind vector with zero vertical component.δuw = 0

Tp.2.  Calculate the velocity potential - see (2.5)

δχ = ∇−2
h







∇ ⋅ ( )






, (4.29)
δu
δv
0

δχ = Cδuw = 0. (4.29a)

Tp.3.  Calculate the balanced component of the velocity potential - see (2.6)

δχb = Bχψ
v Bψψ

v

−1
SLS

G δψ, (4.30)

= XSLS
G δψ, (4.30a)

where  is a filter that allows through only scales where the geostrophic balance approxima-
tion is valid.  At smaller scales, it is assumed that there is no balanced velocity potential.

SLS
G

Tp.4.  Calculate the unbalanced component of the velocity potential - see (2.7)

δχu = δχ − δχb. (4.31 / 4.31a)*

Tp.5.  Calculate the level-by-level geostrophically balanced pressure - see (2.8)

δpG = ∇−2
h {∇h ⋅ [fρ∇hS

LS
G δψ]} , (4.32)

δpG = LSLS
G δψ. (4.32a)

Note the presence of the large-scale filter, , which is not present in the standard transforms.SLS
G

Tp.6.  Calculate the vertically regressed geostrophically balanced pressure - see (2.9)
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4.9 The Up-transform for option B

δpF = BpFpG

v BpGpG

v

−1
δpG, (4.33)

δpF = GδpG. (4.33a)

Tp.7.  Calculate the virtual potential temperature - see (2.1)

δθv = [1 + (ε−1 − 1) q] δθ + θ (ε−1 − 1)δqT, (4.34)

δθv = Θθδθ + ΘqδqT.

Tp.8.  Calculate the moisture control variable - see (2.3)

δµ = a ( 1
qs
δqT − h1

qΠ
qs

d ln es

dT
δθ − h2

q

pqs

κΠθ
d ln es

dT
− 1 δp) , (4.35 )*

δµ = MqδqT + Mθδθ + Mpδp. (4.35a)

Tp.9.  Calculate the large-scale pressure
The following result is a combination of steps in the Up-transform (it is recommended that
Sec. 4.9 is read first) and is given here in operator form only.  This result is derived in Sec.
4.10 after the Up-transform is presented

δpLS =

(PαAρ [Rp + RθP] + Pp + PθLS

P − PθCS

P + Π)−1 (Πδp − PθCS

δθv − Puδu) . (4.36a)
Operators that have not been defined so far are defined in the course of Sec. (4.9).

Tp.10.  Calculate the convective-scale pressure

δpCS = δp − δpLS. (4.37/ 4.37a)

Tp.11.  Calculate the geostrophically unbalanced pressure

δpA = δpLS − δpF. (4.38 / 4.38a)*

Tp.12.  Calculate the large-scale virtual potential temperature - see (2.18)

δθvLS
=

κg

cp
(∂Π
∂ z )−2 ∂

∂ z (ΠHδpLS

pH ) , (4.39)

δθvLS
= PδpLS. (4.39a)

Tp.13.  Calculate the convective-scale virtual potential temperature

δθvCS
= δθv − δθvLS

. (4.40/ 4.40a)

4.9 The Up-transform for option B

Input fields

, , , , , δψLS δχu δpA δψCS δθvCS δµ
Output fields

, , , ,  , and δu δv δw δθ δp δρ δqT
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4.  Option B: Allow for a non-hydrostatic potential temperature and non-hydrostatic pressure

Up.1.  Calculate the balanced velocity potential (as Tp.3)

δχb = Bχψ
v Bψψ

v

−1
SLS

G δψ, (4.41)

= XSLS
G δψ. (4.41a)

Up.2.  Calculate the velocity potential (as Tp.4)

δχ = δχu + δχb. (4.42/ 4.42a)

Up.3.  Calculate the horizontal wind components (as Tp.1 and Tp.2)

( ) = ∇hδχ + k × ∇δψ, (4.43 )δu
δv

*

δu2 = C−1δχ + Y−1δψ, (4.43a)
where  is a 2-D (horizontal) wind vector.δu2

Up.4.  Calculate the level-by-level geostrophically balanced pressure (as Tp.5)

δpG = ∇−2
h {∇h ⋅ [fρ∇hS

LS
G δψ]} , (4.44)

δpG = LSLS
G δψ. (4.44a)

Up.5.  Calculate the vertically regressed geostrophically balanced pressure (as Tp.6)

δpF = BpFpG

v BpGpG

v

−1
δpG, (4.45)

δpF = GδpG. (4.45a)

Up.6.  Calculate the large-scale pressure (as Tp.11)

δpLS = δpA + δpF. (4.46/ 4.46a)

Up.7.  Calculate the large-scale virtual potential temperature (as Tp.12)

δθvLS
=

κg

cp
(∂Π
∂ z )−2 ∂

∂ z (ΠHδpLS

pH ) , (4.47)

δθvLS
= PδpLS, (4.47a)

Up.8.  Calculate the total virtual potential temperature (as Tp.13)

δθv = δθvCS
+ δθvLS

. (4.48/ 4.48a)

Up.9.  Calculate the large-scale density component

δρLS = ρ (1 − κ
p

δpLS −
1
θv
δθvLS) , (4.49 )*

δρLS = RpδpLS + RθδθvLS
. (4.49a)
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4.  Option B: Allow for a non-hydrostatic potential temperature and non-hydrostatic pressure

Up.10.  Calculate the large-scale specific mass component - see (4.27)

δαLS = αLS2
δρLS, (4.50)

δαLS = AρδρLS. (4.50a)

Up.11.  Calculate the vertical velocity component by solving either the incompressible
equation

∂ (δwρy)
∂ z

+
∂ (δρyw)

∂ z
= −∇h ⋅ 


ρy ( ) − ∇h ⋅ 


δρy ( ) , (4. )δu

δv
u
v

51*

δw ≈ Wδu2, (4.51a)
or by solving Richardson's equation (not shown).  For simplicity, the matrix/vector version of
(4.51) does not include the  contribution.δρ

Up.12.  Calculate the convective-scale pressure contribution by solving the anelastic balance
equation (4.26/4.26a) (given here only in operator form).  This step is associated with Tp.9.

δpCS = Π−1 (PαδαLS + PpδpLS + PθLS

δθvLS
+ PθCS

δθvCS
+ Puδu) , (4.52a)

where  is a 3-D wind field, the operators in (4.52a) appear in (4.26a) and the operator  isδu Π

Π = ∇2 •  + g
cv

cp

∂
∂ z ( 1

αLS

•
pLS) . (4.53)

Up.13.  Calculate the total pressure (as Tp.10)

δp = δpLS + δpCS. (4. / 4.54a)54*

Up.14.  Calculate together the potential temperature and the total specific humidity (using the
definition of virtual potential temperature,
(used in Tp.7), and Tp.8)

δθv = [1 + (ε−1 − 1) q] δθ + θ (ε−1 − 1)δqT

δqT = {ah1
qΠ
qs

d ln es

dT
δθv + [1 + (ε−1 − 1) q] δµ +

[1 + (ε−1 − 1) q] ah2
q

pqs

κΠθ
d ln es

dT
− 1 δp} /

{ah1
qΠ
qs

d ln es

dT
θ (ε−1 − 1) + [1 + (ε−1 − 1) q]

a

qs
} , (4. )55*

δqT = A−1 {Θθδµ − Mθδθv − ΘθMpδp} , (4.55a)

δθ = { a

qs
δθv − θ (ε−1 − 1)δµ − θ (ε−1 − 1) ah2

q

pqs

κΠθ
d ln es

dT
− 1 δp} /

{ah1
qΠ
qs

d ln es

dT
θ (ε−1 − 1) + [1 + (ε−1 − 1) q]

a

qs
} , (4.56 )*

δθ = A−1 {Θqδµ − Mqδθv − ΘqMpδp} . (4.56a)
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4.10 Derivation of equation (4.36a)

4.10 Derivation of equation (4.36a)
Equation (4.36a) is a diagnostic equation giving the large-scale pressure for a given total pres-
sure and virtual potential temperature.  It is derived by combining some of the equations pre-
sented as part of the Up-transform in Sec. 4.9 as the prescription below.  The derivation is
made in operator notation at first (for conciseness) but the result is translated to explicit form
at the end.  This derivation is straightforward and involves only simple substitution of vari-
ables from Sec. 4.9.

The starting point is (4.52a), which is the diagnostic equation for convective-scale pressure.
The strategy is to substitute all increment states that appear in this equation with either incre-
ments of large-scale pressure (the unknown) or increments that are known before the Tp.9
stage.  First eliminate  with (4.50a) and eliminate  with (4.48a)δαLS δθvCS

δpCS = Π−1 (PαδαLS + PpδpLS + PθLS

δθvLS
+ PθCS

δθvCS
+ Puδu) ,

= Π−1 (PαAρδρLS + PpδpLS + PθLS

δθvLS
+ PθCS

(δθv − δθvLS
) + Puδu) .

Next eliminate  with (4.49a) and factoriseδρLS

δpCS = Π−1 (PαAρ (RpδpLS + RθδθvLS
) + PpδpLS + PθLS

δθvLS
+ PθCS

(δθv − δθvLS
) + Puδu) ,

= Π−1 ((PαAρRp + Pp)δpLS + (PαAρRθ + PθLS

− PθCS

)δθvLS
+ PθCS

δθv + Puδu) .
Next eliminate  with (4.47a) and factoriseδθvLS

δpCS = Π−1 ((PαAρRp + Pp)δpLS + (PαAρRθ + PθLS

− PθCS

) PδpLS + PθCS

δθv + Puδu) ,

= Π−1 ((PαAρRp + Pp + PαAρRθP + PθLS

P − PθCS

P)δpLS + PθCS

δθv + Puδu) .
The left-hand side can be rewritten with (4.54a)

δp − δpLS = Π−1 ((PαAρRp + Pp + PαAρRθP + PθLS

P − PθCS

P)δpLS + PθCS

δθv + Puδu) ,
which can be rearranged

δp − Π−1 (PθCS

δθv − Puδu) =

Π−1 ((PαAρRp + Pp + PαAρRθP + PθLS

P − PθCS

P + Π)δpLS) .
Further rearranging gives

Πδp − PθCS

δθv − Puδu = (PαAρRp + Pp + PαAρRθP + PθLS

P − PθCS

P + Π)δpLS,

= (PαAρ [Rp + RθP] + Pp + PθLS

P − PθCS

P + Π)δpLS.
The increment  is thus found by inverting the appropriate operatorsδpLS

δpLS =

(PαAρ [Rp + RθP] + Pp + PθLS

P − PθCS

P + Π)−1 (Πδp − PθCS

δθv − Puδu) . (4.57a)
Recall that the following operators have been defined earlier

Pα = g
cv

cp

∂
∂ z ( •

αLS2

pCS

pLS) + ∇ ⋅ ( •
αLS2 (u ⋅ ∇) u) − k ⋅ ∇ × (f •

αLS2u) − g
∂
∂ z ( •

αLS2

θvCS

θvLS) ,

– 24 –



4.11 The implied background error covariance matrix for option B

Pp = g
cv

cp

∂
∂ z ( 1

αLS

pCS

pLS2 •) − ∇2
h •,

PθLS

= −g
∂
∂ z ( 1

αLS

θvCS

θvLS2 •) ,

PθCS

= g
∂
∂ z ( 1

αLS

•
θvLS) ,

Pu = −∇ ⋅ ( 1
αLS

(• ⋅ ∇) u) − ∇ ⋅ ( 1
αLS

(u ⋅ ∇) •) + k ⋅ ∇ × ( f

αLS
•) ,

Aρ = αLS2
,

Rp =
ρ (1 − κ)

p
,

Rθ = −
ρ
θv

,

P =
κg

cp
(∂Π
∂ z )−2 ∂

∂ z (ΠH •
pH ) ,

Π = ∇2 •  + g
cv

cp

∂
∂ z ( 1

αLS

•
pLS) .

4.11 The implied background error covariance matrix for option B
We now examine the implied background error covariance matrix for option B.  The
expressions can become very complicated and so we examine the implied covariances for the
variables , ,  and  only.  Consequently, we need to involve the control variables,

,  and  only.  First, a summary of the Up-transform for this reduced variable set
δψ δχ δp δθv δψ

δχu δpA δθvCS

( ) = ( ) ( ) ,

δψ
δχ
δp

δθv

I 0 0 0
XSLS

G I 0 0

∆GLSLS
G + ∆u Γχ ∆ 0

PGLSLS
G 0 P I

δψ
δχu

δpA

δθvCS

(4.58)
where

∆ = I + Π−1 [PαAρ (Rp + RθP) + Pp + PθLS

P] , (4.59)

∆u = Π−1Pu
2 (C−1XSLS

G + Y−1) , (4.60)

Γχ = Π−1Pu
2C−1, (4.61)

This is considerably more complicated than the previous schemes.  The implied covariances
are

Bimp = UpBpU
T
p , (4.62)

where  is the background error covariance matrix of the variables, ,  and
(which is block diagonal).  This expands to

Bp δψ δχu δpA δθvCS
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4.11 The implied background error covariance matrix for option B

Bimp = ( ) ( ) ×

I 0 0 0
XSLS

G I 0 0

∆GLSLS
G + ∆u Γχ ∆ 0

PGLSLS
G 0 P I

Bψ
p 0 0 0

0 Bχu

p 0 0

0 0 BpA

p 0

0 0 0 Bθv
p

( ) ,

I SLS
G

TXT SLS
G

TLTGT∆T + ∆uT SLS
G

TLTGTPT

0 I ΓχT 0
0 0 ∆T PT

0 0 0 I

= ( Bψ
p Bψ

p SLS
G

TXT Bψ
p (SLS

G
TLTGT∆T + ∆uT)

XSLS
G Bψ

p XSLS
G Bψ

p SLS
G

TXT + Bχu

p XSLS
G Bψ

p (SLS
G

TLTGT∆T + ∆uT) + Bχu

p ΓχT

(∆GLSLS
G + ∆u)Bψ

p (∆GLSLS
G + ∆u)Bψ

p SLS
G

TXT + (∆GLSLS
G + ∆u)Bψ

p (SLS
G

TLTGT∆T + ∆uT) +

ΓχBχu

p ΓχBχu

p ΓχT + ∆BpA

p ∆T

PGLSLS
G Bψ

p PGLSLS
G Bψ

p SLS
G

TXT PGLSLS
G Bψ

p (SLS
G

TLTGT∆T + ∆uT) +

PBpA

p ∆T

).(4.63)

Bψ
p SLS

G
TLTGTPT

XSLS
G Bψ

p SLS
G

TLTGTPT

(∆GLSLS
G + ∆u)Bψ

p SLS
G

TLTGTPT +

∆BpA

p PT

PGLSLS
G Bψ

p SLS
G

TLTGTPT +

PBpA

p PT + Bθv
p

This result can now be compared to (2.28) for the standard scheme and (3.25) for option A.
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