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1. Introduction

A new approach to data assimilation is expected to be required for meteorological syste
involve convective-scale motion, as opposed to synoptic and global-scale motion which
rently considered. For synoptic and global scales the atmosphere has certain physical pi
(viz. geostrophic and hydrostatic balance), which are exploited for the purpose of modell
background error covariances. These properties may break down at convective- scale
leads us to re-examine the data assimilation problem for such motions.

Background error covariance statistics describe the probability density function of (Gat
background errors of the variables that are usually represented in a model forecast (the ¢
'model variables'). These statistics are a very important part of data assimilation as they
how a background state (otherwise known as an 'a-priori' or a 'first guess' state) is allowt
modified by observations. The success of a data assimilation system can depend str¢
how the background error covariances are specified. For instance they can make the di
between a data assimilation system that produces realistic and sufficiently smooth a
which are appropriate to the system, and one that does not.

Background error covariances are modelled using a technique called control variable trai
(CVTs). This technique attempts to re-express the cost function from one in terms of
variables to another in terms of new variables (called 'control variables') whose backgro
rors are uncorrelated (for a review, see e.g. Bannister 2008). This is difficult to do exa
the variables that are uncorrelated are usually unknown, but schemes can be propasec
sume certain carefully chosen variables are uncorrelated. Such assumptions form the be
model of the background error covariances. Such a model gives rise to so-called implie
ground error covariances of model variables which should be as close as possible to th
background error covariances (a subset of which can usually be estimated explicitly f
evaluate the implied covariances).

Currently, the Met Office's control variables are streamfuncidgr), (unbalanced velocity po
tential ©x"), geostrophically unbalanced pressusg’] and a relative humidity variabl@.),
where the) preceding each variable denotes an error (or perturbation) in each quantity. |
sumed that background errors between the control variables are uncorrelated. This cl
variables is most appropriate at larger-scales, where it is possible to assume that geostrc
hydrostatic balances are important. The scheme works in the data assimilation by rec
the model variables from these control variables using a CVT. The inverse CVT is also
to derive control variables from model variables, which is an essential off-line step nee
determine the spatial statistics of the control variables. For insgghisefound fromdy and
total pressure errop) using a balance relation - specifically the linear balance equation (|
(roughly equivalent to geostrophic balance) as follows

op* = op — Loy, (L1
where Loy = V2 [Vh - (FpViow)], (1.2)
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1. Introduction

is the diagnosed balanced pressure. Heasgethe Coriolis parametep, is reference state der
sity, Vy, is the horizontal gradient operator dnds the linear balance operator defined in (1.
This scheme is useful at scales where the LBE holds by assuming that albopfftekl is bal-
anced (i.e. there is no unbalanced streamfunction). The scheme works even in the tropic
the balance diminishes in a specified way-$ 0 as the latitude> 0). Hence at the equato
all pressure errors are unbalancég, = Jp. In a similar way temperaturédT) can be di-
agnosed frondp using an operator that can be derived from hydrostatic balance - see e.(

nister (2008)
-1 -1
~ g(an) { (an) J }Kn
T =2(—| {O|—=—| = - 1j—dp. 1.

0 Cp\ 0z dz) odz p(SIO 43

Hereg is the acceleration due to gravity,is the specific heat capacity at constant presguse
height, x is the ratio of specific heatp,is the reference state pressure Bht the reference

state exner pressure. (N.B. there is also a moisture contributi®n, twhich has been ne
glected in the above.)

At convective scales, the importance of linear and hydrostatic balances are known to d
(e.g. Vetra-Carvalho et al., 2010; Bannister et al., 2011). In the case of extremely smal
for instance, where geostrophic balance does not hold at all, we would expect all pressul
to be unbalancedp® ~ dSp. Equation (1.1), however, is inconsistent with this expectation
en thatLdy may have a substantial value. Unfortunately, unlike the midlatitude vs. trc
scenarios (where linear balance respectively does and doesn't apply), there is nothing in
distinguish between large and small scales (this can be seen easily in the cabamndheare
constants where (1.2) becomedy = fpdy). A similar argument holds for hydrostatic b
ance, where (1.3) would not be the correct relation to use to diagfipakhough the extent t
which (1.3) is inappropriate in not yet clear (Bannister et al., 2011).

There are two problems here. The first is to decide what to do specifically for convective
flows where (1.1)-(1.3) may be inappropriate (called the 'convective-scale' problem), a
second is to decide how to treat the convective-scale flows simultaneously with the larg
part of the problem where (1.1)-(1.3) remain appropriate (called the 'multi-scale’ problem
following possible strategies may apply for the convective-scale problem and each rec
the diminished roles of geostrophic and hydrostatic balances at convective scales.

I. Do not decompose variables into balanced and unbalanced variables, i.e. treat 'm
variables' themselves as control variables.

Il. Use the same control variables that are used currently, but turn-off balance relatio

Ill. Introduce extra control variables that reflect the unbalanced nature of the atm
phere at convective-scales.

IV. Propose alternative diagnostic relationships that do hold at convective-scales, to
place or complement the traditional balance relations.

V. Introduce a set of purely statistical relationships (instead of diagnostic relationshi
in the control variable transforms, which are valid at convective-scales.

VI. Define forecast errors in the representation of the normal modes of the forec
model (linearized about the background). (This strategy has been taken by Ruth
trie for her PhD thesis - see refs.).

The following possible strategies may apply for the multi-scale problem.

i. Look for universally relevant variables, which are always approximately uncorrelate
where the associated 'balance’ relationships (yet to be determined) inherently adju
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1. Introduction

the dynamic regime (i.e. midlatitudes, tropics, large-scale or convective-scale).

ii. Use regime-dependent variables. This means two sets of variables, each represei
a different scale regime (i.e. one set that applies at large-scales and one set tha
plies at convective-scales). A cross-over length scale must be applied.

iii. Run an assimilation where only the convective-scales are adjusted by the main c
trol variables. Large-scale information (from a conventional assimilation performe
beforehand) may be introduced by means of a separate constraint in the cost func
(the so-calledk term as in Fischer et al., 2005).

Clearly, these are complicated issues and there will not be time to develop and compare
full. In this working paper the current scheme is outlined and then two significant modifici
are made using lll, IV and ii above. It is assumed that the best approach is to solve the s
optic/convective-scales together in the same data assimilation problem and so option iii is
considered here.




2.1 The current Tp-transform

2. Thecurrent transforms

In the current scheme, the model variablesdatrejv, ow, 60, dp, op anddgr and the control
variables aréy, o', op*, du. There are seven model variables, but only four control varia
When converting from control-to-model variables, the three missing fields come from img
hydrostatic balance, the ideal gas law and incompressibility.

2.1 Thecurrent Tp-transform

Input fields Output fields
ou, oV, 60, 6p anddgr oy, oxY, opt, du

The Tp-transform is shorthand for the set of transformations that go from model to ¢
variables that are thought to be uncorrelated. The current Tp-transform is the followir
Met Office, 2010). In the following, many of the steps are intermediate. The steps tha
in the control variable fields are marked with an asterisk. A shorthand form of each ec
(assuming a matrix/vector notation) is given with each step with equation numbers ap,
with an "a".

Tp.1. Calculate the virtual potential temperature
00" = [1+ (¢ = 1)ql oo + 6(e = L)oo, (2.1)

56" = ©°56 + ©%qy, (2.1a)
wheree is the ratio of the molecular weight of water to the molecular weight of dry air.

Tp.2. Calculate the hydrostatic exner pressure by integrating the hydrostatic equation

9(Zcrve = Zewrs) (v

OTTY,y, = OTTY 4, + 200", (2.2)
c0

oI = Py's6", (2.2a)

wherelIT" is the hydrostatic exner pressugds the acceleration of gravitg, is the specific
heat capacity at constant pressure aisdhe model level height.

Tp.3. Calculate the moisture control variable

1 qlld Ine, q [ dine }
ou = al—dar — hj— 00 — h,—| xI16 - 110 2.3*
uw = a % Or o dT - K T p), (2.3%)
Su = M%agr + M%66 + MPsp, (2.33)

wherea is a normalization constar in the saturated humidity mixing ratie, is the saturat-
ed vapour pressure of waterjs the ratio of specific heats, ahdandh, are known correla-
tion coefficients. To introduce a language,may be referred to as an 'unbalanced’ varic
because the 'balanced’ contributions fiandop have been removed. The contributions
ou from 66 anddp are termed "balanced" because they are associated with (or in 'be
with) 60 andodp. The words "balanced” and "unbalanced" have different meanings to
used with respect to balance relations like hydrostatic or geostrophic balance.

Tp.4. Calculate the streamfunction



2. The current transforms

ou
oY = th{k : [V X | ov ]} (2.4%)
0

O = YoUy_o, (2.43)

wherek is the vertical unit vectory, comprises the horizontal components of the grad
vector,V comprises all three components of the gradient vectodangd, is a 3-D wind vec-

tor with zero vertical component.
ou
V2V - |ovlp. (2.5)
0

COUy_o, (2.50)

Tp.5. Calculate the velocity potential

oy

oy

Tp.6. Calculate the balanced component of the velocity potential
61" = BB oy, (26)

= X, (2.6a)

whereB" is the vertical error covariance betweemanddy, andBy" is the vertical error co-:
variance betweedy and itself.

Tp.7. Calculate the unbalanced component of the velocity potential
o' = oy — ox°, (2.7% 1 2.79)

Tp.8. Calculate the level-by-level geostrophically balanced pressure
op° = Vi (Vi - [fpVioyl}, (2.8)
op° = Loy, (2.8a)

Tp.9. Calculate the vertically regressed geostrophically balanced pressure
-1
off = BYBI™ op®, (2.9

op = Gop°. (2.9a)

The geostrophically balanced pressure calculated in step 7 has to be regressed vertica
sure vertical consistency between levels. Performing step 7 alone, which is performet
by-level, is problematic as it does not ensure continuity between neighbouring levels.

Tp.10. Calculate the hydrostatic pressure

op = %an“, (2.10)
opt = P, (2.10a)

Combining (2.10a) with (2.2a) gives the shorthand
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2.2 The current Up-transform

opt = P 100", (2.10b)
whereP?! = Plpgt.

Tp.11. Calculate the geostrophically unbalanced pressure (ageostrophic pressure)
opt = op™ - op”. (2.11%/ 211a)

Note that in this Tp-transform the model variahlasanddp are not used antp is used only
in the calculation obu and to define the lower boundary condition in the calculatiodTI5f

(not shown here). The Tp-transform is used only when VAR outer loops are invoked ¢
the (off-line) calibration procedure.

2.2 The current Up-transform

Input fields Output fields
oy, oxY, opt, du ou, oV, Sw, 66 ,dp ,0p andday

The Up-transform is shorthand for the set of transformations that go from control to
variables. The current Tp-transform is the following (see Met Office, 2010). The
transform is used at every VAR iteration and so efficiency is a very important conside
for its implementation. The steps that result in the model fields are marked with an a:
The same shorthand form of each equation as used alongside the Tp-transform (ass
matrix/vector notation) is given with each step with equation numbers appended with ar

Up.1. Calculate the balanced velocity potential (as Tp.6)
ox° = BYBIY oy, (212

Up.2. Calculate the velocity potential (as Tp.7)
Sy = Oy + Oy°. (2.13/2.13a)

Up.3. Calculate the horizontal wind components (as Tp.4 and Tp.5)

g\‘j — Vioy + k x Vo, (2.14%)
Su, = C oy + Y oy, (2.14a)

wheredu, is a 2-D (horizontal) wind vector.

Up.4. Calculate the level-by-level geostrophically balanced pressure (as Tp.8)
op° = Vi {Vi - [fpVioyl}, (215
op® = Low. (2.159)

Up.5. Calculate the vertically regressed geostrophically balanced pressure (as Tp.9)

-1
op” = BYPBIP sp° (2.16)
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2. The current transforms

op = Gop°. (2.16a)

Up.6. Calculate the hydrostatically balanced pressure (as Tp.11)
op' = opt + op”. (2.17/2.17a)

Up.7. Calculate the virtual potential temperature (as Tp.2/Tp.10)

-2 HSAH

v o_ K_g(m) i(“ 59)
56" = 3z 32l ) (2.18)
56" = Pop". (2.18a)

Up.8. Calculate the pressure
op = op’, (2.19%)
(as all pressure is assumed to be hydrostatic).

Up.9. Calculate together the potential temperature and the total specific humidity (a:
and Tp.3)

ogr = {ahlﬂd In 50" + 1+ (' = 1qou+
gs dT
1 i[ dineg B }
[1+ (e 1)q] ahzloqs x116 e 1(op}/
glidInes . 4 1 a]
ah;— O -1+ [1+ (" —-1g —}, 2.20%
{ Yoo dT ( ) ( )4 o ( )
oar = AH{e%u — M?56" — @’MPsp}, (2.20a)
a v 1 -1 q [ dlIne } }
00 = {—00" — 0(¢” — 1)ou — 6 (¢ — 1)ah,—| xIIO - 1(op}/
(S00" = 0™ = Dow— 0 — Dam L [urto p
glidInes 4 1 a]
ah;— O - D +[1+ (e -1q—}, (2.21*
{ et - - Dag )
56 = AH{e%u — M¥%6" — ©"MPop}, (2.21a)
which form the solution of (2.1) and (2.3) solved simultaneously. In (2.20a) and (A23a)
A = 0'M? - WM°. (2.22)
Up.10. Calculate the density
o = p[1%sp - %59“ , (2.23%)
dp = RPop + R%6", (2.233)

which is the linearization of the equation of state; pRTY, whereT" = (p/ p1ooo” 0".

Up.11. Calculate the vertical velocity component by solving either the incompres
eguation
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2.3 The implied background error covariance matrix for the current transforms

d (OWpy) ~ J (dpyWw) ou [ u} .
o Y, - |:py( 5\/)} ~ V- apy(v) , (2.24)
ow =~ Wdu,, (2.24a)

wherepy is the 'dry density’, or by solving Richardson's equation (not shown). For simp
the matrix/vector version of (2.24) does not includedilneontribution.

2.3 Theimplied background error covariance matrix for the current transforms

We now examine the implied background error covariance matrix for the current trans
The expressions can become very complicated, even for this simple scheme and so w
ine the implied covariances for the variabdgs dy, op andd6¥ only. Consequently, we nee
to involve the control variabledy, dx“ andop® only. First, a summary of the current U
transform for this reduced variable set

wo| | x Vo)
spl | 6L 01 gé' (229
56V PGL 0 P
The implied covariances are
B™ = U,B,U,, (2.26)

whereB,, is the background error covariance matrix of the variabje®y" andop* (which is
block diagonal). This expands to

I 00\/B, 0 O

X XT LTGT LTGTPT

|
B™ = 101l B 01|01 O 0 , (2.27)
GL O I .
pcL o p/| 0 0 BZ 10 O I P
BY BuXT BYLTGT
XBY  XBYXT + BE XBYLTGT

GLB{ GLBIXT  GLBIL'GT + BY
PGLBY PGLBY{XT PGLBYLTGT + PBY

BYLTGTPT
XBYLTGTPT
GLBYLTG™PT + BE'PT
PGLBJLTG™PT + PBYPT

(2.28)




3.1 The Tp-transform under option A

3. Option A: Allow for a non-hydrostatic potential temperature (with multi-scale option ii)
This is the first option for use for convective scale data assimilation. In this case, the
variables that are assumed to be uncorrelated are the same control variables as the ste
plus one extra - see below. The balance conditions are switched off in the convective-sc
trol variable transform. This scheme must be used with multi-scale option ii since using |
ance conditions is not a good approach for larger scales. The extra control variable me
above is the convective-scale contributions to potential temperature. Even though we in
convective-scale potential temperature (which is not in hydrostatic balance with pressure
the pressure increment is still used with the hydrostatic relation.

3.1 The Tp-transform under option A

Input fields Output fields
U, OV, W, 00 ,0p anddgy oy, 07, opr, 06" ou

Tp.1. Calculate the convective-scale component of the virtual potential temperature
(2.1) and (2.18)

1+ (" - 1)q] 06 + Ot — 1)o0r — ’é_g(
P

Vv
06 5

AT\ % & (TTHo
2y (—p) (3.1%)
Jz pH

060" = ©°00 + 0% — Pop. (3.1a)
This calculation is based on the total virtual potential temperature minus the potential t
ature that is in hydrostatic balance with pressure.

Tp.2. Calculate the moisture control variable - see (2.3)

1 glld Ine q [ dine }
du = a|—=dgr — hy— 80 — h,—| xI16 ~ 108 3.2
w = a o Or 1 o dT qus K a7 p), (3.2%)
ou = M%agr + M%6 + MPop. (3.2a)

Tp.3. Calculate the streamfunction - see (2.4)

ou
Vi2dk - [V x [ov] b, (3.3%)
0

oy = Ydu. (3.3a)

oy

Tp.4. Calculate the velocity potential - see (2.5)

ou

ViV - | ovlb. (3.4)
0

oy = Cau, (343)

Oy

Tp.5. Calculate the balanced component of the velocity potential - see (2.6)

0" = BB oy, (35)
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3.2 The Up-transform under option A

= XSOy, (3.58)
whereSt® is a filter that allows through only scales where the geostrophic balance appre
tion is valid. At smaller scales, it is assumed that there is no balanced velocity potentia

Tp.6. Calculate the unbalanced component of the velocity potential - see (2.7)
oy = oy — O%" (3.6* / 3.6a)

Tp.7. Calculate the level-by-level geostrophically balanced pressure - see (2.8)
op° = Vi {Vi - [foViSsop]}, (37

op® = LSgow. (3.79)
Note the presence of the large-scale filBF, which is not present in the standard transfort

Tp.8. Calculate the vertically regressed geostrophically balanced pressure - see (2.9)
G G G_l

o = BYPBI™ op°, (38)

op = Gop°. (3.8a)

Tp.9. Calculate the geostrophically unbalanced pressure (ageostrophic pressure) - see
opt = op - op. (3.9*/39a)

As in the standard transforms, here the model varidiesddp are not used.

3.2 The Up-transform under option A

Input fields Output fields
oy, 3%, opr, 060" ou U, OV, oW, 08 ,5p ,0p anddgy

Up.1. Calculate the balanced velocity potential (as Tp.5)
01" = BIVBYY S0y, (310)
XSe0. (3.10a)

Up.2. Calculate the velocity potential (as Tp.6)
Sy = Oy + Oy°. (3.11/3.11a)

Up.3. Calculate the horizontal wind components (as Tp.3 and Tp.4)

g\‘j — Vioy + k x Vo, (312%)
Su, = C oy + Y oy, (3.123)

wheredu, is a 2-D (horizontal) wind vector.
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3. Option A: Allow for a non-hydrostatic potential temperature (with multi-scale option ii)

Up.4. Calculate the level-by-level geostrophically balanced pressure (as Tp.7)
op° = Vi {Vi - [foViSoy]}, (313
op° = LSe 0. (3.13)

Up.5. Calculate the vertically regressed geostrophically balanced pressure (as Tp.8)
o -1
opf = BIPBI 5p° (3.14)
op = Gop°. (3.14q)

Up.6. Calculate the pressure (as Tp.9)
op = op® + op~. (3.15/3.15q)

Up.7. Calculate the large-scale virtual potential temperature (this operator appears in T

_2 H
NE K_g(o"_l'[) i(l’[ op
o0 = 152 ) (3.16)
06" = Pop, (3.169)

(all pressure is assumed to be hydrostatic).

Up.8. Calculate the total virtual potential temperature (this step is linked to Tp.1)

v ,CS JLS
00" = 00" + 90" . (3.17/3.173)

Up.9. Calculate together the potential temperature and the total specific humidity (usi
definition of virtual potential temperature}p’ = [1 + (¢ — 1)l o0 + (¢! — 1)o0r
(used in Tp.1, and Tp.2)

[1d In
ogr = {ahlq_ S

@ dT 00" + [1+ (65— 1)qldu +

= i[ dlnes_ } }
[1+ (e 1)q] athqS xI16 e 1\op}/

giidIne . 4 1 a]
ah;— O —-D+[1+ (" —-Dag—"}, 3.18*
{ e - D e @ - va (318"
oar = A H{e%u — M?6Y — ©°MPsp}, (3.189)
a v -1 -1 q [ dIne } }
00 = {=00" — (e - 1)ou — 0(e* — 1)ah,—| xI16 — 1|opt/
{ : = Dow - 067~ Da w0 p
glidInes . 4 1 a]
ah— Ot -1 +[1+ (- 1g =, 3.19¢
{ e - D “-val (319)
56 = A™H{e%u — M¥6" — ©MPsp} . (3.1%)

Up.10. Calculate the density
—-11 -



3.3 The implied background error covariance matrix for option A

1-«x 1
dp = op — =06" 3.20¢
0 p( 0 P- o ) ( )
dp = RPp + R%0". (3.20a)

Up.11. Calculate the vertical velocity component by solving either the incompres

equation
d (owpy)  d (dpyW) 3 { ou } [ (U)} *
> + 37 = =Vh - |py svll ™ Vi - | Opy vl (321%)

ow =~ Wdu, (3.21a)

or by solving Richardson's equation (not shown). For simplicity, the matrix/vector vers
(3.21) does not include th@ contribution.

It has been demonstrated tAg), = | under the proviso that the total pressure incremei
always considered hydrostatic (and thus used with the hydrostatic balance equation).

3.3 Theimplied background error covariance matrix for option A

We now examine the implied background error covariance matrix for option A.
expressions can become very complicated and so we examine the implied covariance:
variablesdy, dy, op anddos” only. Consequently, we need to involve the control variahles
Sy, opt andos’® only. First, a summary of the Up-transform for this reduced variable s

Sy Il 00 0|y
XSS 100 u
?é - GLS;L,LS 010 gé ' (322)
56V PGLSES 0 P | ||ggvcs
The implied covariances are
B™ = U,B,U,, (3.23

whereB,, is the background error covariance matrix of the variabjesiy", op* and 96v>
(which is block diagonal). This expands to

I ooo|/B O 0 O | SSTXT SSTLTGT SSTLTGTPT
5 _ XS 1 00|l 0BY 0 0ffg | 0 0
GLS® 01 0|l 0 o0 B 0]l0 O ! pT ’
PGLSE* 0P I/l g o0 o [0 0 0 |
(3.24)
BY BySESTXT BYSESTLTGT
XSSBY  XSEBYSS'XT + By XSEBySESLTGT

GLS:SBY  GLSSBYSESXT GLSESBISS'LTGT + BY
PGLSSBY  PGLSSSBUSS™XT  PGLSESBYSES'LTGT + PBR
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3.3 Theimplied background error covariance matrix for option A
Bg%STLTGTPT
XSSBYSS'LTGTPT
GLSSBYSES'LTG™PT + BYPT
PGLSESBYSS'LTG™PT + PBEPT + BY'

This result can now be compared to (2.28) for the standard scheme. The only differer
the inclusion of the scale filte®® and the modification to the virtual potential temperat
covariances withB)' (some components of thB;matrix will be different between thi
schemes - even for variables that have the same name in each scheme).

(329
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4.1 Field decomposition

4. Option B: Allow for a non-hydrostatic potential temper ature and non-hydr ostatic
pressure

A covariance model based on balances that are not valid at convective-scales (such
strophic and/or hydrostatic balance) is likely to lead to analysis increments that are inaf
ate. In a conventional data assimilation system which invokes geostrophic and hydroste
ances, a single observation will give rise to an innovation that will adjust the fields non-I
according to these balances. These include non-local increments to the mass and h
wind fields and adjustments in the vertical to maintain hydrostatic balance. In the event 1
innovation has arisen due to forecast errors of a convective system that is ageostrophic
hydrostatic, these analysis increments would be inappropriate and may, e.g., |
convective-scale features that are important. The balance constraints may be lifted by us
tion A above, but which still makes the assumption that all pressure is hydrostatically ba!
Although an improvement on the standard scheme, this scheme may still be significant
optimal when used for the convective-scale problem.

Anelastic balance (Pielke, 2002) is an alternative balance that we would like to investig
the convective-scale data assimilation problem. Subsections 4.1 to 4.7 are concerned
veloping equations associated with anelastic balance.

4.1 Field decomposition

In order to study anelastic balance in a multi-scale system, we need to first introduce -
lowing notation for the decomposition of fields

=0+, (41)

¢ = ¢+ ¢ (42)
whereg is a generic atmospheric variable. In (4¢l)s the value of the field at a particul
position and time which is decomposed into grid-box meamnd sub-grid-scaley’, parts.
In (4.2) the grid-box-mean is itself decomposed into large-sgafe,and convective-scale
¢S, parts. The large-scale part is assumed to be in hydrostatic balance. Pielke (20
4.1) makes a similar decomposition, but here we use a slightly different notation for ¢
In incremental data assimilation, we have a reference state (e.g. the background) an
crement. Incremental quantities are decomposed as (4.2) (there are no sub-grid-scale
similation increments), but are preceded ly(as before)

S0p = 0¢-° + 0p°°. (4.3)

4.2 Momentum equationsfor the grid-box-mean variables

[Note that readers wishing to skip the derivation of the anelastic equations may go str:
the result (4.26).] Pielke (2002, Egs. (4.21)) gives the equations of motion for the gric
mean winds (by Reynolds averaging), which provide the starting point for this discussio

a0 J0 Ja aJa

- ox T Vay T Vaz
CS LS
ST — D - 5 - LB g g

v _ IV YO
ot dX ady 0z
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4.3 Three-dimensional divergence of the momentum equations

1sd s tsd Lsd LSV Lsd (p° + p-°)
—a"S=pSuV - dS=pHSVY -« TP _fo, (45
R A AV & 3 WY -a Jy 0. (4
w__ow  ow ow
ot dX ay dz
N TR L v P o A Oy
ax’ ENA o7 9z Yats '
where
a = l, (4.7
P

is the specific volume. Many terms are kept in these equations at this stage, for inste
sub-grid-scale momentum fluxes. These equations, and the decomposition (4.1)-(4.3),
sult in some relatively involved, but straightforward, algebra. The large-scale fields are
to be in hydrostatic balance

LsapLS _
ER g. (4.8)

The Boussinesq approximation has been used to give (4.6) which can be understooc
lows. Considetidp/ dz + g when decomposed into large- and convective-scales

_dp _ (. Ls cs, 9 (P° + P9

a&2+g—(a + a9 = + g,
_1sd (P° + p% csd (P° + p%
= qa —aZ + a —(92 + g,
_ aLsapCS + acsa (P> + pcs),

dJdz dz
CS

_ Lsap _a csgi
T T TSt T

CS aCS
- @+ o) 52 P
8p aCS
LS
- . 4.9

It is the approximation made to give the last line (#f& < oS except when multiplying)
that is the Boussinesqg approximation.

4.3 Three-dimensional divergence of the momentum equations

As done in Pielke (2002, Secs. 4.2 and 4.3), multiply (4.4)-(4.6ybgassume thadp“S/ Jt
is negligible) and calculate the 3-D divergence

L Sp L LS# n o _
s dp % + dp ¥ + dp SW) _ J (pLSu@) _ i(pLsUa_V) _ i(pLSUa_W)
Jt\ odx ay Jz dX IX ay IX Jz dX

R B ey e e
Sl - g - Sl v

Jz
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4.4 Anelastic balance and a diagnostic equation for convective-scale pressure

d Jd s 969st aaLW

“oxox’ ~ dyox’  9zdx
99 sy - 99 ispy - 29 isp
8xé’yp ayay” aza;/o
Jd o LV d d LV d d LS\I\/—
22 ~ 22 - 22 ) Sww
oxaZ’ dya?’ 9297
_az(pCS_l_ pLS) ~ az(p + pLS) _ aZpCS
Ix? dY? 07
apLva 07,0LSfU & ( Lsacs)
X ay 95\ o) (410
_d s _d s _d s
Bt (" o) = p 0 - Vo ayp a- Vv 8Zp 0 - Vw
d ls55 0 s O LS 77
_%y. _%y. VvV - 2V . W
aXV pu'u 8yv pu E pu

VS v 4k .V LSt i LSaCS
hp p—+ k- X p u+go_)Z s (411

Equation (4.11) is the same as (4.10), but in a compact notation W;heoenprlses the hori-
zontal components of the gradient vector &domprises all three components of the gre
ent vector.

4.4 Anelastic balance and a diagnostic equation for convective-scale pressure
The anelastic approximation states that

LS~
= 0. 412
at - (p0) = (412
This gives a diagnostic equation for convective-scale prepStre
% a®® d % %
V2SS _ _( LS_) - _ %% .vo- 2,5 - vy - 2.5 - vw
P 952\P ois) = 7o ENd o

J s> 0 ls7> 9 LS
-—V. V- =V . V- —V. ‘W
p U'u 2y p U 57 P u

—VipS + k - Vi x oo (4.13)
The convective-scale teraf® has been put on the left hand side because it has a deper
uponp®® via the ideal gas law. The ideal gas law may be developed as follows

pa = RT,

Inp+Ina = INR+ InT",

which may be linearized as follows

TV
dp + da = d : (4.14)
p a TV
When the linearization state comprises the large-scale fields and the convective-scale
nents are small, (4.14) leads to the following

- 16 -



4.5 Comment on the diagnostic pressure equation

CS cs TvCS
Py e - (4.15)
pLS qlS TS

This can be written in terms of potential temperatlite= (p/ p1ooo* 6", which may be line-
arized as follows

INTY = In6” + x(Inp — In1000,

TVCS GVCS pCS
TS = oS + KFS (4.16)

EIiminatingT"CS between (4.15) and (4.16) gives

CS
pCS N aCS HV N pCS
—_— _ = K—
pLS aLS GVLS pLS’
CS
aCS 0V N ( l) pCS
z - K — Luiy
alS GVLS pLS

cs vCS CS
0
=g s (410
a 6V Cop-S
wherex — 1 = —c¢,/c, Substituting (4.17) into (4.13) allows the convective-scale pres
contribution to be separated from the other variables

QR

VACS 4 g d [ Lsp _Z _ _ I AT
Vp g ( pLS) = ax - Va 8)/0 S0 - Vv E a - Vw
J oS J Ls7 9 LS
-——V . - =V . V- —=V. W
dX e o'?yV o oz P N
VPSS + k - V x pfo + 9 (PLSHVLs)- (4.18)

This may be written in the following compact form (the sub-grid-scale terms are ignorec
now on - there may scope in later work to include them in a parametrised form - and th
bar notation is dropped)

V2SS 4 &i(ip_cs

Vp~+g = -V (a—lLS(u : Vg)U)

Cpdz\altSpS
2 f d [ 1Y
VhpLS +k -V x (a_LSu) + go_,—z (a_LSQV_LS . (4.19
This is a diagnostic equation fof>.
4.5 Comment on the diagnostic pressur e equation
A state that happens to satisfy hydrostatic balance
%
8': g, (4.20)
has the following linearization
aadzp g—zda -0 (4.21)

When the linearization state comprises the large-scale fields and the convective-scale
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4.6 Srategy for the design of a diagnostic relationship for use in incremental data assimilation

nents are small, (4.21) leads to the following
SS90 9P c

=0
0z 82 ’
(s9P° _ ja”
0z ats’
QVCS CVpCS
= gHVLS — C—pFS’ (4.22)

where (4.17) has been used in the last line. Multiplying-Byand differentiating with respec
to zgives

32pcs J LSGVCS) C, d [ LsP
- o2 _ 4.2
97 952\ s cp8z( pLS) 423
Substituting this into (4.19) and ignoring advection terms leaves
2 82p°3 2
Ve - S = —Vip=S + k - V x p-Sfu,
Vip™s = —VipS + k - V x pSfu,
Vip = k - V x p-5fu, (4.24)

which is geostrophic balance. Therefore when anelastic balance holds (and when the
tion terms can be ignored), there appears to be a mutual correspondence between the
tion of geostrophic and hydrostatic balances. It is not yet clear how useful this obse
might be in the design of a control variable transform.

4.6 Strategy for the design of a diagnostic relationship for use in incremental data
assimilation

In the incremental data assimilation method, an increment is added to a reference sta
level of grid-box-mean quantities. The increments are specified according to the note
Sec. 4.1 (from now on though sub-grid-scale quantities will be neglected and the overb.
be dropped since all quantities will exist at the level of grid-box-mean). Large-scale
tities (reference and incremental states) will be assumed to be in exact hydrostatic bala
not necessarily in exact geostrophic balance.

Data assimilation increments are introduced by linearization of (4.19). There are a nur
strategies and each leads to a possible way that the convective-scale assimilation prob
be solved. One is considered below and another is considered in Sec. 5.

4.7 Linearization #1 of the anelastic diagnostic equation
Equation (4.19) is linearized as follows
o d aaLSpCS) cva( op° )_ g8(1 P )_

V250CS —
P9 ozl a=ps) T Y az\as s T 96 0z \aspe

v (if;s(u - V)u) -V (a—LS(AU - V)u) -V (aiLS(u : V)(Su)

5(1"8

—Viop™ — k- V x (=g

f

f
u)+k-Vx(a—LS(§u)
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4. Option B: Allow for a non-hydrostatic potential temperature and non-hydrostatic pressure

d [6a-56" d (166" d (10 s
o2\ aFgws) T 9oz \aisgns | T 95z \arspue? (429

In the above there are large-scale incremeitsS( op-S andd6*>), convective-scale incre
ments §p°°> and 6% and general incremenéal. If the large-scale increments are knoy
separately (see e.g. multi-scale option ii in Sec. 1), then (4.25) is a diagnostic equation
op°S anddp*™>. This means that a convective-scale control variable transform based on
would not re%uire either a pressure-related or a temperature-related control variable.
ample, if00"“" is an extra control variable associated with convective-scalesgphenould
be diagnosed from (4.25). For the convective-scales this would effectively replace the
static balance step in the current scheme, e.g. (2.2), with the solution of (4.2p5>f¢al-
though hydrostatic balance would still be used at large-scales).

In (4.25), the large-scale increments &céS, op-S and 96", but recall that the usual (i.¢

large-scale) control variables ave, 0", 5p* anddu. Let us assume that we can, as part (
grand control variable transform, diagnose the former large-scale increments from th
dard control variables whilst maintaining a large/convective-scale separation. dd'ten
op-S, 96"-° andsu, would lead to the following rearrangement of (4.25)

2, &I (1 e cs_
7. cpaz(ast)}ép -

c,d( e p=° o o 9 e 6 LS
{C_pa_Z(OLLSZES)_'—V(aL_SZ(UV)U)_kVx(fal-_szu)_go-)_z(al‘_szm oa

% ( 1 e )(SOVCS

95z s
1 Loy ) f
+—V‘(a—l_s(.'V)U)—V'a—LS(U' ).+ -V x a_I_S.)éu’
(4.26)
MOpSS = PY0a™S + PPopS + P™00" " + P"06"" + P'ou, (4.26a)

s cs
P“a"S + PPop™° + P*%50" > + P00 + RYou, + Plow,

LS CS
P 0a"S + PPop™S + PP°00" + PP06" + (P + PYW)duy,

= Pt + PPopS + P00" " + PP00" + Plou,, (4.26b)

Equation (4.26a) has been developed into (4.26b) by first splitting“t@erator into hori-
zontal (B}) and vertical(R,) parts, then writing the vertical wind in terms of the horizor
wind using (3.21a). The operatb}' is defined ad' = By + R'W. Forms (4.26a) anc
(4.26b) are both used in the rest of this document. In addition to the expressions in tt
dard Up-transform in Sec. 2.2 to determingS, op-S, 06*-> and du, the following is also
required
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4.8 The Tp-transform for option B

oa'S = aLSzépLS, (4.27)

daS = APSp-S. (4.273)

The LS/CS scale separation would be maintaine@'inandda'* only for constant->. This
IS not constant but, as before, we put this issue to one side for now.

4.8 The Tp-transform for option B

Input fields Output fields
U, OV, oW, 66 ,0p anddgy OYLS, 9yt o™, oS, 00V ou

This Tp-transform is designed to be the inverse of the Up-transform given below. To
stand this Tp-transform, it is recommended that Sec. 4.9 is read first.
Tp.1l. Calculate the streamfunction - see (2.4)

ov

oy = th{k : {v X }} (4.28)
0

oY = YoUy_o, (4.282)
wheredu,, - ¢ is a 3-D wind vector with zero vertical component.

ou

Tp.2. Calculate the velocity potential - see (2.5)

ou

oy = ViV - |ovlt, (4.29)
0

dx = ClUy_o. (4.2%)

Tp.3. Calculate the balanced component of the velocity potential - see (2.6)
61" = BIBLY S0y, (4.30)

= XS0, (4.30)

whereSt® is a filter that allows through only scales where the geostrophic balance appre
tion is valid. At smaller scales, it is assumed that there is no balanced velocity potentia

Tp.4. Calculate the unbalanced component of the velocity potential - see (2.7)
ox' = Oy — Ox° (4.31* | 4.31a)

Tp.5. Calculate the level-by-level geostrophically balanced pressure - see (2.8)
op° = Vi’ {Vi - [fpViSoyl}, (4.32)

op® = LS 0. (4.32a)
Note the presence of the large-scale fil8aP, which is not present in the standard transforr

Tp.6. Calculate the vertically regressed geostrophically balanced pressure - see (2.9)
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4.9 The Up-transform for option B
o = BRI op° 4.3
Y v DBy P (4.33
op = Gop°. (4.339)

Tp.7. Calculate the virtual potential temperature - see (2.1)
06" = [1+ (¢' = 1qlod + 0(e* - 1)da, (4.34)
50" = ©°56 + ©%q.

Tp.8. Calculate the moisture control variable - see (2.3)

1 glld Ine q [ dine }
du = a|=dgr — hy— 80 — h,—| xI16 — 108 4.35¢
w = a o Or 1 o dT 2pqs K a7 p), ( )
ou = M%agr + M%66 + MPop. (4.359)

Tp.9. Calculate the large-scale pressure

The following result is a combination of steps in the Up-transform (it is recommende
Sec. 4.9 is read first) and is given here in operator form only. This result is derived i
4.10 after the Up-transform is presented

S

op> =

L -1
(P°A°[RP + R°P] + PP + PP — PP + 1) (TIop — P?"06" — P'su). (4.363)
Operators that have not been defined so far are defined in the course of Sec. (4.9).

Tp.10. Calculate the convective-scale pressure
op=> = op — op™>. (4.37/ 4.37a)

Tp.11. Calculate the geostrophically unbalanced pressure
opt = op=° - op. (4.38* / 4.38a)

Tp.12. Calculate the large-scale virtual potential temperature - see (2.18)

-2 HsALS
00" = K_g(é?_H) i(n v (4.39)
c, \dz) dz\ pH
06" = Pop-S (4.3%)
Tp.13. Calculate the convective-scale virtual potential temperature
00" = 86" — 00" (4.40/ 4.408)

4.9 The Up-transform for option B

Input fields Output fields
Y-S Oy, opt, oS, 00V ou U, 8V, oW, 00 ,0p dp, anddgy
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4. Option B: Allow for a non-hydrostatic potential temperature and non-hydrostatic pressure

Up.1. Calculate the balanced velocity potential (as Tp.3)
oy° = BB S50y, (4.41)
X S6 0. (4.41a)

Up.2. Calculate the velocity potential (as Tp.4)
Sy = Oy + Oy°. (4.42/ 4.429)

Up.3. Calculate the horizontal wind components (as Tp.1 and Tp.2)

(g\‘j) — Vioy + k x Vo, (4.434)
Su, = C oy + Yoy, (4.439)

wheredu, is a 2-D (horizontal) wind vector.

Up.4. Calculate the level-by-level geostrophically balanced pressure (as Tp.5)
op° = Vi {Vi - [fpViScop]}, (4.44)
op® = LS 0. (4.449)

Up.5. Calculate the vertically regressed geostrophically balanced pressure (as Tp.6)
G G G_l
op” = BYFBE™ op°, (4.45)
op = Gop°. (4.454)

Up.6. Calculate the large-scale pressure (as Tp.11)
op= = op* + op. (4.46/ 4.463)

Up.7. Calculate the large-scale virtual potential temperature (as Tp.12)

-2 HSALS
LS Kg(é’H) d (H op )
00" = —=|—| — , 4.4
cp \dz) dz\ pt (449
50> = Pop-®, (4.47a)
Up.8. Calculate the total virtual potential temperature (as Tp.13)
00" = 66" + 00" (4.48/ 4.483)
Up.9. Calculate the large-scale density component
1- 1
00 = p T“apLS - aaeVLS , (4.49%)
00" = RPopS + R%06"" (4.4%)
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4. Option B: Allow for a non-hydrostatic potential temperature and non-hydrostatic pressure

Up.10. Calculate the large-scale specific mass component - see (4.27)
da*> = aLszépLS, (4.50)
daS = APSp-S, (4.50a)

Up.11. Calculate the vertical velocity component by solving either the incompres
equation

d (owpy) 9 (dpw) [ (SU} [ uﬂ %
Er . =Vh - | py svll ™ Vi - 5Py(v ; (4.51%)
oW ~ Wou,, (4.51a)

or by solving Richardson's equation (not shown). For simplicity, the matrix/vector vers
(4.51) does not include th contribution.

Up.12. Calculate the convective-scale pressure contribution by solving the anelastic t
equation (4.26/4.26a) (given here only in operator form). This step is associated with T

op° = (P 0atS + PPopS + P™00" " + P*“06"" + P%u), (4.523)

wheredu is a 3-D wind field, the operators in (4.52a) appear in (4.26a) and the oférator

cd [ 1 e
m=Vv —— | —=—=]. 4.5
* T gcp8z(aLSpLS) (459
Up.13. Calculate the total pressure (as Tp.10)

op = op-° + op-s. (4.54* | 4.54a)

Up.14. Calculate together the potential temperature and the total specific humidity (usi

definition of virtual potential temperatureg}d’ = [1 + (¢1 — 1)q] 00 + O (et — 1)dar

(usedin Tp.7), and Tp.8)
glid Ines

oar = {an 2"

\% -1
o dT 00" + [1+ (¢ gl ou +

1 i[ndlnes_} }
[1+ (e 1)q]ah2qu xI16 pree 1op}/

S

glidInes . 4 1 a]
ah— Ot -1 +[1+ (=g =1, 4.55*
{ e - D “-val (4.55%)
oar = AH{e%u — M?56" — @’MPsp}, (4.55q)
a _ _ q dine
00 = | =86" — 0t — 1) —081—1ah—[7<1'[9 —1}5}/
{qs ( ) ou ( ) ) a7 p
glid Ines . 4 1 a]
ah,— Ot -+ 1+ (=g =1, 4,56
{ Yo dT ( ) ( )] o ( )
50 = AH{e%u — M9’ — ©MPsp}. (4.56a)
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4.10 Derivation of equation (4.36a)

4.10 Derivation of equation (4.36a)

Equation (4.36a) is a diagnostic equation giving the large-scale pressure for a given tot
sure and virtual potential temperature. It is derived by combining some of the equatio
sented as part of the Up-transform in Sec. 4.9 as the prescription below. The derivi
made in operator notation at first (for conciseness) but the result is translated to explic
at the end. This derivation is straightforward and involves only simple substitution of
ables from Sec. 4.9.

The starting point is (4.52a), which is the diagnostic equation for convective-scale pre
The strategy is to substitute all increment states that appear in this equation with eithe
ments of large-scale pressure (the unknown) or increments that are known before tl

stage. First eliminatéaS with (4.50a) and elimina*"> with (4.48a)
5% = T (P"0atS + PPopS + P™06" " + P*66"" + P'ou),
= T (PA%0p™S + PPop-S + P00"° + P (06" — 06" ) + P'u).
Next eliminatedp-> with (4.49a) and factorise
op% = I (A" (RP0p™S + R%06") + PPopgS + P™56" " + P* (00" — 66) + Pou),
= T ((PAPR® + PP opS + (P'ATR + P — P 00" + P™ 06" + PYou).
Next eliminate’6*"> with (4.47a) and factorise

op<S = I H((P"ARP + PP opS + (P'A’R? + P”° — P Pop'S + P"“06" + PYu),

T ((P"A’RP + PP + P"A’RP + PP — PP“P)opS + P 00" + P%u).
The left-hand side can be rewritten with (4.54a)

op — opS = ITH((PAR® + PP + P"A'RP + P*°P — P"P)opS + P*00" + Pu),
which can be rearranged

op — T H(PP06" - PYsu) =

T ((PYARP + PP + PYAR'P + PP — PP + I)op™d).
Further rearranging gives
H(jp _ PHCS(SHV _ Pu(su — (PQAPRP + Pp + PaApRGP n PQLSP _ chsp N H) (Spl-s’

= (P"A’[R® + R°P] + PP + PP — PP + II)0p"S
The incremendp-S is thus found by inverting the appropriate operators
LS

op> =

-1
(P"A”[RP + R?P] + PP+ PP — PP + 1) (TIop — P"" 06" — P'su). (4.57a)
Recall that the following operators have been defined earlier

" cy d ° pcS ° ° J ° GVCS
" T c_pa—z(atszﬁs)”'(aL—sz(“'V)“)‘k'Vx(f&—sz“)‘ga—z o= s
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4.11 The implied background error covariance matrix for option B

b Cd[1p=® 2
P = cpﬁz(ocLSpLS2 Ve
6LS _ & 1 QVCS

s A

oCs d(1 e
P = o3 e

u 1 1 f
= =—V‘(a_Ls,"V)u)_v'(a_l-s(u'v).)-'_k'Vx(a_LS.)’
AP = aLSZ
RP — p(l_K)

p b
R = -2
6V’
P = K_g(a_n)zi IT” ')
g \dz) az\ pt )
cd (1 e
H:VZO — = | T e -
’ gcp8z(aLSpLS)

4.11 Theimplied background error covariance matrix for option B

We now examine the implied background error covariance matrix for option B.

expressions can become very complicated and so we examine the implied covariance:
variablesdy, dy, op anddg” only. Consequently, we need to involve the control variahles
oy, opt andog**® only. First, a summary of the Up-transform for this reduced variable s

o | 0 00\[ oy
Sy XSS I 0 0] gyu
op| | AGLSES + A" T* A O opr |’
06" PGLSSS 0 P I [|ggvcs
(4.58)
where
A =1+ ITHPA*(R® + RP) + P° + PP, (4.59)
A" = TP (CTXSE + Y'Y, (4.60)
I = Imect, (4.61)

This is considerably more complicated than the previous schemes. The implied cova
are

B™ = U,B,U,, (4.62)

whereB, is the background error covariance matrix of the variabjgsdy", opt and 99"
(which is block diagonal). This expands to
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4.11 The implied background error covariance matrix for option B

| 0 0o0|/BF O O O
. XSS | 00|l 0 BY 0 O
B|mp — p x
AGLSSS+ A" T* A Ol 0 o BlgA 0
| SbSTxT SbSTLTGTAT + AUT SESTLTGTPT
0 | e 0 ,
0 0 AT pT
0 0 0 |
BY By StS'XT BY(SESTLTGTAT + AYT)
XS:SB) XSSBUSSTXT+BE XSESBY(SSLTGTAT + AYT) + BA T

=| (AGLSES+AYBY (AGLSES+AYBYSS X+ (AGLSS+AY)BY(SELTGTAT + AT +

By T*BET# + ABY AT
PGLS°BY PGL SE5ByS:'XT PGLSEBY (SES'LTGTAT + AYT) +
PBYAT
Bg}siésTL TGTPT
XSESBKS%;STL TGTPT

(AGLSES+ A)BYSESTLTGTPT +|-(4.63)
ABYPT
PGLSEBYSS'LTG™PT +
PBY'PT +BY'

This result can now be compared to (2.28) for the standard scheme and (3.25) for optio
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