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I ntroduction

It is often reported that the correlation lengthscale of background errors is reduced
presence of observations (Ingleby, 2001). This note discusses the mechanism of h
occurs. We look at the simpler problem of analysing how the presence of a single obse
affects the correlation lengthscale of the analysis state, rather than the correlation length
the subsequent forecast (it is reasonable to expect that the qualitative characteristic:
analysis will be carried forward in the subsequent forecast).

Simple analysis

Consider a background error covariance maBixLet it be homogeneous and isotropic, so t
its representation in spectral space is diagonal (and depend upon total wavenumber ot
spectral representation shall be used below. Let the observation system be denotec
JacobianH, and let the error covariance of the observationR.b&he error covariance matri
of the analysed statd, is the inverse Hessian,

A= B"'+HRH™. (1)

The space in which the analysis state Bhmatrix and the right-space bif is usually spatial. It
is more convenient for this analysis to lookAain spectral space. Let the following operatc
be the forward and inverse Fourier transform operators,

Forward FT: F% (2)

Inverse FT: F. 3
The Fourier transform is orthogon&ll = F*. In one-dimension, the matrix element$adre

proportional to simple plane waves,
Frg = \/_1N eXpPiXmkg, ()
for N grid-points. The spectral-space version of Eq. (E) #F,
FTAF = F'(B™ + H'R'H)'F,
= (F'B'F + FH'R'HF)™,
((F'BFI™ + [HFI'R'[HFD)™. (5)

The reason for converting to spectral space is for simplicity - we shall assume homo
throughout (and so the covariances in spectral space are diagonal) and we can infer leng
from the variance spectra - see below.
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The background term in spectral spd€eBF, is diagonal, with diagonal elements,
[F'BFlg = 08(0). (6)

Consider Eq. (5) with just one observation of grid-pbinthe Jacobian is then,

H = (00001000000000), (7)

with the '1' at positiol. The operatoHF, which is the single row Jacobian acting or
spectral-space state, is made up of elements,

1 .
[HF]q = m expixKg. (8)

By taking the transpose operator to include an additional complex conjugate operatis
operatofHF]T R [HF] is then,

_ 1 . 1 1 .
[[HF]" R [HF]] = T OPka X —= X g expixki

expix (ke — kg
- 2R ©
O0b
where oq, IS the observation standard deviation. Enforcing a homogeneous mode
contribution, [HF]" R [HF], is diagonal. Ignoring off-diagonal elements (setting then

zero), leaves the diagonal elements,

1

Nody’

which is a constant. Wavenumber compongeot Eq. (5) is thus,

1 1 )‘1

—_— + ,

og(d)  Nodp

_ ( No, + o%<q>)‘1 __oh(@)NoBy
o8 (d) Nody Nodp + o(q)

Equation (11) says that those modes of the background state that have a small vari
0&(q) << No?, will be unaffected by the observation. Those modes that have a
variance, iecd(g) >> No?p, will have its variance reduced to a value, at nhigg,. This is
illustrated in Fig. 1. The variance of the longer modes (small wavenumbers) have redi
value. As this has not affected the small modes (large wavenumbers), this has the ¢
broaden the correlation spectra associated with the variance spectra in Fig. 1. This will
the lengthscale in positional space. In other words, the longer scales are analysed m
smaller scales, because they started with larger variafe in

[[HF]I" R [HF]]lgq = (10)

[FTAF]qq = (

(1D
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Figure 1: Variance spectrB:-matrix in spectral space (continuous curiy)3, (straight
dotted line) and\-matrix in spectral space (dash-dotted line).

Numerical study - dropping homogeneity

By dropping the homogeneity assumption, off-diagonal elements in Eqg. (9) will be pr
This is result in amA-matrix that has a reduced lengthscale, but only in the vicinity of
observation. This can be shown numerically.

Consider the one-dimensional systebn<{ x < 1) with a number of observations near t
middle of the domain. Let observatiomake a direct measurement at positonThe row in
the Jacobian will be zero apart from the elements corresponding to grid-points imme
before(x;) and afterx,) the observation. These will have elements,
X — X X — X

L and L
Xo — X1 X2 — X1
by assuming linear interpolation.

1 -

12

In this numerical study, we need not invoke spectral space, and deal with small m
directly. We use 30 points and 5 observations near the centre of the domain. The bac
error covariances have the simple form,

ot

_— 1
1 + (AX/L)? (13
whereAx is distancegg = 0.1 and the correlation length parameter 0.2, and we invoke

periodic boundary conditions for a well-behaved background error covariance matrix.
analysis error covariance matrix is then,

B : COVg(AX) =

A=@B"+HRMH™ (14)
Plotted in Fig. 2 are the background error and analysis error correlation matrices,
COR; = %5BYg, (15)

-3-
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(16)

where Xz is the background error standard deviation m&@gx= ogl, andZ, is the analysis

error standard deviation matrix.
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Figure 2: The background error correlations from Egs. (13) and (15) (left) and the
analysis error correlations from Egs. (14) and (16) after the assimilation of five
observations near the centre of the domain.

The analysis state shows clearly the reduction of correlation lengthscale in the analysi:
vicinity of the observation locations.

References

Ingleby N.B., 2001, The statistical structure of forecast errors and its representation in t
Office global 3-dimensional variational data assimilation system, Quart. J. Roy. Met. Soc

209-231.



