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1. INTRODUCTION
Potential vorticity (PV) appears in many different forms.  It is often useful as a quantity that
is conserved by the governing equations of motion, which forms a basis from which it can
be derived.  For each set of approximations to the equations of motion (e.g. quasi
geostrophic), there is a different form of the PV.

In this document we find a form of PV derived from a different point of view.  We derive
PV as a quantity that is associated with the 'balanced' component of the flow in a set of
linearized equations.  For the 'PV control variable' project [1][2], it is necessary to derive a
formula for PV in the space of spherical harmonics in the horizontal (spectral space) and in
the space of normal modes in the vertical (where the linearized equations of motion are
decoupled in the vertical).  This gives an unusual form of PV, which is a departure from the
usual forms expressed in physical space (longitude and latitude in the horizontal and height,
pressure or isentropic co-ordinates in the vertical).

This document has the following structure.  In section 2 we review some spectral space
concepts necessary for this document, and in section 3 we use this information to derive the
PV required.

2. SPECTRAL SPACE
To convert from physical space to spectral space, fields are projected onto the spherical
harmonics.  The equations of motion in spectral space govern how these projections evolve
in time.  Each spherical harmonic function is denoted by  - where  is longitude,
is latitude and  are integers that label the order of the spherical harmonics (see below).

 comprises an associated Legendre polynomial in latitude,  and a plane
wave in longitude, ,
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where .  The spherical harmonics are useful on the sphere because they are
eigenfunctions of the Laplacian,  in spherical co-ordinates.  We will not derive
polynomials for , but we will state the orthogonality property of ,
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where the superscript means complex conjugate and .  A spectral
expansion of a field on the sphere,  is denoted by the following linear combination of
spherical harmonics,
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where  is the representation of the field in spectral space (the 'spectral coefficients').  The
choice of truncation used in Eq. (2.3) is called 'triangular truncation' (Fig. 1).  The spectral
coefficients are found by projecting  onto the spherical harmonics and by using the
orthogonality property,
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Figure 1: Triangular truncation used
in the spectral expansion of Eq.

(2.3).

3. LINEARIZED PV DERIVATION
There are a number of expressions that are needed to derive the expressions required for the
PV derivation.  Temperton [3] gives the vorticity and divergence equations in spectral
space, which below have been linearized about a state of rest.  Temperton's equations
translate to,��� m
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Equation (3.1) is the vorticity equation and Eq. (3.2) is the divergence equation.  Symbols
are as follows:  is angular frequency, ,  and  are respectively the spectral vorticity,
divergence and pressure perturbation associated with the spherical harmonic ,  is the
rotation rate of the Earth, and  is,
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In Eqs. (3.1) and (3.2),  the prognostic variables differ slightly to those used by Temperton,� 	 m
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where the subscript 'T' is the divergence used by Temperton and  is the reference density.
The factors of  make all terms real and the time functions,  remove the time
derivatives of Temperton's equations.
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We now write Eqs. (3.1) and (3.2) in vector/matrix notation.  In this notation, the vector
represents vorticity  (  and vertical level) and similarly for the other prognostic
variables.  Even in spectral space the vorticity and divergence equations remain coupled in
the horizontal because of the Coriolis terms (inside the curly brackets in Eqs. (3.1) and
(3.2)).  Let the matrix  represent this coupling as in the first two terms of Eqs. (3.1) and
(3.2) (including the  factor),  let  be the diagonal matrix (again including the ) that
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appears in the third term of Eqs. (3.1) and (3.2), and  be the diagonal matrix acting on
pressure in Eq. (3.2).  Equations (3.1) and (3.2) become,
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In order to derive the vertical modes, we require the vertical structure equation.   The
vertical structure equation is found from a combination of the vertical momentum equation,
the thermodynamic equation and the continuity equation.  These equations are given by
Thuburn [4] in a 'semi'-spectral space (semi-spectral space being the Fourier transformation
in the zonal direction only; this gives fields as a function - in the horizontal - of zonal
wavenumber and latitude).  The three equations required for the vertical structure equation
are then, from [4], ���
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where  and  are constants (see [4]) and  and  are a reference profiles of density and
potential temperature respectively.  Equation (3.10) differs slightly from that given in [4] as
we have identified that a group of terms involving horizontal winds as the divergence.  The
equations in [4] use semi-spectral space, but given that there are no latitudinal operators
(like ) and the coefficients are latitudinally independent, then the prognostic variables
in Eqs. (3.8), (3.9) and (3.10) translate immediately to full spectral space,
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Use Eq. (3.12) to eliminate  in the other equations,wm
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Now eliminate  between Eqs. (3.14) and (3.15),� m
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This equation is now written in vector/matrix notation as was done for Eqs. (3.6) and (3.7),�
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Equation (3.17) is to be used together with Eq. (3.6).  Note that  in Eq. (3.7) is a vertical
matrix that is independent of scale  and  in Eqs. (3.6) and (3.7) is a horizontal matrix
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that is independent of height.  This means that matrices  and  commute.  Eliminate
between Eqs. (3.6) and (3.17),
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The fields are to be projected onto the vertical modes.  These are the eigenvectors of the
vertical operator .  Let vectors with a subscript 'B' represent the weights of vorticity and
pressure of these vertical modes,
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where  is the matrix of eigenvectors (columns).  Substituting the above transform into Eq.
(3.18) gives,
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Matrices  and  commute, as do  and .  Acting from the left with  gives,F E G E E� 1��� �� B

��

c � 2s 
�� � Fp

�
B

��� �
G �� B

�
3
�
22 �

where is the vertical structure matrix, , projected onto its eigenvectors,� B
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In Eq. (3.22),  is regarded as a forcing term and so does not enter into the definition of PV.
The PV of the normal modes is defined as the quantity whose evolution in this space does
not depend upon divergence,
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