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1 Introduction

Consider the following strong constraint incremental 4DVar cost function

J(δx0) =
1

2
δxT

0 B
−1δx0 +

1

2

T∑
t=0

(δyt −Htδxt)
T
R−1t (δyt −Htδxt) , (1)

= Jb(δx0) + Jo(δx0).

where δxt = xt −M0→t

(
xb
)
is the increment from the background, xt is the state at time t, xb is the background

state (valid at t = 0), Mt→t′ (•) is the non-linear forecast model propagator from times t to t′, B is the background
error covariance matrix, Rt is the observation error covariance matrix at time t, T is the length of the 4DVar time
window, δyt = yt−Ht

(
M0→t

(
xb
))

is the observation-minus-background, yt are the observations at time t, Ht (•)
is the non-linear observation operator at time t, and Ht is its Jacobian. Additionally, J

b is the background term of
the cost function, and Jo is the observation term. Furthermore, let Mt→t′ be the Jacobian of the forecast model
from times t to t′ such that

δxt′ = Mt→t′δxt. (2)

The problem may be posed in the following way: minimise (1) with respect to δx0, . . . , δxT subject to the constraint
(2).

We will consider two methods of deriving the gradient of (1) with respect to the control variable δx0.

2 Method A of deriving the gradient: imposing the constraint explicitly

2.1 The cost function and its gradient

Method A imposes the constraint by substitution. Substituting (2) into (1) gives a cost function written explicitly
in terms of δx0:

J(δx0) =
1

2
δxT

0 B
−1δx0 +

1

2

T∑
t=0

(δyt −HtM0→tδx0)
T
R−1t (δyt −HtM0→tδx0) . (3)

The total derivative with respect to δx0 is

dJ

dδx0
=

dJb

dδx0
+

dJo

dδx0
(4)

dJb

dδx0
= B−1δx0 (5)

dJo

dδx0
= −

T∑
t=0

MT
0→tH

T
t R
−1
t (δyt −HtM0→tδx0) . (6)

Note that we call this the total derivative because this derivative accounts for the dependency not just to δx0 but
also due to δxt (0 < t ≤ T ) given that (2) holds.
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2.2 Rewriting the gradient for e�ciency

Equation (6) for the observation term's total gradient can be written in a way that allows it to be evaluated
e�ciently. First note that MT

0→t = MT
0→1 . . .M

T
t−1→t, and use this to write the summation in (6) systematically.

In the following, each row is a term in (6), and let gt = HT
t R
−1
t (δyt −HtM0→tδx0):

− dJo

dδx0
=

g0+
MT

0→1 g1+
MT

0→1 MT
1→2 g2+

...
...

... gT−2+
MT

0→1 MT
1→2 · · · MT

T−2→T−1 gT−1+
MT

0→1 MT
1→2 · · · MT

T−2→T−1 MT
T−1→T gT .

(7)

The e�ciency can be gained by observing that the common adjoint operator in each column of (7). It will be
evident that the gradient is equivalent to executing the following algorithm.

1. Set µT+1 = 0.

2. Loop backwards from t = T to t = 0:

(a) Let µt = MT
t→t+1µt+1 + gt.

3. µ0 evaluates to −dJo/dδx0.

The total derivative of all terms in the cost function is then

dJ

dδx0
=

dJb

dδx0
+

dJo

dδx0
= B−1δx0 − µ0. (8)

3 Method B of deriving the gradient: using Lagrange multipliers

3.1 Introducing the Lagrange multipliers and �nding the derivatives

Method A imposes the constraint with Lagrange multipliers. The problem of minimising (1) subject to constraint
(2) is to write the following new unconstrained minimisation problem with one Lagrange multiplier, λt, multiplying
each constraint:

L(δx0, . . . , δxT ;λ1, . . . ,λT ) = J(δx0, . . . , δxT ) +

T−1∑
t=0

λT
t+1 (δxt+1 −Mt→t+1δxt) . (9)

Minimising (9) with respect to δx0, . . . , δxT ;λ1, . . . ,λT in an unconstrained way is equivalent to minimising
J(δx0, . . . , δxT ) with respect to δx0, . . . , δxT subject to the constraint that δxt+1 = Mt→t+1δxt.

In order to minimise (9), we need the following derivatives (set to zero):

∂L

∂δxt′
=

∂J

∂δxt′
+

T−1∑
t=0

∂

∂δxt′

(
λT
t+1δxt+1

)
−

T−1∑
t=0

∂

∂δxt′

(
λT
t+1Mt→t+1δxt

)
= 0 (10)

∂L

∂λt′
= δxt′+1 −Mt′→t′+1δxt′ = 0. (11)

Note that (i) we write (10) and (11) as partial derivatives (rather than the total derivatives in (4)) as each argument
of L(•) is now considered an independent variable, and (ii) that the derivatives with respect to λt′ recover the
constraints that are imposed.

We now do the di�erentiation needed to complete the last two terms in (10). For the penultimate term:

T−1∑
t=0

λT
t+1δxt+1 =

T−1∑
t=0

∑
i

[λt+1]i [δxt+1]i ,
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so
∑T−1

t=0

(
∂/∂ [δxt′ ]j

)(
λT
t+1δxt+1

)
=
∑T−1

t=0

∑
i [λt+1]i δt′,t+1δi,j = [λt′ ]j . So the derivative with respect to the

vector δxt′ is λt′ . For the last term:

T−1∑
t=0

λT
t+1Mt→t+1δxt =

T−1∑
t=0

∑
i

∑
i′

[λt+1]i′ [Mt→t+1]i′i [δxt]i ,

so
∑T−1

t=0

(
∂/∂ [δxt′ ]j

)(
λT
t+1Mt→t+1δxt

)
=
∑T−1

t=0

∑
i

∑
i′ [λt+1]i′ [Mt→t+1]i′i δt′,tδi,j =

∑
i′ [λt′+1]i′ [Mt′→t′+1]i′j =∑

i′

[
MT

t′→t′+1

]
ji′

[λt′+1]i′ . So the derivative with respect to the vector δxt′ is MT
t′→t′+1λt′+1. Equation (10) is

then
∂L

∂δxt′
=

∂J

∂δxt′
+ λt′ −MT

t′→t′+1λt′+1 = 0. (12)

The Lagrange multipliers, λt (sometimes called adjoint variables), are de�ned only for 1 ≤ t ≤ T in (12), although
we will de�ne two extra adjoint variables, namely λT+1 ≡ 0 and λ0. We de�ne λ0 as a variable that obeys (12),
although is not associated with any constraint.

3.2 The total gradient

We are interested in the total gradient of the cost function at t = 0, but we only have partial derivatives at each
time. The relationship between the total gradient and the partial derivatives is found from the chain rule:

dJ

dδx0
=

T∑
t=0

(
∂xt

∂x0

)T
∂J

∂δxt
=

T∑
t=0

MT
0→t

∂J

∂δxt
. (13)

N.B. the transpose operator is present for the following reason. In terms of components, the chain rule is

dJ

d [δx0]i
=

T∑
t=0

∑
j

∂ [δxt]j
∂ [δx0]i

∂J

∂ [δxt]j
=

T∑
t=0

∑
j

[M0→t]ji
∂J

∂ [δxt]j
=

T∑
t=0

∑
j

[
MT

0→t

]
ij

∂J

∂ [δxt]j
,

which gives component i of (13) in line with normal matrix algebra.
Substituting (12) into (13):

dJ

dδx0
=

T∑
t=0

MT
0→t

∂J

∂δxt

=

T∑
t=0

MT
0→t

(
MT

t→t+1λt+1 − λt

)
=

T∑
t=0

MT
0→tM

T
t→t+1λt+1 −

T∑
t=0

MT
0→tλt

=

T∑
t=0

MT
0→t+1λt+1 −

T∑
t=0

MT
0→tλt

=

T+1∑
t=1

MT
0→tλt −

T∑
t=0

MT
0→tλt

=

T∑
t=1

MT
0→tλt +MT

0→T+1λT+1 − λ0 −
T∑

t=1

MT
0→tλt

= −λ0, (14)

where, to get the last line, the �rst and last terms cancel and we use the boundary condition that λT+1 = 0. This
set of steps proves that λ0 is equal to minus the total gradient of the cost function.

3



3.3 Finding λ0 (and hence the total gradient)

All is left is to �nd λ0. Consider (12), and substitute ∂J/∂δxt′ for the actual partial derivative from (1).

B−1δx0δt,0 −HT
t R
−1
t (δyt −Htδxt) + λt −MT

t→t+1λt+1 = 0. (15)

Generate an algorithm whereby (15) is integrated backwards from T to 0 (where it is noted that λT+1 = 0).

1. Set λT+1 = 0.

2. Loop backwards from t = T to t = 0:

(a) Let λt = MT
t→t+1λt+1 +HT

t R
−1
t (δyt −Htδxt)−B−1δx0δt,0.

3. λ0 evaluates to −dJ/dδx0.

Notice that this algorithm is, in e�ect, exactly the same as that given at the end of Sect. 3 for the case when the
constraint is applied explicitly. Thus the two approaches A and B are equivalent.
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