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1. Introduction and notation
As we shall see in these notes, the chain rule can be applied to vector as well as scalar de

We will derive the relevant expressions useful in the theory of variational data assimilation ¢
verse modelling. The results lead us to the concept of adjoint variables and adjoint operalt
section 1 we review the standard notation used in linear algebra.

Vectors and vector derivatives

As is usual notation, scalars and vectors are distinguished from each other by writing vectors
A vectorx is, by convention, a column vector (here witblements)

X = . (1.1
Xn
The vector derivative operator operates on some functienwbfere each element of the vector d
rivative is the derivative with respect to each elementasf follows
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adl dx,

d 1 dx is a row vector by convention, but the transpose symbol in (1.2), written as a superscr
makes rows into columns and vice-versa. The 'nabla’ version of the deriVatiieusually a col-
umn vector by convention.

Matrices and the transpose instruction

A matrix, A, contains elemer; in rowi and columr). The transpose is thus

A = AL (13
Since a vector is a special case of a matrix with either just one row or one column (depent
whether the vector is row or column vector), the transpose instruction here makes row vect
column vectors, and vice-versa. In particular, for vector derivatives
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Theinner product

The combinatiorx'y (an inner product) is a scalar. It is found by the summati@amndy must be
vectors of the same number of elemens,

X'y = Y Xy (1.5)

The outer product

The outer product is writtexy" and yields a matrix

X1iy1 Xiy2 ... XiYn
XyT _ | X XYe .. XoWn . (16)
XnY1 XnY2 Xn XnYn
The number of elements rfandy need not be the same for the outer product.xkFgth n elements
andy with m elements, the outer product as defined above willibe an matrix.

Matrix operators

A matrix acts on one vector to give another vector. The following action

y = AX 1.7
is valid if the number of rows &k (n) is the same as the number of elemengsand the number of
columns ofA (m) is the same as the number of elemenis ikquation (1.7) is shorthand for

Y= D AX (=1n. (1.8)
j=1

This action is like performing many inner products, one for each rot dh this respect, the ma
trix operator is sometimes used as a transformation (or change of basis) where each repref
sents the row vector for a member of the new basis.

Generally, the matrix elements can be thought of as the partial derivatives

Y
o= A 1.
A % (1.9
and the whole matrix can be written as
ady
A= —, 1.10
EM (1.10

The inner and outer products and matrix operators applied with vectors and vector derivative:
used in innovative ways to write compact multi-variable expressions. Such expressions ai
e.g., in data assimilation.



2. Chain rulefor scalar functions (first derivative)

Consider a scalar that is a function of thelements ok, J(x). Its derivative with respect to th
vectorx is the vector

dJ/ Ix;
;
VJ = (%) _ |9 9% 2.1
dJ! Ix,

An important question is: what &J/ Jx’ in the case that the two sets of variablemdx’ are relat-
ed via the transformation

X = AX'? (2.2)
A is sometimes referred to aslaobian, and has matrix elememtg = dx /dx (as Eq. (1.9)). It
shall be assumed for now that all elemeitare real (see below for the modification required wt
A;j are complex). Let us write an equation for the derivativkwith respect to, expressed expli-
citly via the chain rule

dJ 8Xj dJ
X zj:axf %’ @3
dJ
= ZA”o'?_x,-' (2.4

Expressions for derivatives with respect to each componeditcah be assembled into a vector.
can be checked that the following, when expanded using Egs. (1.3), (1.7) and (1.8), is equiv
the above
93\ +(dd\
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This is the generalised chain rule for vector derivatives in the case when the ofpgmatenl. A
column derivative with respect to a vector, such@¥ dx)', is often called amdjoint variable.
The operatoAT (as distinct from the forward operatty as defined in Eq. (2.2)) is similarly calle
the adjoint operator. It is important to note that the adjoint of an operator is not generally it
verse: WhileA transmits information fromt’ to x (Eq. (2.2))AT transmits information in the revers
direction,but for adjoint variables

Using Eq. (1.10), Eqg. (2.5) can be written as
T T T
2 - (2.
ox dX'] \dx
This has the same appearance as the chain rule for single variable functions (now with vecto
place of scalars) and is a convenient way of remembering the multi-variable result.

Equation 2.5 must be modified whénis a complex operator. Understanding the modification



guires analysis of the chain rule for scalars only. Consider the complex scalar expression

X = ZX, 2.7
wherex = xg + ix, X = Xk + iX[,Z = Zr + iZ,, andi = v=1. The chain rule for this case do:
not translate tad/dx’ = Zd/dx in this case. To see what the result should be, expand Eq.
into its components

Xg = ZpXr — Z\X),

X| = Z|X’R + ZRX|’. (28)
The minus sign in the first line of Eqgs. (2.8) is important. The chain rule has real and ima
parts as follows
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Four partial derivatives can be found from Egs. (2.8) to give

d d J
v ZRO-)—XR + Zla—)(.’
J Jd d

Thex andx’ adjoint variables for complex derivatives are defined as
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The following is actually the correct chain rule for the complex case

d . d

=7Z— 212
dx’ dx’ (212
whereZ" is the complex conjugate &f Substituting Egs. (2.11) into Eq. (2.12) and then separ:
into real and imaginary parts gives the same result as Eqgs. (2.10). This confirms that Eq. (

the correct chain rule for the complex case. In the complex vector case, Eg. (2.5) then becon
3J )T T(&J)T
= A'|=]|, 21
(8x’ dX @13
where the dagger is the conventional shorthand for transpose and complex conjugate.

(2.12)

3. Chain rulefor scalar functions (second derivative)
The second derivative with respect to the original variablean be written in matrix form as

- (2712



3211 9x3 3231 3x % ... %I IXI%,
231 %%y 21X ... XX, | (3.2)

3?31 IXO%; A% X% ... %I IR
Although the right hand side of Eqg. (3.1) resembles an inner product (scalar), the 'row' prog
derivative vectors (mentioned in section 1) means that this is actually an outer product.

Again, imposing the transformation Eq. (2.2), the result, Eq. (2.5), can be used to rewrite the
derivative matrix in terms of the new, primed variables

ax2  \ogx/ \ox J, (33
a\'(d
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4. Chain Rulefor Vector Functions (First Derivative)
If the function itself is a vectof,(x), then the derivative is a matrix

of11dxy dfildx ... Jfildx,
of df,1 9%y dfaldx, ... df,19x,
ax R
Ifml Ixy Il d% ... Ifnl IX,
where the number of componentsfqim) is not necessarily the same as the number of compor
of x (n). Making the same transformation of the independent variable as in section 2, Eq. (2.
using the result of Eq. (2.5), allows one to write the derivative in terms of the primed variables
of of
ax 5(A'
All of the results, Egs. (2.5), (3.5) and (4.2) follow from only one explicit use of the chain ru
section 2).

(4.1)
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