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1. Introduction and notation
As we shall see in these notes, the chain rule can be applied to vector as well as scalar derivatives.

We will derive the relevant expressions useful in the theory of variational data assimilation and in-

verse modelling.  The results lead us to the concept of adjoint variables and adjoint operators.  In

section 1 we review the standard notation used in linear algebra.

Vectors and vector derivatives

As is usual notation, scalars and vectors are distinguished from each other by writing vectors in bold.

A vector  is, by convention, a column vector (here with  elements)x n

x = ( ) . (1.1)

x1

x2

…
xn

The vector derivative operator operates on some function of where each element of the vector de-

rivative is the derivative with respect to each element of  as follows

x

x

∇x = ( ∂
∂ x)T

= ( ) . (1.2)

∂ / ∂ x1

∂ / ∂ x2

…
∂ / ∂ xn

 is a row vector by convention, but the transpose symbol in (1.2), written as a superscript "T"

makes rows into columns and vice-versa.  The 'nabla' version of the derivative,, is usually a col-

umn vector by convention.

∂ / ∂ x

∇x

Matrices and the transpose instruction

A matrix, , contains element  in row  and column .  The transpose is thusA Aij i j

Aij = AT
ji. (1.3)

Since a vector is a special case of a matrix with either just one row or one column (depending on

whether the vector is row or column vector), the transpose instruction here makes row vectors into

column vectors, and vice-versa.  In particular, for vector derivatives

∇x = ( ∂
∂ x)T

. (1.4)
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The inner product

The combination  (an inner product) is a scalar.  It is found by the summation ( and  must be

vectors of the same number of elements, )

xTy x y

n

 xTy = ∑
i

xiyi. (1.5)

The outer product

The outer product is written  and yields a matrixxyT

xyT = ( ) . (1.6)

x1y1 x1y2 … x1yn

x2y1 x2y2 … x2yn

… … … …
xny1 xny2 xn xnyn

The number of elements of and  need not be the same for the outer product.  For with  elements

and  with  elements, the outer product as defined above will be a  matrix.

x y x n

y m n × m

Matrix operators

A matrix acts on one vector to give another vector.  The following action

y = Ax, (1.7)
is valid if the number of rows of  ( ) is the same as the number of elements in and the number of

columns of  ( ) is the same as the number of elements in .  Equation (1.7) is shorthand for

A n y

A m x

yi = ∑
m

j = 1

Aijxj (i = 1, n) . (1.8)

This action is like performing many inner products, one for each row of.  In this respect, the ma-

trix operator is sometimes used as a transformation (or change of basis) where each row of repre-

sents the row vector for a member of the new basis.

A

A

Generally, the matrix elements can be thought of as the partial derivatives

Aij =
∂ yi

∂ xj
, (1.9)

and the whole matrix can be written as

A =
∂ y
∂ x

. (1.10)

The inner and outer products and matrix operators applied with vectors and vector derivatives can be

used in innovative ways to write compact multi-variable expressions.  Such expressions are used,

e.g., in data assimilation.
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2. Chain rule for scalar functions (first derivative)

Consider a scalar that is a function of the elements of , .  Its derivative with respect to the

vector  is the vector

n x J (x)
x

∇xJ = (∂ J

∂ x)T

= ( ) . (2.1)

∂ J / ∂ x1

∂ J / ∂ x2

…
∂ J / ∂ xn

An important question is: what is  in the case that the two sets of variables and  are relat-

ed via the transformation

∂ J / ∂ x′ x x′

x = Ax′ ? (2.2)
 is sometimes referred to as aJacobian, and has matrix elements  (as Eq. (1.9)).  It

shall be assumed for now that all elements are real (see below for the modification required when

 are complex).  Let us write an equation for the derivative of with respect to , expressed expli-

citly via the chain rule

A Aij = ∂ xi / ∂ x′j
Aij

Aij J x′i

∂ J

∂ x′i
= ∑

j

∂ xj

∂ x′i
∂ J

∂ xj
, (2.3)

= ∑
j

Aji
∂ J

∂ xj
. (2.4)

Expressions for derivatives with respect to each component of can be assembled into a vector.  It

can be checked that the following, when expanded using Eqs. (1.3), (1.7) and (1.8), is equivalent to

the above

x′

( ∂ J

∂ x′)
T

= AT (∂ J

∂ x)T

. (2.5)

This is the generalised chain rule for vector derivatives in the case when the operator is real.  A

column derivative with respect to a vector, such as , is often called anadjoint variable.

The operator  (as distinct from the forward operator, as defined in Eq. (2.2)) is similarly called

the adjoint operator.  It is important to note that the adjoint of an operator is not generally its in-

verse: While  transmits information from  to  (Eq. (2.2)),  transmits information in the reverse

direction, but for adjoint variables.

A

(∂ J / ∂ x)T

AT A

A x′ x AT

Using Eq. (1.10), Eq. (2.5) can be written as

( ∂ J

∂ x′)
T

= ( ∂ x
∂ x′)

T (∂ J

∂ x)T

. (2.6)

This has the same appearance as the chain rule for single variable functions (now with vectors in the

place of scalars) and is a convenient way of remembering the multi-variable result.

Equation 2.5 must be modified when is a complex operator.  Understanding the modification re-A
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quires analysis of the chain rule for scalars only.  Consider the complex scalar expression

x = Zx′, (2.7)
where , , , and .  The chain rule for this case does

not translate to  in this case.  To see what the result should be, expand Eq. (2.7)

into its components

x = xR + ixI x′ = x′R + ix′I Z = ZR + iZI i = −1

d / dx′ = Z d / dx

xR = ZRx′R − ZIx′I,

xI = ZIx′R + ZRx′I. (2.8)
The minus sign in the first line of Eqs. (2.8) is important.  The chain rule has real and imaginary

parts as follows

∂
∂ x′R

=
∂ xR

∂ x′R
∂

∂ xR
+

∂ xI

∂ x′R
∂
∂ xI

,

∂
∂ x′I

=
∂ xR

∂ x′I
∂

∂ xR
+

∂ xI

∂ x′I
∂
∂ xI

. (2.9)

Four partial derivatives can be found from Eqs. (2.8) to give

∂
∂ x′R

= ZR
∂

∂ xR
+ ZI

∂
∂ xI

,

∂
∂ x′I

= −ZI
∂

∂ xR
+ ZR

∂
∂ xI

. (2.10)

The  and  adjoint variables for complex derivatives are defined asx x′

d

dx
=

∂
∂ xR

+ i
∂
∂ xI

,

d

dx′
=

∂
∂ x′R

+ i
∂

∂ x′I
. (2.11)

The following is actually the correct chain rule for the complex case

d

dx′
= Z∗ d

dx
, (2.12)

where  is the complex conjugate of.  Substituting Eqs. (2.11) into Eq. (2.12) and then separating

into real and imaginary parts gives the same result as Eqs. (2.10).  This confirms that Eq. (2.12) is

the correct chain rule for the complex case.  In the complex vector case, Eq. (2.5) then becomes

Z∗ Z

( ∂ J

∂ x′)
T

= A† (∂ J

∂ x)T

, (2.13)

where the dagger is the conventional shorthand for transpose and complex conjugate.

3. Chain rule for scalar functions (second derivative)
The second derivative with respect to the original variable, , can be written in matrix form asx

∂ 2J

∂ x2
= ( ∂

∂ x)T ( ∂
∂ x) J, (3.1)
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= ( ) . (3.2)

∂ 2J / ∂ x2
1 ∂ 2J / ∂ x1∂ x2 … ∂ 2J / ∂ x1∂ xn

∂ 2J / ∂ x2∂ x1 ∂ 2J / ∂ x2
2 … ∂ 2J / ∂ x2∂ xn

… … …
∂ 2J / ∂ xn∂ x1 ∂ 2J / ∂ xn∂ x2 … ∂ 2J / ∂ x2

n

Although the right hand side of Eq. (3.1) resembles an inner product (scalar), the 'row' property of

derivative vectors (mentioned in section 1) means that this is actually an outer product.

Again, imposing the transformation Eq. (2.2), the result, Eq. (2.5), can be used to rewrite the second

derivative matrix in terms of the new, primed variables

∂ 2J

∂ x′2
= ( ∂

∂ x′)
T ( ∂

∂ x′) J, (3.3)

AT ( ∂
∂ x)T ( ∂

∂ x) AJ, (3.4)

= AT∂ 2J

∂ x2
A. (3.5)

4. Chain Rule for Vector Functions (First Derivative)
If the function itself is a vector, , then the derivative is a matrixf (x)

∂ f
∂ x

= ( ) , (4.1)

∂ f 1 / ∂ x1 ∂ f 1 / ∂ x2 … ∂ f 1 / ∂ xn

∂ f 2 / ∂ x1 ∂ f 2 / ∂ x2 … ∂ f 2 / ∂ xn

… … …
∂ f m / ∂ x1 ∂ f m / ∂ x2 … ∂ f m / ∂ xn

where the number of components of ( ) is not necessarily the same as the number of components

of  ( ).  Making the same transformation of the independent variable as in section 2, Eq. (2.2), and

using the result of Eq. (2.5), allows one to write the derivative in terms of the primed variables as

f m

x n

∂ f
∂ x′

=
∂ f
∂ x

A. (4.2)

All of the results, Eqs. (2.5), (3.5) and (4.2) follow from only one explicit use of the chain rule (in

section 2).
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