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The atmospheric branch of the water cycle, although containing just a tiny
fraction of the Earth’s total water reserves, presents a crucial interface between
the physical climate (such as large-scale rainfall patterns) and the ecosystems
upon which human societies ultimately depend. Because of the central
importance of water in the Earth system, the question of how the water cycle is
changing, and how it may alter in future as a result of anthropogenic changes,
present one of the greatest challenges of this century. The recent
Intergovernmental Panel on Climate Change report on Climate Change and Water
(Bates et al 2008) highlighted the increasingly strong evidence of change in the
global water cycle and associated environmental consequences. It is of critical
importance to climate prediction and adaptation strategies that key processes in
the atmospheric water cycle are precisely understood and determined, from
evaporation at the surface of the ocean, transport by the atmosphere, condensation
as cloud and eventual precipitation, and run-off through rivers following
interaction with the land surface, sub-surface, ice, snow and vegetation.

The purpose of this special focus issue of Environmental Research Letters on
anticipated changes in the global atmospheric water cycle is to consolidate the
recent substantial advances in understanding past, present and future changes in
the global water cycle through evidence built upon theoretical understanding,
backed up by observations and borne out by climate model simulations.
Thermodynamic rises in water vapour provide a central constraint, as discussed in
a guest editorial by Bengtsson (2010). Theoretical implications of the
Clausius–Clapeyron equation are presented by O’Gorman and Muller (2010) and
with reference to a simple model (Sherwood 2010) while observed humidity
changes confirm these anticipated responses at the land and ocean surface (Willett
et al 2008). Rises in low-level moisture are thought to fuel an intensification of
precipitation (O’Gorman and Schneider 2009) and analysis of observed and
simulated changes in extreme rainfall for Europe (Lenderink and van Mijgaard
2008) and over tropical oceans by Allan et al (2010) appear to corroborate this.

Radiative absorption by water vapour (Previdi 2010, Stephens and Ellis 2008) also
provides a thermodynamic feedback on the water cycle, and explains why climate
model projections of global precipitation and evaporation of around 1–3% K−1

are muted with respect to the expected 7% K−1 increases in low-level moisture.
Climate models achieve dynamical responses through reductions in strength of
the Walker circulation (Vecchi et al 2006) and small yet systematic changes in the
atmospheric boundary layer over the ocean that modify evaporation (Richter and
Xie 2008). A further consequence is anticipated sub-tropical drying (Neelin et al
2006, Chou et al 2007); Allan et al (2010) confirm a decline in dry sub-tropical
precipitation while the wet regions become wetter both in model simulations and
satellite-based observations. Discrepancies between observed and climate model
simulated hydrological response to warming (Wentz et al 2007, Yu and Weller
2007) are of immediate concern in understanding and predicting future responses.
Over decadal time-scales it is important to establish whether such discrepancies
relate to the observing system, climate modeling deficiencies, or are a statistical
artifact of the brevity of the satellite records (Liepert and Previdi 2009).
Techniques for extracting information on century-scale changes in precipitation
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are emerging (Smith et al 2009) but are also subject to severe limitations. Past
decadal-scale changes in the water cycle may be further influenced by regionally
and temporally varying forcings and resulting feedbacks which must be
represented realistically by models (Andrews et al 2009). The radiative impact of
aerosols and their indirect effects on clouds and precipitation (Liepert et al 2004)
provide an important example. Understanding surface solar ‘dimming’ and
‘brightening’ trends in the context of past and current changes in the water cycle
are discussed in a guest editorial by Wild and Liepert (2010). The key roles
anthropogenic aerosols can play on a regional scale are discussed by Lau et al
(2010) through their study of the regional impact of absorbing aerosols on
warming and snow melt over the Himalayas.

The overarching goal of climate prediction is to provide reliable, probabilistic
estimates of future changes. Relating hydrological responses back to a sound
physical basis, the motivation for this special focus issue, is paramount in building
confidence in anticipated changes, especially in the global water cycle.

We are grateful to the reviewers and the journal editorial board for making this
focus issue possible.
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