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A large number of recent studies have aimed at understanding short-duration rainfall
extremes, due to their impacts on flash floods, landslides and debris flows and potential
for these to worsen with global warming. This has been led in a concerted international
effort by the INTENSE Crosscutting Project of the GEWEX (Global Energy and Water
Exchanges) Hydroclimatology Panel. Here, we summarize the main findings so far and
suggest future directions for research, including: the benefits of convection-permitting climate
modelling; towards understanding mechanisms of change; the usefulness of temperature-
scaling relations; towards detecting and attributing extreme rainfall change; and the need
for international coordination and collaboration. Evidence suggests that the intensity of long-
duration (1 day+) heavy precipitation increases with climate warming close to the Clausius–
Clapeyron (CC) rate (6–7% K−1), although large-scale circulation changes affect this response
regionally. However, rare events can scale at higher rates, and localized heavy short-duration
(hourly and sub-hourly) intensities can respond more strongly (e.g. 2 × CC instead of CC).
Day-to-day scaling of short-duration intensities supports a higher scaling, with mechanisms
proposed for this related to local-scale dynamics of convective storms, but its relevance to
climate change is not clear. Uncertainty in changes to precipitation extremes remains and is
influenced by many factors, including large-scale circulation, convective storm dynamics and
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stratification. Despite this, recent research has increased confidence in both the detectability
and understanding of changes in various aspects of intense short-duration rainfall. To
make further progress, the international coordination of datasets, model experiments and
evaluations will be required, with consistent and standardized comparison methods and
metrics, and recommendations are made for these frameworks.

This article is part of a discussion meeting issue ‘Intensification of short-duration rainfall
extremes and implications for flash flood risks’.

1. Introduction
Climate models project a general intensification of extreme rainfall during the twenty-first
century on the continental to global scales, consistent with observed trends [1,2]. However, large
uncertainties in regional patterns and the rate of change [3,4] hamper the development of efficient
adaptation strategies for flooding (IPCC 2013), presenting a formidable challenge to public safety,
services, critical infrastructure and the economy. There is a particular lack of understanding
around changes to short-duration (sub-daily) rainfall extremes which are especially hazardous
and responsible for fatalities [5], as they lead to flash floods, landslides and debris flows that
occur with little warning [6]. Short-duration, high-intensity rainfall events are also responsible
for pollution incidents from combined sewerage networks [7]. Cities are particularly vulnerable to
floods generated by heavy short-duration rainfall due to ageing drainage infrastructure systems
designed to deal with lower historical rainfall intensities and an increase in impermeable surfaces.
A better understanding of the impacts of global warming on sub-daily (particularly hourly
to 3-hourly) extreme precipitation is therefore crucial for societal adaptation [8], through the
management of the water environment (see [9]) and application to design of stormwater drainage
infrastructure systems (see [10]), among others.

Over the last 6 years, an enormous international effort, led by the INTENSE (INTElligent use of
climate models for adaptatioN to non-Stationary hydrological Extremes) Crosscutting Project on
Sub-Daily Extremes [11] of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology
Panel, has produced multiple studies which have advanced scientific knowledge of climate
change impacts on short-duration rainfall extremes, enabling substantial advances in quantifying
historical changes and providing improved physical understanding for regional projections
(figure 1). These range from the development of convection-permitting models (CPMs) and
idealized model experiments to the collection and assessment of precipitation observations.
Very-high-resolution CPM simulations (e.g. [12]) can explicitly simulate km-scale motions in
convective storms and how these change with global warming but do not yet resolve turbulent
cloud dynamics. CPMs have enabled the simulation of local storm dynamics [13], e.g. the
diurnal cycle of convection [14], orographically enhanced extreme precipitation [15], the spatial
structure of rainfall and its duration-intensity characteristics [16,17], and hourly and sub-hourly
precipitation intensities [18,19].

INTENSE also led an effort to collate and quality-control a global database of sub-daily
precipitation data across multiple continents. The Global Sub-Daily Rainfall (GSDR) dataset
[20] comprises observations from more than 25 000 gauges, quality-controlled using open-source
Python codes [21]. This quality-controlled data has been used to develop UK-wide gridded 1 km
resolution hourly precipitation products [22], blended gauge-radar-satellite datasets [23] and to
examine the ability of hourly gauge data to capture hourly rainfall extremes [24]. The GSDR has
also been used, together with reanalyses and remotely sensed products, to produce global 0.1°
daily and 3-hourly precipitation probability distribution climatologies for 1979–2018 [25]. These
are added to existing merged products as a key resource for the community to validate climate
model outputs [13] and provide a significant platform to guide future model development.

INTENSE has provided a global assessment of observed extreme rainfall characteristics in the
GSDR [26] and, by linking with CPM simulations, has been used to better understand drivers of
change. Trend analyses in the UK [27] and US [28] have shown that trends in winter extremes
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Figure 1. The INTENSE project’s key questions. (Online version in colour.)

are emerging first in hourly precipitation for both magnitude and frequency statistics and that
these can in part be linked to rising temperatures. Similar work over the Netherlands has shown
that most hourly precipitation extremes are part of large-scale circulation systems [29]. Large-
scale drivers of hourly precipitation extremes have been explored further, by linking these to
atmospheric circulation patterns over Europe [30,31], the US [32], Australia [33] and globally [34].
Analysis of CPMs has established the large-scale precursors of small-scale storms over the UK
[35]. This work has enabled access to rainfall extreme metrics for impact researchers and provided
a platform for the exploration of the role of storm dynamics in state-of-the-art climate models.

However, while progress is evident in model capability, leading to new insights to km-scale
atmospheric responses to climate change, the use of CPMs to guide decision-making in a real-
world context is still challenging [9]. This is primarily because of under-sampling of either model
uncertainty at these finer scales (e.g. relying on output from a single, or small sample of, model(s)),
or wider global climate model (GCM) uncertainty (i.e. the number of CPM-GCM combinations).
From an extremes-perspective, the relatively limited length of a CPM simulation can also be a
limitation for CPMs to provide guidance on future change. For example, analyses of precipitation
‘extremes’ are still often focused on relatively frequent events from an impacts perspective (e.g.
99th percentile of hourly rainfall), whereas decision-makers are mostly interested in rare events
such as the ‘1 in 100 year’ event.

On a more positive note, the advent of CPMs allows for a more detailed assessment of the
applicability of the Clausius–Clapeyron (CC) relation to different environmental conditions and
storm intensities and structures. The CC-relation describes the relationship between saturation
vapour pressure and temperature or, more simply, the moisture-holding capacity of an airmass
relative to its temperature. According to this relationship, specific humidity increases at
approximately 6–7% per degree warming (K−1) near to the Earth’s surface [36]: a rate used as a
first approximation to indicate how rainfall extremes may change with a warming climate[37]. It is
assumed that this relationship can be transferred because rainfall extremes tend to occur when the
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atmosphere is at, or near, saturation and they are limited by the amount of atmospheric moisture
available to the storm; therefore, changes to rainfall intensities are, to a first approximation,
expected to scale with CC [38]. Drawing on land-based observations, since all studies so far are
based on land, this CC rate of increase is documented for many regions across the globe and also
supported by multi-regional analysis in model simulations of the current climate (e.g. [1,2,39]),
even if it is modulated by dynamical changes regionally [4]. For shorter durations, however,
intensities can scale at higher than CC rates in some cases (e.g. [40]) and evidence suggests this is
caused by physical processes related to dynamical feedback mechanisms in clouds (e.g. [41]). In
this case, the highest mean and extreme hourly precipitation intensities are mainly located over
continents rather than over oceans [34]. Since global mean precipitation is constrained by Earth’s
energy budget to increase at less than the CC rate, around 1–3% per degree of global warming
[42,43], intensification of heavy rainfall at or above the CC rate implies a reduced frequency
and/or intensity of precipitation away from the regions of heavy rainfall, therefore driving a
fundamental change in the characteristics of rainfall globally [38].

In this paper, we present the outcomes of expert discussion around scientific knowledge
of climate change impacts on short-duration rainfall extremes held at a discussion meeting
at the Royal Society in February 2020. The research challenges associated with understanding
future impacts on rainfall extremes are extensive and covered in a dedicated review paper
[44]. Here, we focus specifically on topics that garnered attention from the participants of the
Royal Society meeting and are seen as interesting areas for future work, including the benefits of
convection-permitting climate modelling, towards understanding mechanisms of change, the usefulness of
temperature-scaling relations, towards detecting and attributing extreme rainfall change, and the need for
international coordination and collaboration. In a concluding section, we then consider the gaps that
remain and how we might further advance scientific knowledge of climate change impacts on
short-duration rainfall extremes and their links to decision-making.

2. The benefits of convection-permitting climate modelling
Over the past decade, computational advances and improvements in CPMs have enabled a
step-change in the capacity of the climate modelling community to simulate short-duration
rainfall extremes (see [45]). CPMs substantially improve the simulation of local storm dynamics
and better capture the details of convective organization but some biases remain, such as an
overestimation of heavy rainfall due to under-resolved cloud processes such as entrainment
(e.g. [17,46,47]). CPMs are not able to capture the small-scale details of storms, with rainfall
cells tending to be too large with too much heavy rainfall [47,48]. However, they are able to
capture mesoscale organization and perform well in cases of large convective storms, and overall
give a much more realistic representation of hourly precipitation than convection-parameterized
models.

CPMs produce quite different projections of change to short-duration rainfall extremes
than convection-parameterized models, especially in convection-dominated environments, with
studies so far suggesting increases in the future intensities of short-duration extremes at the CC
rate or greater [49]. INTENSE CPM results over Northern Europe suggest that storms will become
more intense and longer in duration [50] with climate warming, but that storm profile does
not significantly change [51]. This is similar to results from radar observations, where storms
were found to become more intense and larger in size with warmer temperatures [52]. It also
corroborates work with CPMs over the US [53] but is different to storm profile changes identified
in observations in Japan [54] and Australia [55,56] which found an intensification of the storm
core but a smaller storm size with warmer temperatures. The seasonality of intense hourly events
was also found to change with global warming, with more events in autumn months in Europe,
at the expense of summer [57].

CPMs have been run for multi-year climate simulations over many regional domains, e.g.
UK [12,17,58], southwest Germany [46], Sydney, Australia [59], the Colorado headwaters [60],
the Alps [14,61,62], Scandinavia [63] and whole continents, e.g. the USA [64], Europe [57,65]
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and Africa [66]. Coordinated CPM intercomparison projects, such as the CORDEX Flagship
Pilot Study (CORDEX-FPS) [67], the European Climate Prediction System (EUCP) [68] and
the first ensemble of CPM projections from the UK Climate Projections (UKCP) [69,70] have
enabled the first multi-scale assessments of precipitation extremes, from coarser convection-
parameterized models down to CPMs, and improved understanding of uncertainties in extreme
rainfall projections [71]. Short runs of CPMs have even been run globally [72,73], and it is also
possible to close the gap between planetary and convective scales in more idealized simulations
(see [74]). However, the growth in data volume from these very high-resolution simulations
has given rise to problems in data sharing between scientists working with these models, and
standard CMIP/CORDEX approaches for data sharing might be usefully replaced by more
efficient approaches [75].

We recommend that the capacity to share and compare model outputs, in combination
with the use of high-resolution observational products for model evaluation, could aid climate
model development and increase confidence in model performance among practitioners. The
comparison of CPMs at different horizontal resolutions and the sharing and benchmarking of
events/scenarios is in its infancy but has started under projects like EUCP and community efforts
such as CORDEX-FPS. This will help to answer fundamental questions that are robust across
different models, such as the benefits and features of using CPM resolution. We recommend
that further investigation is made of adequate and ideal model setups for CPMs (e.g. [76]) and
why this varies according to modelled region, e.g. Europe versus US; model setups also vary
between midlatitude and tropical regions e.g. different vertical level sets. We suggest that multi-
scale approaches, with downscaling from GCMs and RCMs to CPM scales, may also be enhanced
by the use of machine learning approaches to connect models and processes at different scales,
and perhaps enable the improved representation of structural uncertainties between different
climate models or the development of new convective parameterizations [77,78]. We suggest
that application to CPMs is a key part of the development of scale-aware parameterizations
[79]. In general, we acknowledge the scope for further analysis of a large number of existing
simulations. We recommend that better use is made of these simulations, with the sharing of CPM
data among modelling groups. However, we suggest that the development of CPM reanalysis
products using numerical weather prediction (NWP) simulations would be a useful addition to
current model sets. The ongoing C3S initiative, CERRA, is taking a lead here to produce a 5.5 km
dynamically downscaled ERA5 regional reanalysis: https://climate.copernicus.eu/copernicus-
regional-reanalysis-europe-cerra.

Widely used in CPMs are pseudo global warming (PGW) experiments, allowing us to explore
the implications of a warming atmosphere on different precipitation regimes [80,81]. Key to
this has been the use of PGW simulations to explore in-storm changes due to thermodynamic
effects, e.g. [36]. A key challenge to address in PGW experiments is the convergence between
model projections and observations regarding the existence of super-CC scaling rates and
understanding the mechanisms behind them (see [82]). However, in regions where dynamical
processes are important, such as changes to large-scale circulation patterns, we recommend that
a full downscaling from GCM to CPM scales should be preferred. Although CPM analyses have
so far mainly concentrated on ‘peak intensity’ changes over fixed durations, e.g. daily, multi-
day, hourly, etc., likely structural changes to different storm types in the future are important to
understand for both impacts and for updating of design guidance (see [83]). Changes to event
clustering are also likely important, e.g. [66], where a CPM for Africa captures changes in the
triggering of diurnal convection due to decreasing instability (increasing CIN) which leads to
longer dry spells between intense downpours in future.

Many characteristics of larger storm systems (e.g. cyclones, fronts) may be better understood
using CPMs, with their better representation of the mesoscale structures associated with slantwise
instabilities within fronts. We suggest that the objective identification of different types of storm
systems and their associated hazards (heavy precipitation, strong winds) in CPMs may help to
identify likely spatial and temporal changes to hazards, as well as the likelihood of change in
dominant event types, with global warming. One example of this is the change to within-storm

https://climate.copernicus.eu/copernicus-regional-reanalysis-europe-cerra
https://climate.copernicus.eu/copernicus-regional-reanalysis-europe-cerra
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characteristics, such as the frequency of intense short-duration precipitation bursts within longer
duration events, which are better simulated by CPMs. Indeed, the improved representation of
advection from sea to land and the triggering of convective showers in CPMs may be crucially
important for understanding changes to precipitation type, for example, where stratiform rainfall
changes to convective [69]. We recommend the need for more research on changes to storm
type, organization, orientation and movement [53] using CPMs, which are better at representing
storm movement and morphology and potential changes to within-storm characteristics than
convection-parameterized simulations [47]. Additional studies are also necessary to examine
whether biases in GCM/RCM storm and convection propagation account for the discrepancies in
trends between observations and climate models. We recommend also considering the possibility
of unprecedented ‘black swan’ events or storm types. Together, this work may allow us to
establish the effect of changing temporal storm patterns on geophysical/urban responses.

3. Towards understanding mechanisms of change
INTENSE and other initiatives have established a firm scientific basis for the relation between
temperature and extreme precipitation intensities at daily and hourly durations; an infographic
on the acquired knowledge and the missing pieces is shown in figure 2 and explained in
the following. The rate of intensification of rainfall extremes under climate change depends
on various processes that range from the microscale to the synoptic scale and planetary
scale. Published scientific evidence suggests that daily precipitation extremes for large-scale
precipitation increase with temperature at approximately the CC rate (6–7% K−1) over large
regions [1,2,39], while warm, convective storms can potentially increase at higher rates (approx.
1–2 × CC) [40]. Uncertainty remains in the influence that changes to large-scale circulation
dynamics, temperature stratification (affecting atmospheric stability), and latent heat release
will have on the intensification of extreme rainfall, particularly for short-duration extremes.
Studies indicate that local effects are important, but changes in precipitation efficiency, cold
pool dynamics and wind shear effects are still poorly understood. This is partly due to the
concentration of studies on ‘peak intensity’ changes, the more complex analysis methods
necessary to investigate a change in small-scale cloud processes, a lack of consistent analysis
methods and a lack of observational datasets to fully evaluate CPMs. Recent observational and
CPM studies have enhanced understanding of how these processes interact and how they might
affect future extreme rainfall and a full review of our current understanding is provided in Fowler
et al. [44].

We suggest that theory and idealized modelling experiments of convection in limited-size
domains have the potential to provide further guidance as to where and when higher rates of
change of precipitation extremes with climate warming (e.g. 2 × CC) should be expected. For
climate warming experiments in the simplest setting of radiative-convective equilibrium (RCE),
warming is greater higher in the atmosphere than at lower levels, hence increasing the dry static
stability of the atmosphere. In these RCE experiments, we see the atmosphere following close to
a moist adiabat and the response of short-duration precipitation extremes is close to CC [84–86],
although changes in precipitation efficiency—i.e. the formation of hydrometeors and the extent
to which these re-evaporate or fall to the ground—can cause deviations from CC at lower surface
temperatures [42]. When warming is uniform in the vertical, experiments yield higher rates of
increase in precipitation extremes [87,88] but since this experimental design imposes an increase
in moist instability this is an expected result. Thus, we suggest that to make theoretical progress
it would be helpful to develop a simple framework of convection (possibly in a disequilibrium
state) in which the vertical profile of warming is not externally imposed and yet super-CC rates of
increase of precipitation extremes can in some cases be realized in response to climate warming.

There are some well-understood mechanisms. Storms will tend to intensify due to increased
latent heat release and updraft velocities and increases in moisture-convergence producing larger
storms [44]. These increases will be dampened by enhanced atmospheric stratification due to
a fundamental thermodynamic effect related to changes in the moist-adiabatic lapse rate in a
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Figure 2. Knowledge path on relationship between precipitation extremes and globalwarming: consensus andmissing pieces.
Additional studies are required to dissipate uncertainties linked to the influence of large-scale circulation dynamics, latent heat
release and moist static stability, changes in storm characteristics and temperature stratification. International collaboration
is needed to increase model confidence, to evaluate uncertainties and to advance scientific knowledge on poorly understood
phenomena like cold pools, wind shear and precipitation efficiency. (Online version in colour.)

warmer atmosphere which increase static stability both in the tropics, where the atmosphere stays
close to a moist adiabat [89], and in the extratropics [90]. These competing effects of increased
latent heating versus increased static stability are crucial for changes in updrafts speeds and
thus precipitation rates [74,87]. The changes in stratification also drive large-scale geographical
patterns in surface warming and significant changes in precipitation frequency and amount [91].
This effect is particularly important in tropical regions and in extratropical summer conditions,
and is a more robust response than the large-scale circulation changes that, for e.g., dominate
precipitation changes during the European winter [91]. Changes to large-scale atmospheric
dynamics are clearly important and not well-researched. We recommend that it is important in
future work to establish the relative contributions of atmospheric stratification, dynamics and
thermodynamics to changes to extreme precipitation not just for peak intensities but with event-
based analysis according to storm/precipitation type (see [92]). We suggest that this will enable
the disentangling of processes causing extreme events and move us further towards answering
questions like, why is intensification higher for the most extreme events [93–95], and is this a
simple result of changes in frequency mixing with changes to intensity?

It will also enable us to establish the importance of small-scale dynamics versus large-
scale dynamical changes on storm intensification and frequency. Local dynamical scaling might
enhance precipitation within an event but a large-scale shift of circulation patterns might move
the moisture sources sufficiently to affect the regional-scale response [96,97]. For example,
large-scale circulation effects caused by Arctic amplification may lead to change in jet stream
positioning over Europe, but overall there is low understanding due to multiple driving
mechanisms [98]. However, an increased gradient in moisture from low to high latitudes
determined by the CC relation will lead to more moisture transport into the Arctic which will alter
cloud/radiative/precipitation characteristics which will, in turn, affect Arctic amplification [99].
Similarly, changes in large-scale dynamics can strongly affect where precipitation extremes occur
most frequently in both the subtropics and the tropics. Uncertain dynamical influences must be
explored to establish more clearly the likely response of large-scale systems and the role they will
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play in enhancing/dampening thermodynamically-driven extreme precipitation increases with
warming.

Changes to small-scale cloud physics will also be important. In particular, continental
convection is generally much less ‘efficient’ than maritime convection but its efficiency can be
greatly increased if it organizes into a mesoscale convective system. At the moment little is known
about the differing responses over the ocean and continents. However, if changing temperatures
lead to different modes of mesoscale organization of convection that could provide a mechanism
for a different response. The processes involved in the organization of extreme precipitation
events are multi-fold and vary by region. Extremes can self-organize due to feedbacks that are
triggered by small-scale processes (e.g. convective self-aggregation) or they can be organized
and intensified by larger-scale processes (e.g. fronts, orographic lifting). High-end extreme events
are, however, typically related to process interactions that amplify extreme rainfall [100]. In this
case, synoptic scale processes usually trigger, organize, steer and amplify mesoscale processes
[101,102]. The role of changes in convective organization in the response of extreme precipitation
to climate change remains uncertain and is an important avenue for future research [103]. It is
possible that there may be a difference, too, arising from the dominance of different microphysical
mechanisms: e.g. liquid versus ice dominated clouds and ice multiplication. All of these processes
must be further understood to fully understand potential regional changes.

4. The usefulness of temperature-scaling relations
INTENSE evaluated the potential usefulness of temperature scaling for projections of changes to
precipitation extremes. It established that the scaling relation between extreme daily rainfall and
day-to-day variability in temperature, the ‘apparent’ scaling [104], across the globe approximately
follows the CC rate or below [105] when using a moisture component in temperature scaling
[106,107]. This is consistent with both observed trends and projected changes to extreme daily
rainfall intensities [2]. An INTENSE study also indicated that sub-daily precipitation extremes
are in some regions increasing at faster rates, at up to three times, than would be expected from
atmospheric moisture increases alone [40]. This is consistent with super-CC apparent scaling
(rates larger than 6.5% K−1) found for sub-daily rainfall intensities in some locations (e.g. [108–
111]). In CPMs, apparent scaling with near-surface temperature is approximately CC during
warm days but decreases on the hottest days, as also seen in observations; scaling is consistently
CC or above if a moisture component is included [112]. It is still uncertain what this will mean for
future projections of changes to precipitation intensities, due to the unknown effect of large-scale
circulation changes [48], but evidence is emerging that sub-daily rainfall intensification is related
to an intensification of flash flooding, at least locally [49].

CPMs have been used to establish some of the mechanisms for enhanced rainfall intensities
from local in-storm effects [41] and from urbanization [113]. However, it is uncertain whether
these apparent scaling rates are suitable for projecting change to extreme precipitation with future
warming. For example, present-day scaling may alias changes in meteorological regimes (e.g.
stratiform to convective) with the temperature that are not relevant for climate change [104].
Temperature scaling could be expected to be the same for day-to-day variability and future
warming when considering some factors that affect extreme precipitation, such as moisture,
latent heating and hydrometeor type, but there is no a priori physical reason to think it will
be the same when considering changes in temperature stratification or mesoscale and synoptic
circulations which can also strongly affect extreme precipitation through effects on condensation
rate, precipitation efficiency, storm size and duration [4,87,114]. Nevertheless, we suggest that an
evaluation of the scaling relationship in observations compared to climate models can identify
model weaknesses and potential under-simulation of change.

One of the main issues in establishing whether scaling is a useful prediction mechanism is
the lack of comparability among current studies, which use different metrics of ‘extremeness’,
different datasets, different scaling methods, and often lack quality-control methods. A full
comparison of existing methods—a meta-analysis on scaling—would provide information on
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the consistency of scaling across space and whether, and in which cases/regions, this is a likely
candidate to explain and predict future changes to extreme precipitation from warming. This
should focus on standard metrics and examine the difference in using scaling variables such as
surface air temperature, surface dew point temperature or atmospheric observations at higher
levels of the atmosphere, using quality-controlled and standardized datasets. Additionally, all
studies should include confidence intervals on their scaling curves to allow uncertainties to be
better established and should publish their analysis scripts since small details in methodology
can have significant impacts on the resulting scaling rates [115]. Furthermore, multi-decadal-long
large region or continental studies of intensification and scaling should be executed to distinguish
the climate signal of event intensification from local day-to-day noise ([28], also see discussion
in [116]). This would also help to illuminate potentially coherent spatial patterns of change to
extreme precipitation frequency and intensity, and the potential effects of regional dynamics and
local-scale effects resulting from e.g. urbanization [113].

It would also help to understand how storm-tracked scaling rates compare to gauge-level rates
and whether CC scaling (and perhaps changes with warming) are different within different parts
or types of storms (e.g. [55]). In particular, event attribution studies of individual tropical cyclones
in the US suggest that precipitation totals averaged over a storm’s duration and spatial extent
scale close to CC. However, in the heaviest precipitating regions of intense tropical cyclones,
precipitation rates scale at 2 × CC or higher [117,118]. This is thought to be due to storm structural
changes in warmer environments [119] but requires further understanding. Further complicating
the issue is how climate change will affect tropical cyclone frequency. While most, but not all,
tropical cyclone permitting climate models (horizontal resolutions of 20–50 km) project a decrease
in the global tropical cyclone count with global warming, there are competing viewpoints of
whether this is realistic [120–122]. While the community agrees that the fraction of tropical
cyclones that become intense will increase, a decrease in intense tropical cyclone frequency is
possible if the total storm count decrease is large. To facilitate these analyses, it would be useful to
update the definitions of storms that produce heavy rainfall and to produce automated tracking
systems: we currently define storm structures based on satellite images but could produce much
more detailed classifications based on new radar products (e.g. [52,123]), among others. These
could for example include vertical thermodynamic profiles, indispensable for understanding the
water and energy cycle [124].

5. Towards detecting and attributing extreme rainfall change
Given the damages often associated with extreme short-duration rainfall, there is growing
importance on the reliable monitoring, attribution and prediction of such events. A key
component of this, in recent years, has been increasing interest in the detection and attribution
of large-scale changes in extreme precipitation and in the attribution of weather events involving
extreme precipitation, which seeks to calculate the extent to which anthropogenic factors have
increased the likelihood or intensity of particular types of event (e.g. [125]). There have also been
attempts to demonstrate the close link between conventional detection and attribution and event
attribution [126].

A subjective expert assessment, by the authors, of our current confidence in both the
detectability and understanding of changes in various aspects of extreme short-duration rainfall
is provided in figure 3. Understanding, shown on the vertical axis, is based on both the volume
of literature and its consistency while detectability, shown on the horizontal axis, is based
primarily on the volume and quality of observations. Aspects on one side or the other of
the diagonal line mean that confidence is greater in understanding or attribution, respectively.
Extreme precipitation metrics (daily, 3 hr and hourly pr) are shown in blue, selected severe storm
types (intense ETC, intense ET, intense AR and intense frontal systems) are shown in red, and
processes relevant across storm types shown in black (others). Daily precipitation extremes from
station data are well observed over North America, Western Europe and parts of Asia and
Australia but are sparse in the developing nations [127]. Attribution to human influences of
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Figure 3. Confidence in understanding causes and detection of changes in extreme precipitation. (Online version in colour.)

changes in daily precipitation extremes over land at large scales is well established [128,129],
although uncertainties remain with respect to larger magnitudes of change in observations than
GCMs, the representativeness of stations both in spatial distribution and scale, and the level of
internal rainfall variability in GCMs. However, observational uncertainties over oceans are large
as a result of both retrieval algorithms and temporal sampling. Nevertheless, the widespread
increasing trend in observed annual maximum 1-day precipitation increases confidence and
follows physical and climate model expectations (Clausius–Clapeyron); with about 18% of
moderate daily precipitation extreme events over land now attributable to warming [126].

Sub-daily precipitation extremes are less well observed in general over land [130], hence we
have lower confidence in our ability to detect changes. There has also been less work on detection
studies of 3-hour and 1-hour precipitation, including extremes. However, a growing number of
observational analyses indicate increases in the frequency and/or intensity of 1-hour extreme
precipitation in, e.g. Australia [40], parts of China [131], SE Asia [132], Europe [133,134] and
North America [28]; with [40] detecting large increases outside the range of natural variability
(up to 3xCC) for hourly extreme precipitation in Australia. A full review of this topic can be
found in [44] and this suggests that extreme sub-daily precipitation will increase at the CC rate,
or higher. This, coupled with the fact that we expect large-scale circulation changes to affect
sub-daily precipitation extremes less than thermodynamic drivers and that we have reasonable
understanding of the thermodynamic feedbacks, means that the confidence in our understanding
of the effect of climate change on extreme sub-daily precipitation is nearly as high as for daily
extreme precipitation.

Event attribution studies of extreme rainfall events have used a variety of approaches
including the statistical analysis of observational data and the analysis of large ensembles of
climate model simulations. There is no a priori reason to expect different types of intense storms
to respond in the same way to higher temperatures, and studies have so far not separated storm
types. In fact, there is substantial evidence that changes to the most intense storms may be
quite different than changes to more frequent, less intense storms of the same type [122,135,136].
The literature on the effect of climate change on tropical cyclones is rapidly expanding due to
advances in computing and high-resolution climate modelling. Intense tropical cyclones (TC)
are readily identifiable in both the real world and in appropriate high-resolution simulations
[137], placing them relatively high and to the right in figure 3, with attributable increases of
the risk of extreme rainfall found for Hurricane Harvey [43,118]. Intense extratropical cyclones
(ETC) are well simulated in a wider class of climate models but are not as readily identified in
models or reanalyses [138,139] placing them to the left of intense tropical cyclones, although event
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attribution was performed for the August 2016 flood-inducing event in South Louisiana [140]
Atmospheric rivers (AR) and frontal systems pose similar identification problems [141,142] so
they are placed at the same position at intense ETC on the detection axis. A sparsity of literature on
extreme precipitation changes in these two storm types places them lower on the understanding
axis [143]. For robust results from event attribution, observational and modelled datasets of
sufficiently high resolution are required, stretching current capabilities for event attribution to
the utmost. But with ensembles of CPMs becoming available, there is a strong potential for event
attribution of localized extreme rainfall to make a big step forward in the next few years.

Changes in specific humidity are well observed to scale with temperature over oceans
according to the CC relationship and have been attributed to human activities [144]. Quality
observations and sound theory place it in the upper right corner of figure 3. Changes in severe
convection, on the other hand, are difficult to observe over wide regions of the planet but are
well simulated in very-high-resolution models not requiring convective parameterizations and
can be related to changes in environmental conditions in global models [145,146], placing severe
convection far to the left but relatively high in figure 3. Temperature scaling is not independent
of changes in large-scale circulation nor changes in modes of large-scale variability. Changes in
large-scale circulation such as the Walker and Hadley cells can affect the locations of storm tracks
of all types [98]. These changes are generally well understood and observed [147]. Changes in
modes of inter-annual/decadal variability, such as the El Niño Southern Oscillation or the Pacific
Decadal Oscillation, are more difficult to detect due to a relatively short observational record.
Literature on this subject is extensive but not conclusive [147]. Temperature scaling of short-
duration precipitation extremes, as discussed in this paper, involves these changes in circulation
and humidity but also potential changes in storm structural dynamics. These effects could include
changes in vertical uplifting, changes in convection, changes in translational speeds and other
structural changes, as previously discussed.

6. The need for international coordination and collaboration
To further advance knowledge, there is a clear need to foster international coordination
and collaboration around the identified scientific gaps in understanding. We suggest that
a variety of frameworks could be used to facilitate this, such as collaborative meetings,
enabled by programmes such as the European COST Actions or the US National Science
Foundation’s AccelNet programme. Follow-up meetings could also be arranged as satellite
meetings, or specialized meetings, e.g. American Geophysical Union Chapman conference, or
BIRS Banff workshop. In addition, funding or networking opportunities with intergovernmental
organizations (e.g. International Monetary Fund, World Bank, World Health Organisation) or re-
insurance firms should be explored. We recognize a need to improve connections between the
climate research community and related disciplines such as statisticians, weather forecasters and
the climate impacts community, as well as policymakers and practitioners (figure 4 for a schematic
illustrating the benefits of the crossover between disciplines). This may also help communities
focussing on sustainable development to be made aware of developments in climate science, and
to allow them to be part of shaping funding streams and research directions useful for decision-
making processes. We suggest that is particularly important to include connections to scientists
in developing countries to build data availability in data-poor regions of the tropics and for
capacity-building, as infrastructure may be more vulnerable in the low latitudes.

INTENSE, and the development of the GSDR dataset in particular, has been an exemplar
of international coordination and collaboration, but issues still hinder progress. These include
data availability, quality issues and biases in datasets; for example, much of the GSDR dataset
is not shareable to the international community although efforts are underway to identify
mechanisms for dataset maintenance and updating to ensure the GSDR’s long-term legacy.
While progress has been made in this respect through initiatives such as Copernicus [148], an
improved international capacity to both monitor change and share data remains a significant
challenge [149]. In the meantime, the development of derived products, such as the Expert Team
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Figure 4. The INTENSE Project culminated in bringing together experts across multiple disciplines at the Royal Society,
London to discuss recent advances in understanding climate change impacts on short-duration rainfall extremes and what
is required to make further advances in the field. This diagram is conceptual only and aims to illustrate the crossovers between
disciplines in a general sense. It is not to designed to be accurate in the placement of the Venn diagram circles. (Online version
in colour.)

on Climate Change Detection and Indices (ETCCDI [150]), provide the scientific community
with information on these restricted datasets. Since results can change significantly with quality-
control, we recommend good quality-control of datasets in all scientific studies (e.g. [21,22]). We
also recommend taking account of biases in different data products and identifying potential
shortcomings in short and sparse gauge data records. We recommend the increased use of
different data types, such as remotely sensed (i.e. satellite and radar) datasets, reanalyses and
blended products, each with their own strengths and weaknesses; together these can further
enable understanding of how extreme precipitation is changing and help to elucidate key
mechanisms.

We encourage more internationally coordinated intercomparison studies of CPMs. Such
efforts have started with CORDEX-FPS, EUCP and efforts focusing on organized convection in
Argentina and over the Tibetan Plateau (http://rcg.gvc.gu.se/cordex_fps_cptp/). We suggest
that comparison studies with standard metrics and coordinated model design criteria will further
the understanding of model biases and shortcomings. This should lead to model improvements,
a greater understanding of mechanisms causing increases in extreme precipitation and allow the
evaluation of uncertainties. One key deficiency of existing models is land surface feedbacks; we
recommend a priority should be improving the representation of the soil/water table which was
not designed for CPMs and seems to have a strong impact, especially on dry bias. Incorporating
physically based hydrologic models within climate model land surface components could also
help to improve the simulation of local feedbacks in CPMs that partly drive convective processes
in continental regions. Similarly, improvements in the representation of urban landscapes
would improve related atmospheric feedbacks, such as rainfall intensification from urban heat
island effects [113], and CPMs could be really useful for examining the effects of planned
urban/peri-urban expansion on micro-climates, guiding local adaptation measures, such as the
implementation of city-wide green infrastructure. Alongside this, we suggest that comparison of
CPM versus gauge observations will be useful in understanding network density effects, which
have also been observed from radar versus gauge comparisons [24,151], and may severely affect
our estimates of regional return levels, crucially needed for design decisions.

http://rcg.gvc.gu.se/cordex_fps_cptp/
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7. Conclusion and future directions
Over the last 6 years, the INTENSE Crosscutting project of the GEWEX (Global Energy and Water
Exchanges) Hydroclimatology Panel has led a concerted international effort to advance scientific
knowledge of climate change impacts on short-duration rainfall extremes. This culminated in
a Discussion Meeting at the Royal Society, London, UK where a number of experts discussed
the state-of-the-art in this research field and how to address remaining gaps. Improvements in
observations and the advent of CPMs has led to considerable advances in the understanding of
thermodynamic drivers of changes and their impacts on peak intensities, with a much clearer
understanding of the potential role of relationships between day-to-day temperature variabilities
and precipitation (scaling) in projecting changes to rainfall extremes. Progress has also been
made on the understanding of changes to storm spatial structures and profiles with warming,
with considerable evidence of changes with climate change. Considerable progress has also been
made on the understanding of local dynamical enhancements causing super-CC scaling, such
as latent heat release, enhanced vertical uplift and moisture convergence. Less well understood
is the moderating role of large-scale circulation on thermodynamic changes and the climate
change impacts on small-scale cloud dynamics (i.e. turbulence), storm organization, and cloud
microphysics and their effects on changing extreme precipitation.

To further advance this research field, we recommend that an event-based conceptual
framework would be a useful approach to help clarify differences among various rainfall
mechanisms and scaling rates. This focus on local event properties is however balanced by
a need to gain a better understanding of the impact that potential changes to large-scale
circulation patterns could have on intense rainfall extremes. These questions are complementary,
and of particular interest was the possibility of circulation-driven changes to the dominant
event type across regions. Despite high variability, observed changes are vital to evaluate and
challenge climate model simulations. This can be done either by comparing observed changes to
model simulated changes, including using techniques such as attribution, or through emergent
constraints where observations narrow uncertain climate model projections.

Finally, to make this ever-increasing understanding useful to decision-makers, we
recommend that the international community must consider language, headline messages and
communication mechanisms as well as experimental design [152]. We suggest that there is also a
need to connect the atmospheric science community (e.g. climate modellers) with the hydrologic,
and climate impacts, community. Our current understanding is limited to changes in extreme
precipitation (this article is a good example of this), which is only part of the equation when
we are interested in future flooding. With the recent advances in atmospheric modelling, we
recommend now is the time to take the next step and tackle the question of how this relates
to changes in flooding. Although some instances exist of translation of current state-of-the-
art model results into flood design guidance, e.g. [153], this is still in its infancy (see Wasko
et al. [116] for an extensive review). To increase uptake from decision-makers, we may need
to change our current approach to adopt alternative modelling strategies such as storylines
[154]. As well as producing a ‘likely’ range of change, we need to consider the ‘plausible worst
case’ scenario as the most important risks rarely lie within the ‘likely’ range, e.g. [155]. This
includes dealing with the modelling of unprecedented yet physically plausible extremes and
rare events such as the ‘1 in 100 year’ event, or even the ‘Probable Maximum precipitation’,
which are often missed in current analyses. We suggest that understanding the extent to
which the results are consistent across the frequency distribution is also an important research
priority.
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