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Critical Southern Ocean climate model biases
traced to atmospheric model cloud errors
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The Southern Ocean is a pivotal component of the global climate system yet it is poorly

represented in climate models, with significant biases in upper-ocean temperatures, clouds

and winds. Combining Atmospheric and Coupled Model Inter-comparison Project (AMIP5/

CMIP5) simulations, with observations and equilibrium heat budget theory, we show that

across the CMIP5 ensemble variations in sea surface temperature biases in the 40–60°S

Southern Ocean are primarily caused by AMIP5 atmospheric model net surface flux bias

variations, linked to cloud-related short-wave errors. Equilibration of the biases involves local

coupled sea surface temperature bias feedbacks onto the surface heat flux components. In

combination with wind feedbacks, these biases adversely modify upper-ocean thermal

structure. Most AMIP5 atmospheric models that exhibit small net heat flux biases appear to

achieve this through compensating errors. We demonstrate that targeted developments to

cloud-related parameterisations provide a route to better represent the Southern Ocean in

climate models and projections.
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The Southern Ocean plays an important role in global ocean
heat and anthropogenic carbon uptake1–4. For example,
recent climate model experiments suggest that 75 ± 22% of

ocean heat uptake and 43 ± 3% of ocean anthropogenic carbon
uptake over the historical period occurs south of 30°S5. The
Southern Ocean also influences climate sensitivity6, the Mer-
idional Overturning Circulation (MOC)7, water mass formation7,
sea level through basal melt of ice shelves8, nutrient cycling9 and
the Inter-tropical Convergence Zone (ITCZ) position10. It has a
persistent dynamical connection from the stratosphere to the
deep ocean11, involving clouds, air-temperatures, winds, surface
heat fluxes, sea surface temperatures (SST), and ocean thermal
structure leading to interrelated coupled model biases in all of
these quantities12,13

Most coupled climate models have substantial warm biases in
Southern Ocean SST13,14 which have been linked to deficiencies
in cloud processes, including a lack of reflective super-cooled
liquid water and excessive downward surface short-wave radia-
tion15–19. Errors in CMIP5 simulations of historical high-latitude
southern hemisphere surface climate20 and sea-ice21 variability
and trends could also be related to these deficiencies. In combi-
nation, these Southern Ocean errors are expected to contribute to
uncertainties in regional climate projections that hinder our
ability to cost-effectively manage climate change impacts22,23.
Improved understanding of the causes and consequences of these
biases is therefore urgently needed.

To address this requirement, a novel interpretive framework is
presented to investigate the hypothesis that stand-alone atmo-
spheric model surface flux errors cause coupled model SST biases.
Analyses of CMIP524 and AMIP524 model biases are
combined within a theoretical framework. The AMIP5 experi-
ment uses the same atmospheric models employed in coupled
CMIP5 simulations, but with a prescribed lower boundary con-
dition of observed SST24. In AMIP5, the atmospheric state and
surface heat fluxes are not influenced by coupled feedbacks
caused by SST biases. Analysing CMIP5 and AMIP5 in combi-
nation therefore allows us to separate the influences of
atmospheric model errors and coupled feedbacks, which were
not separable in previous analyses that examined only
CMIP5 simulations17. Equilibrium mixed layer heat budget the-
ory is used to predict relationships between coupled model SST
biases and atmospheric/coupled model net surface flux biases.
The same relationships are then evaluated using linear regression
analyses across the AMIP5/CMIP5 ensemble for the Southern
Ocean 40–60°S region, followed by similar analyses for individual
surface heat flux component biases. The impacts of AMIP5 net
flux and CMIP5 SST biases on CMIP5 coupled model wind and
ocean thermal structure biases are also investigated. Finally, new
observational estimates are employed to investigate estimated
simulated heat flux component biases for AMIP5 and a hierarchy
of Hadley Centre atmospheric models, spanning over 20 years of
model development.

The AMIP5/CMIP5 ensemble results, in combination with
theoretical expectations, suggest that AMIP5 surface net flux
bias variations are the dominant cause of variations in CMIP5
SST biases. The main cause of AMIP5 net flux bias variations is
found to be short-wave radiation bias variations, which are
known to be related to cloud deficiencies15. AMIP5 net flux and
associated CMIP5 SST bias variations are also shown to impact
on wind feedbacks and ocean thermal structure. Most AMIP5
models with small net flux biases appear to achieve this by error
cancellation between flux components. Considerable improve-
ments in atmospheric model surface flux component fidelity
and coupled model SST biases in more recent Hadley Centre
models demonstrate a route to improve coupled climate
models.

Results
Observational products and their uncertainties. Direct obser-
vations of ocean surface air-sea fluxes are extremely sparse, par-
ticularly for the Southern Ocean25. In consequence, large
uncertainties in conventional observational estimates of surface
heat fluxes hinder evaluation of the simulated surface energy
budgets18,25,26. We therefore estimate net downward surface
fluxes27 from Top-Of-Atmosphere (TOA) satellite observations28

and ERA-Interim29 re-analysis energy divergences, assuming
atmospheric column energy conservation30. This approach con-
siderably constrains estimates of net surface flux derived from re-
analyses27 (see Methods and Supplementary Figure 1). We use
CERES EBAF (Clouds and the Earth’s Radiant Energy System
Energy Balanced and Filled)31 observational estimates of surface
net downward short-wave radiation, long-wave radiation and
total radiative (short-wave plus long-wave) fluxes. Net downward
surface total turbulent fluxes, the sum of latent and sensible heat
fluxes, are estimated as residuals, by subtracting CERES estimated
surface total radiative fluxes from our observations-based esti-
mated surface net fluxes. Adopting this approach avoids the use
of turbulent flux products, which have particularly large errors26.
For ocean temperature, including SST, and 10 m winds we
employ observational estimates from EN432 and the ERA-Interim
re-analysis29, respectively.

We estimate multi-annual mean AMIP5/CMIP5 biases by
subtracting observational estimates from the corresponding simu-
lated quantities. Estimates of individual AMIP5/CMIP5 model
biases include a contribution from observational errors. Since
accurate quantitative observational error estimates are not currently
available for our regional and temporal averages we derive basic
indicative error estimates from differences between products (see
Methods). Observational uncertainty estimates are quoted when-
ever observational errors could influence results. Overall, however,
estimated observational errors are generally smaller than the
substantial model biases, providing confidence in our inferences.

For linear regression analyses, unless otherwise stated, we consider
area-weighted biases for the Southern Ocean 40–60°S region for 18
consistent AMIP5/CMIP5 models (see Methods and Supplementary
Table 1 for model details). Most correlation values are presented
together with regression analysis slopes in brackets or tables. We
therefore generally adopt the terminology ‘a correlation of Y on X’
simply to indicate the direction of the associated regression analysis
(although the correlation value is between X and Y).

It is important to emphasize that our regression correlations and
slope results are not affected by any observational errors (since for
each parameter the observational error will be identical across all
the models). Correlations (r), regression slopes (S) and p values (p)
relate the variations in one parameter to those of another and are
therefore independent of any reference employed. Values for our
AMIP5/CMIP5 bias analyses would therefore be identical if we were
to use different observational products to estimate biases; any
individual model as a reference; or the actual parameters rather
than estimated parameter biases. We do not interpret regression
intercepts (which do depend on the observational errors). To
indicate structural errors common to all models in regression
figures we plot the estimated multi-model mean parameter biases
together with their observational uncertainty.

An interpretive framework for causes of SST biases. A very
strong correlation of 0.84 is evident between CMIP5 historical
experiment24 SST biases and AMIP5 net downwards surface flux
biases (Table 1; Fig. 1). It is surprising that a characteristic of
stand-alone atmospheric models with prescribed SST should be
so closely associated with SST biases in coupled models spun up
for many hundreds of years. To interpret this interesting result we
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derive and apply novel equilibrium mixed layer heat budget
theory over the next three subsections. In the first subsection, by
making a series of assumptions, we derive two simple analytical
models of differing complexity (a consistent but more complete
theoretical model with fewer assumptions is discussed in several
extended theory subsections in the Methods). In the next sub-
section the expectations from these analytical models are com-
pared with statistical analyses of the AMIP5/CMIP5 ensemble. In
a third subsection, to link the AMIP5 net flux and CMIP5 SST
biases to cloud process-representation deficiencies in the AMIP5
stand-alone atmospheric models we analyse their correlations on
AMIP5/CMIP5 individual heat flux component biases.

Equilibrium mixed layer heat budget theory. In observations,
SST is closely linked with ocean mixed layer temperature, TOBS,
which is controlled by the balance between the surface heat flux,
FOBS, and the combined horizontal and vertical ocean heat
transport convergence into the mixed layer, COBS (Fig. 2a)33. In
any coupled model experiment, initialised from observational
estimates, process representation deficiencies in the atmosphere
and ocean model components cause errors in this heat budget.
This results in evolving biases in the simulated mixed layer
temperature, T, surface heat flux, F, and combined horizontal and
vertical ocean heat transport convergence into the mixed layer, C.

At any location, approximate equilibration of the mixed layer
with the atmosphere and upper-ocean typically occurs in coupled
simulations within a few decades34,35. Close to observed or
simulated equilibrium, the time tendency in mixed layer heat

capacity is small. To conserve heat in the mixed layer the
observed and simulated sum of the heat flux terms must therefore
also be small, i.e. F+ C≈0 and FOBS+ COBS≈≈0. Subtracting these
two equations, and rearranging, we find that in a coupled model
the net downward surface heat flux bias (ΔF= F−FOBS) must
approximately cancel with the combined vertical and horizontal
ocean heat transport convergence bias (ΔC= C−COBS) so:

ΔF � �ΔC ð1aÞ

We assume that the mixed layer temperature bias (ΔT= T
−TOBS) is approximately equal to the SST bias. We can estimate
ΔT and ΔF for any CMIP5 coupled model. In the Methods, we
show that the equilibrium assumption is valid for our CMIP5
historical experiment multi-annual mean bias estimates.

We can decompose the coupled F bias (ΔF) into contributions
from the stand-alone atmosphere model F bias under realistic
surface forcing (ΔFA) and a coupled F response term (ΔFR), i.e.
ΔF= ΔFA+ ΔFR (Fig. 2b). We can estimate ΔFA for any AMIP5
model from its estimated surface flux bias (with the robust
assumption that errors in the AMIP5 prescribed surface
boundary forcing, including SSTs, are small24). We define ΔFR,
which is comprised of all of the coupled feedbacks, as the
CMIP5 minus AMIP5 net flux bias difference (ΔF−ΔFA). Our
decomposition therefore becomes ΔF= ΔFA+ (ΔF−ΔFA), which
is clearly valid as the positive and negative ΔFA terms cancel.

Table 1 Regression and correlation analyses results across the AMIP5/CMIP5 ensemble

Regression relationship (40–60°S area mean biases unless
stated)

Correlation
(r)

Regression slope (S) (included if
relevant)

p
Value

No. of models

Theory and AMIP5/CMIP5 ensemble results
CMIP5-AMIP5 net flux on SST (R1) −0.66 −5.5 ± 1.6Wm−2K−1 2.8E-3 18
CMIP5 SST on AMIP5 net flux (R2) 0.84 0.10 ± 0.02 KW−1m2 1.4E-5 18
CMIP5-AMIP5 net flux on AMIP5 net flux (R3) −0.84 −0.81 ± 0.13 1.5E-5 18
CMIP5 SST on CMIP5 net flux (R4) 0.35 – 1.6E-1 18
Heat flux component and SST biases results
CMIP5 SST bias on AMIP5 SW 0.73 0.06KW−1m2 6.2E-4 18
CMIP5 SST bias on AMIP5 LW −0.44 – 6.5E-2 18
CMIP5 SST bias on AMIP5 turbulent 0.27 – 2.8E-1 18
AMIP5 net on AMIP5 SW 0.91 0.60 2.2E-7 18
AMIP5 net on AMIP5 LW −0.61 −0.67 7.1E-3 18
AMIP5 net on AMIP5 SW+ LW 0.87 0.91 2.3E-6 18
AMIP5 net on AMIP5 turbulent 0.35 0.70 1.6E-1 18
AMIP5 SW on AMIP5 LW −0.81 −1.37 2.8E-8 18
CMIP5-AMIP5 turbulent on CMIP5 SST −0.73 −4.8Wm−2K−1 5.2E-4 18
CMIP5-AMIP5 LW on AMIP5 SST −0.63 −1.3Wm−2K−1 5.3E-3 18
CMIP5 SW on AMIP5 SW 0.96 1.0 2.0E-10 18
CMIP5 LW on AMIP5 LW 0.96 1.0 1.1E-10 18
CMIP5 turbulent on AMIP5 turbulent 0.30 – 2.3E-1 18
CMIP5 net on AMIP5 net 0.33 0.18 1.8E-1 18
CMIP5 SST on CMIP5 SW 0.75 – 3.6E-4 18
AMIP5 net on CMIP5 SW 0.86 0.54 4.0E-6 18
ZWML results
CMIP5 ZWML bias on AMIP5 net flux −0.72 −0.18°W−1m2 6.7E-4 18
AMIP5 ZWML bias on AMIP5 net flux −0.44 – 1.0E-1 15
CMIP5 ZWML bias on CMIP5 SST −0.85 – 5.0E-5 15
Ocean heat content results
CMIP5 300m heat content on AMIP5 net flux 0.68 – 1.8E-3 18
CMIP5 1000m heat content on AMIP5 net flux 0.60 – 8.3E-3 18
AMOC strength result
SST on AMOC maximum strength −0.07 – – 13

All fluxes are net downward surface fluxes. See Supplementary Table 1 for the individual models in each model set
AMOC is Atlantic meridional overturning circulation, SW is short-wave radiation, LW is long-wave radiation, turbulent is total turbulent flux, ZWML is zonal wind maximum latitude
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Similarly, we can decompose ΔC into a hypothetical stand-
alone ocean model C bias under realistic surface forcing (ΔCO)
and a coupled C response (ΔCR), i.e. ΔC= ΔCO+ ΔCR, where
ΔCR is defined as ΔC−ΔCO. Unfortunately, for CMIP5, we cannot
investigate if it is possible to provide first order estimates of ΔCO

from suitable stand-alone ocean model experiments because there
are insufficient Ocean Model Inter-comparison Project
(OMIP524) ocean-only experiments with ocean models consistent
with those employed in CMIP5. Furthermore, there are
substantial known errors in the OMIP5 surface forcing sets and
surface boundary conditions. Hence, although we could estimate
ΔC from −ΔF, we could not make use of it since ΔCO is needed to
estimate ΔCR.

ΔFR and ΔCR combine the local impact of all local and remote
adjustments or feedbacks to the stand-alone model local F or C
biases, which occur when all of the component models are
coupled. ΔCR includes the coupled impacts on C of errors in
stand-alone atmospheric model momentum and freshwater
forcing.

Combining these decompositions with Eq. 1a gives:

ΔFA þ ΔCO � � ΔFR þ ΔCRð Þ ð1bÞ

For a single AMIP5/CMIP5 model, we cannot solve the
decomposed equilibrium heat budget in Eq. 1b since we cannot
estimate ΔCO and ΔCR. However, we can make plausible
simplifying assumptions to develop two analytical models of
differing complexity, which predict regression relationships
between the known ΔT, ΔF, ΔFA and ΔFR terms across the
AMIP5/CMIP5 ensemble that we can analyse—good agreement
would suggest our assumptions are valid, and vice-versa.

We assume a dominant negative linear dependence of ΔFR on
local ΔT, with a negative sensitivity constant λF, i.e. ΔFR≈ λFΔT,
as expected from bulk formulae36 and observations37. For
example, unrealistically high initial F (positive ΔFA) into the
ocean will initiate warming (positive ΔT), which will cause
compensating increases in the latent, sensible and long-wave
radiation heat fluxes out of the ocean surface (negative ΔFR),
reducing the equilibrated F bias (smaller ΔF). The
Stefan–Boltzmann Law of black body radiation predicts a
sensitivity of 4.8Wm−2K−1 for surface upward long-wave
radiation (at the observed 40–60°S area-mean SST of ~280 K).
However, since SST, heat fluxes and the near-surface atmosphere
are tightly coupled, clouds and water vapour will re-emit a
fraction of the additional emitted long-wave radiation back to the
surface and the humidity and temperature of the marine near
surface boundary layer will adjust. This will reduce the magnitude
of the long-wave and turbulent flux SST-sensitivity constants
compared to bulk formulae estimates assuming no atmospheric
response.

Similarly, we assume a dominant negative linear dependence of
the coupled ocean heat transport convergence bias response, ΔCR,
on local ΔT i.e. ΔCR≈ λCΔT, with a negative sensitivity constant,
λC. This assumption could be valid for the Southern Ocean
region because many models exhibit large positive SST biases for
40–60°S adjacent to large negative SST biases further north13,14.
Northward wind-driven Ekman currents might therefore trans-
port heat away from this region with an approximately linear
dependence on the local area-mean SST bias. In other regions,
however, this assumption is not expected to be valid since ΔCR

depends on horizontal and vertical gradients in ocean heat
transport, which should not generally be linearly related to local
ΔT. For example, ocean heat transports depend on horizontal and
vertical temperature gradients, mixed layer depths and currents,
which in turn depend on density gradients and surface wind
stresses.

Both of these coupled response approximations assume that
residual contributions to ΔFR and ΔCR that are not linearly
related to local SST are not dominant (In the Methods we present
a more complete but consistent analytical model that includes
these terms).

Combining these assumptions with Eq. 1b gives:

ΔFA þ ΔCO � �ðλF þ λCÞ � ΔT ð2Þ

Re-arranging Eq. 2 gives our general case analytical model
(Fig. 1b):

ΔT � �ðΔFA þ ΔCOÞ=ðλF þ λCÞ ð3Þ

In this general case model, the SST bias in any coupled model
at any location depends on the sum of the local stand-alone
atmospheric model component F biases and ocean model
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Fig. 1 Linear regression of CMIP5 SST biases on AMIP5 net flux biases
averaged over 40–60°S. These analyses were undertaken using the 18
models that provided suitable diagnostics for both CMIP5 and consistent
AMIP5 experiments (see Methods and Supplementary Table 1). Our
observational product uncertainty estimates are ~ 3Wm−2 for net flux and
~ 0.04 K for SST. Observational product errors do not affect the regression
slope, correlation or p values. However, the position of points for individual
models and regression intercepts do include a contribution from
observational error. The multi-model mean values are plotted with a solid
black circle with a cross indicating their estimated observational
uncertainties. The small multi-model mean bias estimates compared to the
variations in the biases suggest that common structural errors in these
parameters are not dominant for CMIP5 SST and AMIP5 net flux biases in
this region and set of models
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component C biases divided by the sum of the sensitivities to
local SST of the coupled F and C responses.

We can also derive a much simpler conceptual case analytical
model (Fig. 2c) by assuming that the stand-alone ocean model
errors (ΔCO) and coupled C responses (ΔCR and λC) are small
compared to be the other terms in Eqs. 2 and 3:

ΔFA � �ΔFR � �λFΔT; λF<0 ð4Þ

And:

ΔT � �ΔFA=λF � ΔFR=λF; λF<0 ð5Þ

This conceptual case model is useful since it provides simple
relationships which only involve the terms we know. In this
model, stand-alone atmospheric model errors must be balanced
by an opposing surface flux response so the coupled flux biases
are small. We will discuss the validity of the assumptions in this
model compared to those in the general case model when we
compare their expectations with the AMIP5/CMIP5 ensemble
regression results (in the Methods we also consider three
alternative simple conceptual models in which different pairs of
terms on the right hand side of Eq. 3 are assumed small).

Our general and conceptual case analytical models provide
expressions for ΔT given by Eqs. 3 and 5, respectively. These
expressions would be expected to result in several relationships in
regression analyses between variations across the AMIP5/CMIP5
ensemble in ΔT, ΔFA, ΔFR and ΔF assuming that λF and λC are
consistent across the models. Since we cannot estimate ΔCO and
ΔCR our general case model in Eq. 3 requires the additional
assumption that ΔCO and ΔFA are approximately uncorrelated.
We expect this assumption to be valid since ΔCO and ΔFA are
biases in completely different stand-alone ocean and atmospheric
model components, which are largely developed separately.

Correlations for these relationships will be limited by the
regression residuals that include contributions from errors in all
of the analytical model assumptions. For example, we expect λF
and λC to vary at least to some degree between models. We also
expect the ΔCR and ΔFR coupled responses to include a

component that does not depend linearly on ΔT. ΔCO variations
will also contribute since they are assumed small in the
conceptual case model and are unknown for the general case
model. Strong correlations would suggest that these terms are
small since correlations would be weak if any of these terms were
dominant.

In the next subsection, we compare the AMIP5/CMIP5
ensemble regression results with the expectations from our two
analytical models.

Theoretical expectations and AMIP5/CMIP5 ensemble results.
From our simple conceptual case model in Eqs. 4 and 5, with
negative λF, we expect and find several inter-related regression
relationships across the AMIP5/CMIP5 ensemble for 40–60°S
(Table1). Since ΔFR ≈ λFΔT we expect a strong negative correla-
tion of ΔFR on ΔT, i.e. CMIP5-AMIP5 net flux biases on SST
biases (r=−0.66, S=−5.5 ± 1.6Wm−2K;−1 R1). Since ΔT ≈
−ΔFA/λF we expect a strong positive correlation of ΔT on ΔFA, i.e.
CMIP5 SST biases on AMIP5 net flux biases (r= 0.84 S= 0.10 ±
0.02 KW−1m2 (Fig. 1; R2). Since ΔFA≈−ΔFR we expect a strong
negative correlation of ΔFR on ΔFA i.e. CMIP5-AMIP5 net flux
biases on AMIP5 net flux biases (r=−0.84; R3). Since ΔF= ΔFA
+ ΔFR≈0 we expect a weak correlation of ΔT on ΔF i.e. CMIP5
SST biases on CMIP5 net flux biases (r= 0.35; R4).

The strong anti-correlation for ΔFR on ΔT of −0.66 (R1)
suggests validity in our assumption in both analytical models that
the net downward coupled surface flux responses have a negative
linear dependence on SST biases. Since ΔFR≈ λFΔT the ΔFR on
ΔT regression slope provides a multi-model mean estimate of λF
of approximately −5.5 ± 1.6Wm−2K−1.

The agreement between the expectation from the simple
conceptual case model and the R1 to R4 relationship results
across the AMIP5/CMIP5 ensemble, including a strong correla-
tion for ΔT on ΔFA, suggest that ΔCO and ΔCR cannot be
dominant terms in the CMIP5 ensemble equilibrium mixed layer
budgets (this inference is supported by the inconsistency between
the results from the AMIP5/CMIP5 ensemble and expectations
from the three alternative simplified conceptual case models
presented in the Methods).
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Fig. 2 Schematic diagrams of the mixed layer heat budget. a the real world, b any coupled model, c a simplified coupled model conceptual case, where we
assume a small stand-alone ocean model combined horizontal and vertical heat transport convergence bias (ΔCO) and a small coupled ocean heat
transport convergence response (ΔCR). FOBS is the observed surface heat flux, COBS is the observed combined vertical and horizontal ocean heat transport
convergence and TOBS is the mixed layer temperature or SST. The simulated mixed layer temperature bias, ΔT, is assumed to be equal to the SST bias. The
simulated surface heat flux bias, ΔF, can be decomposed into a stand-alone atmospheric model bias (ΔFA) and a coupled response (ΔFR). The simulated
combined vertical and horizontal ocean heat transport convergence bias, ΔC, can be decomposed into a stand-alone ocean model bias (ΔCO) and a
coupled response (ΔCR). In (c) the simplified conceptual case since ΔCO and ΔCR are assumed small, ΔC & ΔF must both also be small. Hence, ΔFA must
be approximately compensated for by ΔFR
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Our AMIP5/CMIP5 ensemble results also allow us to
demonstrate some apparent limitations in the simplified
conceptual case model, which suggest that some of its assump-
tions may not be completely valid. For example, from the
conceptual case model, since ΔFA~−ΔFR, we would expect
complete cancellation between ΔFR and ΔFA variations resulting
in near-zero coupled flux bias variations and a very weak ΔT on
ΔF correlation. Across the ensemble, the ΔT on ΔF correlation of
0.35 (R4) is weak. However, since ΔFR and ΔFA do not fully
cancel, variations in ΔF are small but not negligible (the standard
deviation of ΔF and ΔFA are 3.7Wm−2 and 6.6Wm−2,
respectively). Furthermore, the inverse of the slope of ΔT on
ΔFA regression (R2) provides a second estimate of λF ~−10.0
(−8.3 to −12.5)Wm−2K−1, which appears to differ from the
estimate derived from ΔFR on ΔT (R1) of −5.5 (−3.9 to −7.1)
Wm−2K−1.

In the general case model, the SST bias in any coupled model at
any location depends on the sum of the local atmospheric model
component F biases and ocean model component C biases,
divided by the sum of the sensitivities of the coupled F and C
responses to local SST (Eq. 3). The strong ΔT on ΔFA correlation
of 0.84 (R2) and supporting theory, strongly suggest that for
40–60°S variations across the AMIP5 model net flux biases are
the dominant control on the variations in CMIP5 model SST
biases. Seventy percent (r2= 0.70) of the CMIP5 ΔT variance is
found to be explained by AMIP5 ΔFA. If, as we expect, ΔFA and
ΔCO are independent then stand-alone ocean-ice model bias
variations (ΔCO) cannot explain more than ~30% of ΔT variance
(for details see Methods).

The general case model is in better agreement with the AMIP5/
CMIP5 ensemble results than the simplified conceptual case
model since it does not predict ΔFA and ΔFR to cancel completely
(e.g. Eq. 2). The inverse of the ΔT on ΔF regression slope (R2) is
given by −(λC+ λF). In combination with the estimate of λF from
ΔFR on ΔT (R1), this suggests that the multi-model mean ocean
heat transport convergence response sensitivity constant, λC, is
approximately −4.5 (−1.2 to −8.6)Wm−2K−1. The uncertainties
in this λC estimate from the combined use of the R1 and R2
results are large but unavoidable since we cannot estimate ΔCR.
They do not rule out the small λC assumption used for the
conceptual case model. However, the central estimate of λC
suggests that for the Southern Ocean 40–60°S region the theory
benefits from including λC. If it becomes possible in future to
estimate ΔCR from OMIP/CMIP experiments then the
ΔCR≈λCΔT relationship could provide a better-constrained
estimate of λC.

The apparently small (<~30%) fraction of CMIP5 SST bias
variance explained by ocean model C bias variance is a surprising
result, particularly given that we find that in the HadGEM3
models (see Methods) SST biases are sensitive to ocean model
resolution and parameters. For example, the change in SST bias
from HadGEM3-GC2 to HadGEM3-GC3.1 appears to include a
contribution from ocean model changes (Supplementary Fig-
ure 2). Note, however, that this small fraction is for this set of
models, and includes the impact of any enhancement of
component model F and C bias variances by outlying models
(see Methods for details) and any under-sampling of component
model F and C bias variances due to common-structural errors
(the λF and λC estimates could also be sensitive to the choice of
models). Small multi-model mean AMIP5 net flux and CMIP5
SST biases (Fig. 1) suggest that under-sampling of component
model errors is not dominant for this region and set of models,
despite known structural errors, e.g. underestimated cloud
brightness15, low-resolution ocean models or too shallow summer
ocean mixed layers38,39. Conceivably, cross-correlations of both
ΔT and ΔFA with other local or remote parameters could also

influence this result. However, this would require that CMIP5
coupled SST bias variations also be driven by an important
mechanism which happened to also be correlated with AMIP5
stand-alone atmospheric model F biases which we do not expect
or find any evidence of (see Methods).

Even given these caveats, the high fraction of SST bias variance
explained by AMIP5 surface flux biases clearly contrasts with
published singular value decomposition analyses40, which suggest
that inter-model Southern Ocean SST bias variations are related
to variations in the strength of the Atlantic Meridional Over-
turning Circulation (AMOC). We also find an extremely weak
correlation of −0.07 between Southern Ocean 40–60°S area-mean
SST and AMOC strength across 13 coupled CMIP5 models.

The role of heat flux component biases in causing SST biases.
To link AMIP5 net flux and associated CMIP5 SST biases to
deficiencies in AMIP5 atmospheric model characteristics we also
consider regression analyses of individual heat flux component
area-mean biases for 40–60°S. AMIP5 surface net flux biases
depend on their biases in individual flux components, which in
turn depend on their biases in other atmospheric column para-
meters. For example, AMIP5 net surface downward short-wave
biases have been shown to be strongly linked to biases in cloud
characteristics, e.g. particularly deficiencies in simulated cloud
amount and brightness15. By contrast, the AMIP5 net downward
long-wave biases are expected to be strongly influenced by
simulated cloud base height, cloud base temperature, and
moisture errors. AMIP5 sensible and latent heat flux biases are
expected to depend on the representation of numerous atmo-
spheric parameters, including boundary layer characteristics.

AMIP5 net flux biases are strongly correlated with AMIP5
short-wave and total radiative flux biases (r= 0.91 and r= 0.87,
respectively, Table 1). AMIP5 net flux biases are anti-correlated
with their long-wave biases (r=−0.61) because long-wave biases
are anti-correlated with the mostly larger short-wave biases (r=
−0.81; Table 1). AMIP5 net flux biases are weakly correlated with
turbulent flux biases (r= 0.35). Short-wave bias variations across
the models are therefore the dominant driver of variations in
AMIP5 net flux biases, mainly because short-wave inter-model
variations are largest (Table 2; Supplementary Figure 3). As
expected, the correlation of CMIP5 SST biases on AMIP5 short-
wave flux biases is also much stronger (r= 0.73) than those on
AMIP5 long-wave flux biases and AMIP5 total turbulent flux
biases (r=−0.44 and r= 0.27, respectively). Hence, local
AMIP5 short wave bias variations linked to cloud representation
errors are the dominant driver of the AMIP5 net flux bias
variations, which in turn appear to be the main driver CMIP5
SST bias variations.

The estimated surface net heat flux coupled response sensitivity
constant, λF, of 5.5Wm−2K−1 primarily arises through contribu-
tions from total turbulent and long-wave flux responses (short-
wave response sensitivities are much weaker). The CMIP5-
AMIP5 flux component bias on SST bias regression sensitivity
constants are −4.8 and −1.3Wm−2K−1 for the net downwards
total turbulent and long-wave flux, respectively (Table 1). The
sensitivity of −1.3Wm−2K−1 for net downward long-wave
suggests that around three quarters of the emitted upward
long-wave estimated from Stefan’s law (~ 4.8Wm−2K−1) is re-
emitted back towards the surface. The total turbulent flux
sensitivity of −4.8Wm−2K−1 is broadly consistent with observa-
tional estimates of its sensitivity for the Southern Ocean region
derived from ERAI35 of < 10Wm−2K−1. These estimates are both
of considerably smaller magnitude than estimates of more than
20Wm−2K−1 for the total turbulent flux sensitivity from bulk
formulae for this region ignoring the atmospheric response.
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In stand-alone ocean-only model experiments, the surface flux
responses estimated from bulk formulae cannot be damped by
atmospheric adjustments. We therefore expect λF to be
considerably more negative. This would result in much smaller
SST biases than those in coupled models even if atmospheric
forcing errors were similar. Furthermore, we expect the overly
strong ocean-only evaporative response to temperature (without
the counteracting known precipitation SST response) to result in
a substantially overestimated upwards freshwater flux response to
SST biases. These unrealistic feedbacks could at least in part
explain the need for sea surface salinity restoring towards
observational estimates in ocean-only models.

CMIP5 on AMIP5 correlations are strong for both the short-
wave (r= 0.96) and long-wave (r= 0.96) flux components. These
high correlations suggest that their coupled SST responses are
small compared to their AMIP5 inter-model variations. In
consequence, 40–60°S CMIP5 short wave biases are strongly
cross-correlated with AMIP5 net flux biases (r= 0.86), which our
results suggest is the dominant driver of SST biases. This explains
the previously identified17 correlation of SST biases on coupled
short wave flux biases (we find r= 0.75). The CMIP5 on AMIP5
correlation is very weak for both total turbulent (r= 0.30) and net
fluxes (r= 0.33), mainly due to their smaller AMIP5 inter-model
variations and strong coupled responses to local coupled SST
biases.

Impacts of AMIP5 net flux and CMIP5 SST biases. We first
investigate coupled wind feedbacks using regression analyses of
biases in AMIP5/CMIP5 near surface (10 m) zonal wind max-
imum latitude (ZWML) on biases in AMIP5 net flux and CMIP5
SST. ZWML biases are expected to influence ocean thermal
structure well below the mixed layer via Ekman pumping caused
by wind stress curl12. We also expect biases in atmospheric model
net flux, and associated coupled ZWML biases, to adversely
influence simulated heat (and carbon) uptake under climate
forcing (since vertical heat transports depend on both stratifica-
tion and Ekman pumping). In climate model projections, the
position of the Antarctic Circumpolar Current core, which is in
geostrophic balance with ocean thermal structure, is also often

correlated with the latitude of the wind stress maximum over
decadal timescales12,41.

CMIP5 ZWML biases are anti-correlated (r=−0.72) with
AMIP5 net heat flux biases (Fig. 3; Table 1). However, AMIP5
ZWML biases are only weakly anti-correlated with AMIP5 net
flux biases (r=−0.44), indicating that the internal atmospheric
dynamical link is much weaker. CMIP5 ZWML biases are more
strongly anti-correlated with CMIP5 SST biases (r=−0.85).
Hence, the dynamical link between CMIP5 ZWML biases and
AMIP5 net flux biases must primarily arise through the impact of
atmospheric net fluxes on evolving coupled SST, which in turn
feeds back onto ZWML and SST. Previously, this link has been
identified solely within CMIP5, which precluded clear attribution
to atmospheric model net flux errors17. These results highlight
the potential for AMIP5 net flux biases to influence Southern
Ocean wind responses to climate forcing42. Few CMIP5 models
appear to represent both ZWML and SST well (given their
estimated observational uncertainties). Most models with more
realistic smaller equatorward ZWML biases appear to have less
realistic larger positive SST and downward net flux biases, and
vice-versa (Fig. 3).

Next, we investigate the impact of AMIP5 net flux biases and
associated SST-wind feedbacks on ocean thermal structure. The
0–300 m and 0–1000m ocean heat content bias correlations on
AMIP5 net flux biases are weaker than those for CMIP5 SST
biases on AMIP5 net flux biases (r= 0.68, r= 0.60 and r= 0.84,
respectively; Table 1; Supplementary Figure 4). The weaker
correlation for heat content biases on AMIP5 net flux biases for
deeper upper ocean layers could result from either increasing
contributions from stand-alone ocean-model heat transport
convergence biases or a weaker association of heat content biases
with SST biases and their associated surface heat flux responses.

The impact of atmospheric model net flux biases, and
associated wind feedbacks, on ocean thermal structure is also
investigated by comparing CMIP5 temperature composites over
models exhibiting high (HIF, 7 models) and near zero or low
(NZF, 7 models) AMIP5 downward net flux biases. HIF is
significantly warmer than NZF in the upper 1500 m north of
~ 58°S (Fig. 4). There is also an apparent north-south dipole in
thermal structure difference extending to 3000 m; with cooler

Table 2 Stand-alone atmospheric model surface heat flux component biases and Total Absolute Flux Biases and coupled model
SST biases averaged over 40–60°S

40–60°S
area-mean
values

Atmos. only estimated
short-wave flux bias
(Wm−2)

Atmos. only estimated
long-wave flux bias
(Wm−2)

Atmos. only estimated
turbulent flux bias
(Wm−2)

Atmos. only
estimated net flux
bias (Wm−2)

Atmos. only
estimated TAFB
(Wm−2)

Coupled
estimated
SST bias (K)

Observational
uncertainty

±1.0 ±6.0 ±7.0 ±3.0 ±8.0 ±0.04

AMIP5 or
CMIP5 mean

1.9 −5.7 6.5 2.8 21.3 (14.1) 0.15

AMIP5 or
CMIP5 STD

10.0 5.9 3.2 6.6 9.6 0.77

HadCM3 0.0 −13.1 15.6 2.5 28.7 0.38
HadGEM1 1.4 −3.7 7.1 4.8 11.9 −0.27
HadGEM2 9.4 −6.3 9.1 12.2 24.8 1.20
HadGEM3-
GC2

7.8 −1.9 10.0 15.6 19.7 2.59

HadGEM3-
GC3.1

2.0 0.6a 3.0a 5.5 5.6a 0.57

GC2 to GC3.1
change

Apparent improvement Both within uncertainty Apparent improvement Apparent
improvement

Apparent
improvement

Apparent
improvement

The Hadley Centre coupled climate models are presented together with the multi-model means and standard deviations (STD) for the 18 AMIP5/CMIP5 models. For the AMIP5/CMIP5 models the
multi-model mean of the individual model total absolute flux biases (TAFB) estimates is presented but the TAFB estimated from the multi-model mean component biases is also included in brackets.
Area-mean changes between HadGEM3-GC2 and HadGEM3-GC3.1 are classified as either apparent improvements (given our observational uncertainties) or both within uncertainties (when models are
both within the observational uncertainties so changes should be considered as differences rather than improvements)
as indicate parameters for which HadGEM3-GC3.1 biases are within the estimated observational uncertainty
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waters to the south of ~ 58°S and warmer waters to the north for
HIF (these models tend to have higher 40–60°S SST and more
poleward ZWML). Differences below 1500 m are not statistically
significant (possibly due to relatively small composite sizes). This
deep dipole pattern is, however, broadly consistent with the
observed change in thermal structure linked to the poleward wind
migration associated with the Southern Annular Mode increase
over recent decades11,43.

Stand-alone atmospheric model heat flux component biases.
Across AMIP5, considerable inter-model variations are evident in
all individual heat flux component biases (Table 2; Supplemen-
tary Figure 5). We term the sum of the absolute value of area-
mean short-wave, long-wave and turbulent flux biases for each
model the ‘Total Absolute Flux Bias’, TAFB. (i.e. TAFB= |short-
wave bias|+ |long-wave bias|+ |turbulent flux bias|). The simu-
lated response of net surface flux to climate forcing arises from
the sum of the individual heat flux component responses, which
depends on the fidelity of their present day magnitudes. TAFB
provides a first order metric of the overall fidelity of their present
day simulation. Achieving a small net flux bias with a small TAFB
would therefore increase confidence in a model’s coupled net flux
response (i.e. ‘right for the right reasons’).

Many models with small net flux biases do not appear to have
small estimated TAFB (Fig. 5), given our observational uncer-
tainty estimates of ~ 3 and ~ 8Wm−2 for net flux and TAFB,
respectively (see Methods). This suggests that there may be
considerable error cancellation between heat flux component
biases. Cancellation between short-wave and long-wave biases is
evident (r=−0.81, Table 1), which could be expected to result

from errors in cloud amount, thickness and/or brightness caused
by deficiencies in parameterised cloud microphysics, particularly
for mixed phase cloud. For coupled models, it is to some degree
possible to adjust regional SST or net TOA flux by tuning
parameter values, particularly in cloud microphysics44,45. If
tuning were undertaken without regard for errors in the
atmosphere-only surface heat flux components then it would be
likely to introduce error cancellation46, analogous to an implicit
flux correction. This could affect the fidelity of the simulated
response to climate forcing47.

A route to improve the models. Over a succession of Hadley
Centre climate models (HadCM3-A, HadGEM1-A, HadGEM2-A,
HadGEM3-GC2-A to HadGEM3-GC3.1-A; see Methods), invol-
ving over 20 years of model development, estimated stand-alone
atmospheric model TAFB have generally decreased for more
recent configurations (Fig. 5; Table 2). An exception is HadGEM1
that had small long-wave biases due to cancellation between
cloud height and cloud amount, highlighting that TAFB is not a
comprehensive metric of model fidelity. However, from
HadCM3-A to HadGEM3-GC2-A estimated net flux biases
generally appear to have increased. In combination, we interpret
these findings as evidence for the progressive removal of can-
celling errors through improved process-representation (this is an
example of how improving models can often initially make key
biases worse). Subsequently, in-depth process evaluation and
targeted development for HadGEM3-GC3.1-A over several years
has considerably reduced both the estimated net flux bias and
estimated TAFB simultaneously compared to HadGEM3-GC2.

In combination with improvements to ocean mixing, this has
contributed to a ~70% reduction in the coupled SST biases for
HadGEM3-GC3.148 compared to HadGEM3-GC2 (Fig. 6; Table 2
and Supplementary Figure 2). Crucially, new mixed phase cloud49

and aerosol50,51 schemes were implemented, improving the
representation of clouds and radiation characteristics. This
represents additional evidence to support our inference that
Southern Ocean coupled SST biases are caused by local atmo-
spheric model cloud-related surface flux biases. An ongoing effort
to improve future configurations of HadGEM3 is focussed on
improving the representation of cloud phase, particularly super-
cooled liquid52.

Discussion
Novel mixed layer heat budget theory with simplifying assump-
tions predicts that coupled model SST biases arise through the
mixed layer equilibration process, which primarily involves
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coupled responses in local surface heat flux, F, and combined
horizontal and vertical ocean heat transport convergence, C,
which are linearly related to local SST biases. SST biases depend
on the sum of the local stand-alone atmospheric model F and
ocean model C biases, divided by the sum of the local F and C
coupled SST response sensitivity constants. This means that
models could have small SST biases by having too large C and F
sensitivities to SST even if stand-alone component model errors
were large (and vice-versa).

For the Southern Ocean 40–60°S region evidence from an
interpretive framework combining the theory with regression
analyses across this AMIP5/CMIP5 ensemble suggests that
CMIP5 coupled climate model SST bias variations are primarily

caused by stand-alone atmospheric model net flux bias variations.
These atmospheric model net flux bias variations are mainly
associated with variations in short-wave radiation biases, which
have previously been linked to cloud-representation defi-
ciencies15. This provides strong new evidence for a causal link
between clouds, radiation, SSTs, and atmospheric circulation over
the Southern Ocean.

As expected from theory, variations in the AMIP5/CMIP5
coupled surface heat flux, F, response are linearly related to local
temperature variations with a negative sensitivity constant. The
sensitivity of the ocean C responses to SST biases remains
uncertain but appears to also be important for this region. The
surface flux responses to SST biases reduce the inter-model
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variations in coupled model net flux biases compared to those in
the stand-alone atmospheric models. However, erroneous sup-
plies of heat and moisture to the coupled atmosphere persist
through compensation of atmospheric model short-wave biases
by coupled turbulent and long-wave flux feedbacks. This could
contribute to causing known coupled model atmosphere biases in
temperature, wind, heat transport, and Top-Of-Atmosphere
(TOA) energy fluxes18. For example, AMIP5 net flux biases,
and associated CMIP5 SST biases, appear to be linked with biases
in the latitude of the CMIP5 zonal mean eastward wind max-
imum, together adversely influencing sub-surface ocean thermal
structure.

The conclusions summarised above do not depend on the
accuracy of our observational products. Aiming to limit

observational errors in our bias estimates for individual atmo-
spheric AMIP5 models we employ a novel method to estimate
observational heat flux components. Most AMIP5 models with
small net flux biases appear to achieve this through considerable
error cancellation between heat flux components. Improved cloud
process-representation over successive Hadley Centre models has
demonstrated an apparent route to improve the representation of
heat flux components in stand-alone atmospheric models and
reduce error cancellation. This has considerably improved SST
biases in HadGEM3-GC3.1 the Hadley Centre CMIP6 model.
Our estimates of uncertainties in our observational products,
although unavoidably basic, are generally considerably smaller
than the substantial model biases, providing confidence in these
inferences.

The results shed light on one of the most long-standing and
pervasive atmospheric and climate model deficiencies. They
demonstrate a pathway to improve the next generation of coupled
climate models and their projections in this important53 and
vulnerable54 region for global climate. Effort needs to be priori-
tised to improve the representation of Southern Ocean air-sea
flux processes including cloud microphysics in atmospheric
models55 (this would also improve atmospheric re-analyses that
suffer from similar biases15). This will require improvements to
the accuracies of observational estimates of cloud characteristics,
surface flux components and ocean temperature, and their
uncertainties (particularly if the fidelity of the models improves
reducing their currently substantial biases).

In future, this methodology could prove useful in interpreting
the causes of coupled SST biases in other regions, particularly
those where correlations between CMIP5 SST biases and AMIP5
net flux biases are strong (Supplementary Figure 4). Similar
approaches could also be employed to interpret causes of other
coupled model parameter biases. Ultimately, this could help to
constrain uncertainties in climate projections by identifying
physical relationships between observable present day biases and
uncertain aspects of the simulated climate responses, i.e. provide
emergent constraints.

Methods
Heat flux observations. For all our observational heat flux component estimates,
an averaging period of 2001–2007 inclusive was used to permit inter-comparison
between available radiative and turbulent flux product climatologies over their
consistent overlapping period. All surface heat fluxes presented are net downward
fluxes.

We employ a novel method27,56 to estimate globally-balanced net downward
surface flux through the atmospheric lower boundary from observed Top-Of-
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Fig. 6 Simulated ocean-area zonal mean coupled SST biases and stand-
alone atmospheric model heat flux component biases for HadGEM3-GC3.1
and HadGEM3-GC2. (a) SST biases, (b) net downwards surface heat flux
biases, (c) net downwards surface short-wave radiation flux biases, (d) net
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spread (grey shading) for the 18 consistent AMIP5/CMIP5 models (see
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GC3.1 SST biases are for present day control runs for years 50 to 100. The
maximum estimated zonal mean observational errors between 35 and 65°S
for SST, net flux, short-wave flux, long-wave flux and turbulent flux are 0.3
K, 7Wm−2, 3Wm−2, 10Wm−2 and 14Wm−2, respectively (see
Methods). At most latitudes, there appear to have been improvements
between HadGEM3-GC2 and HadGEM3-GC3.1 for SST, net flux and short
wave, given these estimated observational errors. However, the HadGEM3-
GC2 to HadGEM3-GC3.1 differences for estimated long-wave and total
turbulent flux biases should be interpreted as changes not improvements
(see Table 2 for equivalent 40–60°S area-mean results)
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Atmosphere (TOA) net radiative fluxes28 minus the total mass-consistent energy
divergence and storage tendencies from the ERA-Interim29 reanalysis. This is based
on a method by Trenberth and co-authors using atmospheric column energy
budgets30,57,58. This method estimates total energy flux through the lower
atmospheric boundary, which for oceanic regions is approximately equal to the
heat flux into the ocean, for regions and averaging periods over which latent heat
fluxes associated with changes in sea-ice volume are small.

This approach is adopted since there are considerable and poorly quantified
uncertainties in the observational estimates of the heat flux components, due to the
scarcity of observations for ocean regions of near-surface atmospheric humidity, air
temperature and winds; and direct estimates of heat fluxes25,26,59. Errors
accumulate in net flux estimates since relatively small net fluxes are comprised of
large seasonally-reversing net fluxes, which are in turn estimated from large
opposing radiative and turbulent heat flux components. As a result, observations
often yield unrealistic large absolute global mean surface net flux values, when
radiative and turbulent heat flux products are added together, hindering their use
for the assessment of models59.

Our method avoids error accumulation from individual heat flux components
as it directly estimates net flux. TOA radiative fluxes are observed28. Assimilated
observations constrain reanalysis column energy storage tendencies and
divergences more than they constrain their surface heat flux components
(substantial simulated TOA and surface short-wave flux biases tend to also
cancel, at least partially, in the energy divergences). This is evidenced
(Supplementary Figure 1) by the considerable reduction in the spread in zonal
mean net surface fluxes estimated using our method (<~10Wm−2) for several re-
analyses27 compared to the spread in their directly simulated zonal mean net
downward surface fluxes (>~40Wm−2). We use net downward surface short-wave
and long-wave radiation flux component estimates from CERES-EBAF (version
2.7)31. We then estimate the total turbulent flux as a residual at each grid point by
subtracting CERES-EBAF derived net surface downwards total radiative flux from
our net flux estimate. As discussed, this approach is adopted since the spread in
observational estimates of turbulent fluxes is considerably larger than the spread
between observational estimates of radiative heat fluxes26. For example, for 40–60°S
the OAFLUX60 vs. SEAFLUX61 total turbulent flux difference is 25Wm−2 and the
CERES-EBAF vs. ISCCP62 total radiative flux difference is 6Wm−2. To assess the
fidelity of the flux component balance for each model we also estimate total
absolute flux bias (TAFB), which is defined as the sum of the absolute value of the
time and area-mean short-wave, long-wave and turbulent flux component
estimated biases.

Heat flux observational uncertainties. Reliable quantitative estimates of obser-
vational heat flux component uncertainties are not available, nor are the associated
spatial and temporal error correlations needed to estimate the uncertainty reduc-
tion associated with spatial and temporal averaging. We are therefore only able to
provide basic indicative uncertainty estimates.

For 40–60°S for the period 2001–2007, we applied the energy divergence
method to estimate net flux using different re-analyses, which employ different
models, assimilation systems and assimilated observational data27. Area-averaged
net flux differences relative to our reference estimate (derived from ERA-Interim29)
are 3.1, 3.4, 1.4 and 2.1Wm−2 for the ERA20C63, JRA55C64, JRA5565 and
MERRA66 reanalysis, respectively. This suggests 40–60°S area-mean uncertainties
for our net flux observational estimate are ~±3Wm−2, which we assume is
indicative of its standard error. Note, however, that this estimate does not include
structural errors common to all of the re-analyses. Differencing area means for
CERES-EBAF and ISCCP suggests observational uncertainties (indicative of
standard errors) are approximately ±1, 6 and 6Wm−2 for net downward surface
short-wave, long-wave and total radiative flux, respectively. Note that CERES-
EBAF and ISCCP are the only two available gridded global estimates of surface
radiative flux components derived from observationally constrained atmospheric
column radiative transfer methods. Assuming that the observational errors in the
net flux and total radiative terms are independent, and can therefore be added in
quadrature, the uncertainty in turbulent flux will be ~7Wm−2.

The same method is employed to estimate uncertainty in our observational
zonal mean heat flux component at each latitude point on the model grid. The
standard error in our zonal mean net flux observational product at all latitudes is
assumed to be 7Wm−2, the maximum value between 35°S and 65°S of the standard
deviation of net flux estimates derived from applying our method to several re-
analyses products27 (its mean value between these latitudes is ~4Wm−2). The
estimated maximum standard errors between 35°S and 65°S in our zonal mean
observational estimates of short-wave, long-wave, total radiative fluxes, and
turbulent fluxes are 3, 10, 12 and 14Wm−2 (mean values are 1, 6, 6 and10Wm−2,
respectively).

Note that our area-mean radiative flux uncertainty estimates based solely on
differences between CERES-EBAF and ISCCP are smaller than uncertainties quoted
for CERES-EBAF31 for downward long-wave of 9Wm;−2 for upward long-wave of
8Wm;−2 for downward short-wave of 6Wm;−2 and for upward shortwave of
3Wm−2. However, the quoted estimates are for a single annual mean rather than a
2001–2007 mean; are based on CERES prior to energy balance adjusted fluxes
(EBAF) bias corrections; and apply to any 20° latitude area mean (not 40–60°S) so
could potentially be influenced by larger uncertainties in other regions. Our longer
2001–2007 averaging period would reduce random errors compared to CERES

annual error estimates. If errors are correlated then error cancellation will occur
when these components are combined (e.g. if cloud amount is over-estimated, net
downward short-wave will be less positive and net downward long-wave will be less
negative)67.

For 40–60°S area-mean TAFB, the use of absolute bias estimates complicates
estimation of the errors67. We therefore obtain an approximate estimate for the
TAFB error by simulating 10,000 random samples of model flux component biases
drawn from independent normal distributions with means and standard deviations
given by those of our AMIP5 bias estimates (Table 2). We similarly assume
observational errors are independent and normally distributed with standard
deviations given by the above observational heat flux component standard error
estimates and zero means i.e. we ignore any structural errors. This method suggests
the random standard error in TAFB is ~8Wm−2. The modelled TAFB error
distribution also suggests that our TAFB estimates may on average be biased low by
~3Wm−2. To maintain consistency between our heat flux component bias
estimates and our TAFB estimates we do not apply this bias correction in Fig. 5 or
Table 2. Since the same 3Wm−2 offset would be applied to all the models and
uncertainty box in Fig. 5, correcting this bias would not in any way change our
inferences. This 8Wm−2 uncertainty in the 40–60°S area-mean TAFB estimate is
substantial and could be worsened by unquantifiable structural errors. Hence, our
TAFB results should be interpreted with some caution. However, it should be noted
that this uncertainty of ~ 8Wm−2 is considerably smaller than the spread in area-
mean TAFB across the models of ~ 50Wm−2, suggesting that we should be able to
robustly separate good from poor TAFB models.

A summary of the area-mean flux component observational uncertainties is
presented in Table 2, together with the AMIP5 estimated bias means and standard
deviations, and Hadley Centre model biases. Note that the same observational error
will apply to all models so relative changes between models are independent of
observational errors. For AMIP5 net flux, short-wave flux and TAFB, the
observational uncertainties are generally considerably smaller than the mostly
substantial model biases (Fig. 1; Fig. 5; Supplementary Figure 5). There appear to
be improvements in 40–60°S area-mean fluxes between HadGEM3-GC2 and
HadGEM3-GC3.1 for net flux, short wave, turbulent flux and TAFB given the
estimated observational errors. For the zonal mean bias estimates in Fig. 6, at most
latitudes there appear to have been improvements between HadGEM3-GC2 and
HadGEM3-GC3.1 for net flux and short-wave and TAFB. Note, however, that
turbulent and long-wave flux zonal mean bias estimates for both HadGEM3-GC2
and HadGEM3-GC3.1 are within the observational uncertainty, so these
differences should be interpreted as changes rather than improvements.

The large uncertainties in observational estimates of air-sea flux components,
and the lack of adequate information to more accurately quantify them, remain key
barriers to progress on understanding model errors. There are considerable
ongoing efforts to address this problem, including the Southern Ocean Observing
System (SOOS) Air-Sea Flux working group.

Regression and multi-model mean analyses. For linear regression analyses we
employ the terminology ‘a regression of Y on X’ to refer to evaluating Y as a linear
function of X plus errors. Since we generally quote correlation together with the
regression analysis slope we adopt the same terminology for correlation, i.e. we
refer to ‘a correlation of Y on X’ simply to indicate the direction of the associated
regressions analysis (although correlation values are between X and Y). Errors in
our observational estimates only influence the regression intercept values which we
do not use. Regression slope uncertainty estimates are one standard error. Note,
however, that these uncertainty estimates may not be reliable since they assume
that the regression analysis residuals are normally distributed. For all linear
regression analyses, it should be noted that the correlations and fractions of
explained variance include any cross-correlations of both parameters with other
variables. We present two-sided p values (p) for the significance of the slopes of the
linear fits with a null hypothesis that the slope is zero.

Simulated surface heat fluxes were analysed from 28 AMIP5 and 18 CMIP5
model experiments with suitable diagnostics and several recent Hadley Centre
model simulations (see Supplementary Table 1). For AMIP5 and CMIP5, temporal
averages over a common simulation period for all models of 1981–2005 inclusive
were undertaken. Due to their different run periods, the Hadley Centre stand-alone
atmospheric models (consistent with those employed in the coupled models) were
averaged over the periods 1978–1995 for HadCM3-A68 and HadGEM1-A69,
1981–2005 for HadGEM2-A70 (an AMIP5 model); and 1988–2008 for HadGEM3-
GC2-A71 and HadGEM3-GC3.1-A48 (the Hadley Centre IPCC AMIP6
configuration). Observations and all models were interpolated onto a common
HadGEM3-GC3-A N144 grid (a regular latitude-longitude grid with a resolution of
approximately 80km at 55o).

Observational estimates were then subtracted from model fields to provide
estimated model biases. Note that observational errors in our net, short-wave and
long-wave downward heat flux observational estimates accumulate in our estimates
of both simulated TAFB and total turbulent flux biases. There are also small (~< 2
Wm−2) inconsistencies in this model-observational comparison of net and
turbulent heat fluxes (due to our use of atmospheric surface energy flux
observational estimates), including the heat flux associated with latent heat
associated with snow; with latent heat associated with sea-ice volume changes over
the averaging period; and with freshwater (precipitation minus evaporation)
mass input72. The different averaging periods for models and observations also
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introduce errors but these are expected to be small for Southern Ocean multi-
annual means. For example, simulated differences for 40–60°S for 2001–2007
inclusive and 1988–2008 means were less than 0.5Wm−2 for all heat flux
component terms and for net flux.

For the 34 CMIP5 models (including HadGEM270), for which ocean
temperature data were available, we estimated biases in SST, upper 300 m heat
content and upper 1000 m heat content compared to objectively-analysed
observations from EN432. Heat content biases are expressed as layer mean
temperatures. These simulations were taken from the historical runs and averaged
over the period 1985–2005 and compared to EN4 averaged over the same period.
For the additional Hadley Centre models SST biases were also estimated by
subtracting the 1985–2004 EN4 mean. For HadCM368 and HadGEM169 bias
estimates we used historical runs for periods and averaged over 1979–1996 and
1983–2008. For HadGEM3-GC3.148, the Hadley Centre CMIP6 configuration, and
HadGEM3-GC271 biases were estimated from year 50–100 averages of present day
control runs. We opted to use EN4 for SST to ensure consistency with the heat
content analyses.

There are uncertainties in SST and ocean temperature observations, particularly
associated with limited in-situ sampling and the lack of remotely sensed
observations when cloud cover is high32,73. Observational SST errors do not affect
our inferences from our correlations or regression slopes but do contribute to our
area-mean and zonal mean SST bias estimates for individual models, presented in
Fig. 1 and Fig. 6. For the period 1985–2005 the area-mean difference between EN4
and Reynolds73 satellite-derived SST is 0.04 °C for 40–60°S (note that these two
products are expected to suffer from common sampling issues). Zonal mean
differences on our model grid between EN4 and Reynolds on have maximum
(mean) values between 35 and 65°S of 0.27 (0.09) K. These basic observational
uncertainty estimates are considerably smaller than the mostly substantial SST
biases in the models (see Fig. 1 and Fig. 6).

The CMIP5 and AMIP5 experiments provided an overlapping subset of 18
models for which we had both coupled and atmosphere-only ocean temperature
and surface heat flux component diagnostics (Supplementary Table 1). Note that
for historical simulations with Earth System Models observational estimates of
greenhouse gas concentrations are prescribed. However, there may be some land-
use differences compared to physical climate model simulations since land-use is
simulated. Since there is no known justification for the exclusion of any of the
models we chose to include all 18 models for which atmospheric heat flux
components and ocean temperatures were available. However, note that the choice
of models has an impact both on our correlation and regression analyses and the
multi-model mean estimated biases (for details see the theoretical dependence of
ΔT on ΔFA and ΔCO (R2) subsection).

For the 13 CMIP5 models with suitable diagnostics available (Supplementary
Table 1), a linear regression was undertaken between SST and the Atlantic
Meridional Overturning Circulation (AMOC) strength at its latitudinal maximum
using a 70 year mean from the pre-industrial control simulations corresponding to
years 1–70 of 1% CO2 simulations. The pre-industrial control experiment was used
to avoid contamination by different responses to forcing in the historical
experiment. A 70-year mean was employed to minimise the impact of multi-
decadal AMOC variability.

Westerly wind components at 10 m were analysed from CMIP5 historical
simulations and AMIP5 simulations with suitable diagnostics (Supplementary
Table 1). The southern hemisphere mid-latitude zonal wind maximum latitude
(ZWML) was defined as the latitude of the maximum in the climatological annual
zonal mean 10 m westerly wind component between 30°S and 70°S (southern
hemisphere latitudes are defined as negative). Zonal mean westerly winds on the
native model grids were interpolated onto a regular latitude grid with 0.075°
spacing using a cubic spline interpolation to estimate the latitude of the zonal mean
westerly wind maximum. Climatologies were defined over the period 1979–2005,
which is the period of overlap with the modern satellite era, during which
atmospheric reanalysis datasets are most reliable. We defined the bias in jet
position relative to the ERA-Interim re-analysis29 over the same 1979–2005
period (positive ZWML bias is northward). It should be noted that the ERA-
Interim re-analysis winds are constrained by the assimilation of atmospheric wind,
pressure, temperature and humidity observational estimates. A basic estimate of
the observational uncertainty in ZWML of 0.15° is derived from the difference
between ZWML estimates from the ERA-INTERIM and MERRA66 re-analyses
(Fig. 3).

Ocean temperature composite analyses. Zonal mean ocean temperature was
calculated using the ocean potential temperature variable from the CMIP5 archive.
Models with suitable diagnostics from the coupled historical climate simulation
experiment (HIST) were evaluated. Zonal mean temperatures were calculated over
the ‘HIST’ period 1979–2005 for each model. Of the models available, there were
seven within the AMIP5 ‘high flux bias’ (>5Wm−2) composite termed HIF
(‘CCSM4′,’bcc-csm1-1-m’,’CNRM-CM5′,’GISS-E2-R’, ‘ACCESS1.3′, ‘ACCESS1-0′
and ‘HadGEM2-CC’) and seven in the AMIP5 ‘near zero or low flux bias’ (<2.5
Wm−2) composite termed NZF (IPSL-CM5A-MR, IPSL-CM5A-LR, CanESM2,
MPI-ESM-LR, CMCC-CM, NorESM1-M and CSIRO-Mk3-6-0). Only the IPSL
models have large negative net flux biases. Each model’s zonal mean was inter-
polated onto a common regular one degree latitude, seventy depth level grid (mean
vertical spacing ~100 m). The models in each ensemble were then averaged

together and the resulting HIF and NZF composites differenced to produce
latitude-depth temperature difference fields. A paired t-test was conducted at each
grid cell of the composites to assess if the mean of the elements of the two com-
posites were significantly different from one another at the 95% level (making the
assumption that the models are independent, which may not strictly be true).
Those found to be significant were stippled in Fig. 4.

Introduction to extended theory subsections. The following seven subsections
present additional details on our analyses of drivers of coupled model SST biases
for readers with a particular interest in this topic. To facilitate the reader we
duplicate material from the main manuscript.

First, we derive the equations governing a more complete analytical model,
which includes the coupled response residual terms that do not depend linearly on
local temperature. We then apply the more complete theory in four subsections
corresponding to the R1 to R4 AMIP5/CMIP5 regression analysis relationships.
The theoretical dependence of ΔT on ΔFA and ΔCO (R2) subsection includes more
detailed discussion on the assumptions of independence of ΔFA and ΔCO and weak
cross-correlations, and on the impacts of excluding outlying models. Next, we
assess our equilibrium assumption and discuss the time-varying equations. Finally,
we present three alternative simplified conceptual models to the one presented in
the main manuscript and show that they are inconsistent with our AMIP5/CMIP5
ensemble results.

Equilibrium mixed layer heat budget equations. We can use the ocean mixed
layer heat budget to derive an analytical solution for the equilibrium mixed layer
temperature bias in any coupled model at any location as a function of the biases in
the total heat fluxes into the mixed layer in stand-alone component atmospheric
and ocean models (given suitable surface boundary conditions). Since SST is closely
linked to mixed layer temperature, we assume they are approximately equal.

In the real world, at any location with a mixed layer of temperature, TOBS , to
conserve heat over any period, the time-derivative or tendency in the mixed layer
heat content tendency, dHOBS/dt, must be equal to the sum of the observed
downward net surface heat flux, FOBS, and observed combined horizontal and
vertical ocean heat transport convergence in to the mixed layer, COBS, i.e.:

dHOBS=dt ¼ FOBS þ COBS ðM1Þ

Similarly, for any coupled model at any location over any period with a mixed
layer temperature, T, the mixed layer heat content tendency, dH/dt, must be equal
to the sum of the simulated surface heat flux, F, and simulated combined horizontal
and vertical ocean heat transport convergence, C:

dH=dt ¼ F þ C ðM2Þ

Next we consider any coupled model location with a mixed layer temperature
bias, ΔT= T − TOBS. Subtracting Eq. M1 from Eq. M2 and substituting for the
simulated surface heat flux bias, ΔF = F − FOBS, and simulated ocean heat
transport convergence bias, ΔC= C − COBS, gives:

dH=dt � dHOBS=dt ¼ ΔF þ ΔC ðM3aÞ

Approximate equilibration of the mixed layer with the atmosphere and upper-
ocean typically occurs within a few decades for a coupled model spin up run. Once
this has occurred, averaging over long multi-annual periods reduces the observed
and simulated mixed layer heat content tendencies associated with climate
variability. We show in a separate subsection below, on the equilibrium
assumption, that for our multi-annual mean bias estimates from the CMIP5
historical simulations the heat content tendencies are small, i.e. the equilibrium
assumption is valid. We therefore ignore the observed and simulated heat content
tendencies, dH/dt and dHOBS/dt, in Eq. M3a to give:

ΔF � �ΔC ðM3bÞ

We can decompose ΔF into a stand-alone atmospheric model surface net flux
bias, given realistic SST forcing, ΔFA and a surface heat flux coupled response,
including all feedbacks, ΔFR:

ΔF ¼ ΔFA þ ΔFR ðM4Þ

We can approximate ΔFA from the model’s AMIP5 experiment net flux bias, if
AMIP5 observed SST forcing is assumed to be realistic. The response term ΔFR is
associated with all local and non-local changes in oceanic and atmospheric states
that occur only when the components are coupled. It is caused by the combined
impact of all the model component errors. We can estimate ΔFR as the difference
between a model’s CMIP5 net heat flux bias, i.e. atmospheric model surface heat
flux error plus coupled feedbacks, and its AMIP5 net heat flux error, i.e.
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atmospheric model surface heat flux error without coupled feedbacks. Hence, our
decomposition in Eq. M4 becomes ΔF= ΔFA+ (ΔF−ΔFA).

Similarly, we decompose ΔC into a stand-alone ocean-ice model heat transport
convergence error, ΔΔCO, given realistic atmospheric surface forcing, and a
coupled feedback response term ΔCR, where ΔCR= ΔC−ΔCO, since clearly ΔC=
ΔCO+ (ΔC−ΔCO):

ΔC ¼ ΔCO þ ΔCR ðM5Þ

The coupled response ΔCR (like ΔFR) is associated with local and non-local
adjustments to oceanic and atmospheric states that result when model components
are coupled from all of the model component errors, including AMIP5 surface
momentum/freshwater forcing biases. Strictly, it should be noted that it is possible
to have error cancellation within the ΔCR term. For example, the coupled ocean
response to atmosphere-only biases in momentum or freshwater fluxes could be
compensated by other coupled adjustments. We are not able to estimate ΔCO for
any CMIP5 model so we are also unable to estimate ΔCR.

The Ocean Model Inter-comparison Project experiments (e.g. OMIP5)24 uses
stand-alone ocean-ice models, with prescribed best-estimate surface atmospheric
forcing. In these models, obviously there can be no atmospheric adjustment to flux
changes associated with SST biases. In principle, it might prove possible in the
future to derive first order estimates of ΔCO for a given CMIP5 model from its
OMIP flux bias ΔFO using the equilibrium assumption that ΔCO≈−ΔFO. However,
this requires further investigation and, unfortunately, there are currently
insufficient (<10) OMIP experiments with consistent ocean components to those of
the CMIP5 models to undertake regression analyses. Furthermore, for OMIP5, the
assumption of realistic surface forcing might prove to be invalid, given large known
errors in ocean forcing sets and questionable surface boundary condition
assumptions.

Combining Eqs. M3b to M5 gives:

ΔFA þ ΔFR � � ΔCO þ ΔCRð Þ ðM6Þ

ΔFA þ ΔCO � � ΔFR þ ΔCRð Þ ðM7Þ

The combined stand-alone model component biases in surface heat flux and
ocean heat transport convergence must therefore be almost exactly opposed by
their associated combined coupled responses.

Let us suppose, as expected and already discussed, that ΔFR depends linearly on
the SST bias, ΔT, with a negative sensitivity constant, λF, and a residual term, RF.
This residual term includes contributions from all remote errors and local errors,
which do not depend linearly on SST biases. Although we cannot anticipate how
ΔCR relates to SST, let us suppose that ΔCR also depends linearly on the mixed
layer temperature bias, ΔT, with a sensitivity constant, λC, and a residual non-
linearly dependent term, RC.

Hence, from Eq. M4:

ΔFR ¼ ΔF � ΔFA ¼ λF � ΔT þ RF ðM8Þ

And from Eq. M5:

ΔCR ¼ ΔC � ΔCO ¼ λC � ΔT þ RC ðM9Þ

Combining Eqs. M7 to M9 gives:

ΔFA þ ΔCO � �ðλF þ λCÞ � ΔT � ðRF þ RCÞ ðM10Þ

For individual models, we can estimate ΔFA, ΔF and ΔT from our AMIP5/
CMIP5 surface flux biases and CMIP5 SST biases, which allows us to estimate ΔFR.
However, we cannot directly estimate ΔCO or ΔCR. For individual models we also
cannot estimate λF, λC, RF or RC. We therefore cannot solve the equilibrium mixed
layer budget for individual models. We can, however, combine Eqs. M1 to M10 to
derive the expressions governing the R1 to R4 regression relationships defined in
the main manuscript across the AMIP5/CMIP5 model ensembles.

To relate these expressions to the relationships between variations in our known
parameters across the AMIP5/CMIP5 ensemble we must make several additional
assumptions. We assume that ΔCO and ΔFA are uncorrelated so the unknown ΔCO

values simply contribute to the regression residual, limiting the correlation. We
expect this assumption to be approximately valid since ΔCO and ΔFA are errors in
completely different stand-alone ocean and atmospheric model components, which
are largely developed separately. We also assume that the response sensitivity
constants, λF and λC, are approximately consistent across the models. We expect
some deviations between individual model sensitivity constants, λF and λC, from
their multi-model mean values which will contribute to our residual RF and RC
terms, together with other non-linear and non-local contributions to ΔCR and ΔFR.
If any of these regression residual terms were dominant we would not expect strong
correlations for R1 to R4. Any regression result can be influenced by potentially

misleading cross-correlations of important external parameters with both of the
variables used in the regression. We expect and assume these local and non-local
cross-correlations to be weak. We discuss the potential implications of these
assumptions on our inferences for drivers of coupled SST biases in the
R2 subsection below.

In the following four subsections, we show that the expected R1 to R4
regression relationships from our more complete model and the associated
inferences from the AMIP5/CMIP5 ensemble regression results are consistent with
those from the general case model presented in the main manuscript.

Theoretical dependence of ΔFR on ΔT (R1). Eq. M8 states:

ΔFR ¼ ΔF � ΔFA ¼ λF � ΔT þ RF ðM8Þ

We expect λF to be negative. Across a group of models, if there were consistency
in their response sensitivity constants, λF, Eq. M8 would result in a negative
correlation of surface heat flux coupled responses, ΔFR on SST biases, ΔT. The
CMIP5 average response constant λF would be given by the slope of this regression
(S1).

We find a strong negative correlation of ΔFR on ΔT (r1=−0.66, S1=−5.5 ±
1.6Wm−2K−1, p= 2.8E-3; R1). Our regression slope for ΔFR on ΔT, S1, suggests
that λF~−5.5 ± 1.6Wm−2K−1. We use our estimate of λF to estimate RF for use in
the R3 subsection below. This will include a contribution from any variations in λF
across the models.

The CMIP5-AMIP5 flux component bias on SST bias, ΔT, regression
sensitivities are −4.8 ± 1.1 and −1.3 ± 0.4Wm−2K−1 for the total turbulent and
long-wave flux, respectively. The sensitivity of −1.3 ± 0.4Wm−2K−1 for long-wave
suggests that a large fraction of the Stefan’s Law estimated emitted long-wave ~ 4.8
Wm−2K−1 is re-emitted towards the surface. The turbulent flux sensitivity of −4.8
± 1.1 is broadly consistent with observational estimates of its sensitivity for the
Southern Ocean region derived from ERAI35 of < 10Wm−2K−1.

Theoretical dependence of ΔT on ΔFA and ΔCO (R2). Re-arranging Eq. M10 to
estimate ΔT gives:

ΔT ¼ �ðΔFA þ ΔCO þ RF þ RCÞ=ðλF þ λCÞ ðM11Þ

Equation M11 would be expected to give rise to correlations across the AMIP5/
CMIP5 ensemble of SST biases, ΔT, on either the stand-alone atmospheric model
component surface heat flux biases, ΔFA, or stand-alone ocean model ocean heat
transport convergence biases, ΔCO. We investigate the ΔT on ΔFA regression
relationship by assuming that ΔFA and ΔCO are uncorrelated. Note also that RF and
RC are by definition uncorrelated with ΔT. The ensemble multi-model mean (λF+
λC) is given by minus the inverse of the ΔT on ΔFA regression slope (S2). The
explained variance, r22, is given by the variance in ΔFA/(λF+ λC) divided by the
variance in ΔT. Any variations in (λF+ λC) will also contribute to the regression
errors, limiting the size of the correlation.

We find a strong positive correlation for ΔT on ΔFA (Fig. 1; r= 0.84, S2= 0.10
± 0.02KW−1m2, p= 1.4E-5; R2). This suggests that (λF+ λC) ~−10.0 (−8.3 to
−12.5) Wm−2K−1, assuming that ΔFA and RF+ RC+ ΔCO are independent as
expected. Combining this estimate with our estimate from the R1 subsection of λF
~−5.5 (−3.9 to −7.1)Wm−2K−1 suggests that λC~−4.5 (−1.2 to −8.6)Wm−2K
−1. These large uncertainties result from combining the two regressions, but the
central value of λC suggests that it is of similar magnitude to λF. The correlation of
0.84 indicates that 70% of the variance in ΔT is explained by variations in ΔFA. If,
as assumed, ΔFA and ΔCO are independent this implies that less than 30% of the
ΔT variance can be explained by variations in ΔCO. We discuss the implications of
each of our assumptions below.

We expect ΔFA and ΔCO variations across the models to be approximately
independent since the stand-alone ocean and atmosphere models are separate
models, which are largely developed independently. In fact, any tuning that might
be undertaken once components are coupled to minimise local SST biases could,
from Eq. M11, even be expected to introduce weak anti-correlation between ΔFA
and ΔCO. If significant, this anti-correlation would have reduced both our ΔT on
ΔFA correlation and the total of the sum of the variance in ΔT explained by ΔFA
and ΔCO individually to less than one. Taking such an anti-correlation into
account would make our estimate of 30% for the fraction of ΔT variance explained
by ΔCO even smaller. Anti-correlation would also reduce the magnitude of the
regression slope, which would in turn increase the magnitude of our estimates of
(λF+ λC). Since λF is estimated separately from R1 this would mean that our
estimate of λC, which assumes no correlation, is an overestimate. Note, however,
that this effect cannot be large, given that our ΔT on ΔFA correlation coefficient is
0.84, i.e. fairly close to 1.0.

The choice of models influences the magnitude of the ΔT on ΔFA correlation
(and could also affect the λF and λC estimates). We chose to include all 18 models
for which atmospheric heat flux components and ocean temperatures were
available. There is no known justification for the exclusion of any of the models.
Note, however, that the available models included two IPSL models, both of which
had low net flux and SST biases compared to the other models. Their inclusion
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increases the ΔT on ΔFA correlation. For example, for AMIP5 net flux vs. CMIP5
SST linear regressions, the correlations (p value) were 0.84 (1.4E-5), 0.77(2.7E-4)
and 0.70 (2.6E-3) including both, one (IPSL-CM5A-MR) and no IPSL models,
respectively. Hence, without the two IPSL models the fraction of SST bias variance
explained by atmospheric model F biases reduces to around 50%. Spearman rank
correlations are less sensitive to outliers than linear regressions. For AMIP5 net flux
vs. CMIP5 SST regressions, the Spearman rank correlations (and p values) were
0.83 (2.4E-05), 0.80 (1.3E-4) and 0.76 (7.1E-4) including both, one (IPSL-CM5A-
MR) and no IPSL models, respectively.

Cross-correlations between both regression parameters and other important
parameters can influence regression results, complicating inferences on causality.
Our analysis considers the linear dependence of CMIP5 SST biases, a coupled
ocean parameter, on AMIP5 net flux biases, a parameter from a stand-alone
atmospheric model with no ocean model. Hence, any causality can only result from
a dependence of CMIP5 SST on AMIP5 surface fluxes, not vice-versa. Clearly, we
expect AMIP5 net flux biases to be correlated with all AMIP5 atmospheric model
deficiencies that directly influence surface fluxes, e.g. cloud or boundary layer
parameter biases. These biases would therefore influence SST biases through our
proposed mechanism. Potentially misleading cross-correlation candidates are
limited to any local or remote atmospheric model variables that influence
AMIP5 surface heat, freshwater and momentum fluxes. Any such cross-correlation
would only matter if these flux biases were to strongly influence area-mean CMIP5
SST biases through a different mechanism, e.g. such as by changing the coupled
response term ΔCR.

Local 40–60°S area-mean correlations of AMIP5 net fluxes on AMIP5
precipitation minus evaporation freshwater and AMIP5 momentum fluxes are
weak for our set of AMIP5/CMIP5 models (r < 0.2, n= 17). Furthermore, their
weak correlations with SST (r < 0.2, n= 17) do not exceed those expected solely
from their cross-correlation with net flux via our proposed mechanism. There is
also no significant correlation between these fields and the regression residuals
from the SST bias on net flux bias regression, i.e. there is no evidence of an
independent physical link with SST. Note also that no significant correlation is
evident for SST biases on sea surface salinity biases for 40–60°S. Clearly, we cannot
rule out all potential non-local cross-correlations between heat, momentum and
freshwater flux bias terms and 40–60°S heat flux biases. However, there is no
physical basis to expect these remote terms to play an important physical role in
the 40–60°S area-mean mixed layer heat budget.

Theoretical dependence of (ΔFR−RF) on ΔFA (modified R3). Re-arranging
Eq. M8 gives:

ΔT ¼ ΔFR � RFð Þ=λF ðM12Þ

Substituting Eq. M12 in Eq. M11 for ΔΔT, and re-arranging to evaluate
ΔΔFR−RF gives:

ΔFR � RF ¼ �ðΔFA þ ΔCO þ RF þ RCÞλF=ðλF þ λCÞ ðM13Þ

This relationship combines those in subsections R1 and R2 and is therefore not
independent of them.

Across a group of models, with consistent λF and λC, Eq. M13 would be
expected to give rise to correlations of ΔFR − RF on ΔFA, the atmospheric model
surface heat flux biases. Again, it is necessary to assume, as expected, that ΔFA and
(ΔCO+ RF+ RC) are approximately uncorrelated. The slope of this regression (S3)
then provides an estimate for -λF / (λF+ λC). We find a strong negative correlation
for modified R3 modified (ΔFR − RF) on ΔFA (r=−0.84, S3=−0.54 ± 0.09, p=
1.5E-5). This provides an estimate of λF/(λF+ λC) of 0.54 ± 0.09, which is
consistent with the values of λF and λC which we estimated from subsections R1
and R2, but appears to provide a slightly better constrained estimate of λC/λF=
0.85 (0.58 to 1.2). With our known parameters (i.e. ΔT, ΔFR and ΔFA), this
relationship could potentially prove useful in other regions, e.g. where λF is large
but the standard deviation of ΔCO is larger than that of ΔFA so that the ΔT on ΔFA
correlation is weak.

Theoretical dependence of ΔT on ΔF (R4). Two equivalent expressions may be
derived for the coupled fluxes that are useful to interpret our ΔT on ΔF
relationships:

From Eq. M8:

�ΔC ¼ ΔF ¼ ΔFR þ ΔFA ¼ λF � ΔT þ RF þ ΔFA ðM14Þ

Re-arranging gives:

ΔT ¼ ðΔF � RF � ΔFAÞ=λF ðM15Þ

From Eq. M9:

�ΔF ¼ ΔC ¼ ΔCR þ ΔCO ¼ λC � ΔT þ RC þ ΔCO ðM16Þ

Re-arranging gives:

ΔT ¼ �ðΔT þ RC þ ΔCOÞ=λC ðM17Þ

Useful expressions for the expected ΔT on ΔF regression relationship across an
ensemble can be only derived when either ΔFA or ΔCO are small and can therefore
be ignored (i.e. by ignoring ΔFA in Eq. M15 or by ignoring ΔCO in Eq. M17). The
more general equation governing the ΔT on ΔF regression relationship depends on
both of the stand-alone model component errors and the coupled responses.
Substituting z= ΔCO/ΔFA and combining Eqs. M10, M4 and M6, one can derive a
general expression for the dependency of ΔT on ΔF. However, this is not presented
as it is hard to interpret since z would be expected to vary randomly across the
models. Furthermore, for 40–60°S, we find a weak positive correlation of ΔT on ΔF
(r= 0.35, p= 1.6E-1) which does not permit useful quantitative analyses from its
slope. These relationships also combine those in subsections R1 and R2 and are
therefore not independent of them. However, with our known parameters (ΔT, ΔFR
and ΔFA), Eq. M17 could potentially prove useful for other regions where ΔT on
ΔF correlations are strong.

The equilibrium assumption used in the theory. The time-varying mixed layer
budget equations for observations, a simulation and simulated biases are given by
Eqs. M1, M2 and M3a, b, respectively. Since our study investigates simulated biases
we consider Eq. M3a:

dH=dt � dHOBS=dt ¼ ΔC þ ΔF

This time-varying budget equation can be used to derive a modified expression
for ΔT (in a similar manner to that used to derive Eq. M11):

ΔT ¼ �ðΔFA þ ΔCO þ RF þ RC � dH=dt þ dHOBS=dtÞ=ðλF þ λCÞ ðM18Þ

For any model, we can approximately estimate the tendency in the heat content
of the mixed layer, H, over the time of the ΔT averaging period as follows:

dH=dt ¼ ρ cpd DTð Þ=dt ðM19Þ

where D is the mixed layer depth, cp is the specific heat capacity of water, ρ is the
density of water and T is the temperature of the mixed layer temperature and SST.

The observed heat content tendency (dHOBS/dt) should not affect our regression
slope or correlation estimates since its value is the same for all of the models.
Similarly, any contribution to the simulated heat content tendency (dH/dt) from
any multi-model mean simulated response to climate forcing common to all the
models should have no impact. We expect the remainder of the simulated heat
content tendency dH/dt to vary approximately randomly across the models since it
is should be primarily associated with climate variability. The validity of our
equilibrium assumption therefore depends on the size of dH/dt variations across
the models relative to those of the known bias terms, i.e. ΔFA and ΔF in Eqs. M18
and M3a. This will depend on the averaging period with longer averaging period
tending to have smaller magnitude heat content tendencies.

For our AMIP5/CMIP5 simulations the ΔT averaging period is ≥ 25 years. For
the HadGEM2 historical run, the standard deviation of dH/dt for 40–60°S,
estimated from six different 20 year averaging periods, is 0.2Wm−2(for a 10 year
averaging period it is 0.4 Wm−2). This value of 0.2Wm−2 is clearly small
compared to the AMIP5 net flux bias standard deviation of 6.6Wm−2 (~ 3%) and
the CMIP5 net flux standard deviation of 3.7Wm−2 (~ 5%). It would also remain
small even if mixed layer temperature tendencies associated with variability were
several times larger in other models, which is not expected for an average over such
a large region. Note also from Eq. M18 that this term would have acted as an
additional noise term in our existing regression analyses, limiting the correlations.
If this term were to be an important term in the budget, we would therefore not
see such a strong CMIP5 SST bias on AMIP5 net flux bias correlation
(r= 0.84).

Equations M18 and M19 can also be used to provide a first order estimate of the
equilibration timescale for the mixed layer temperature, by making some rather
crude assumptions. We assume that D, ΔFA, ΔCO, RF, RC, λF, λC, ρ, and cp are all
approximately constant in time. We do not expect this assumption to be strictly
valid, particularly for the RC and λC coupled ocean response parameters that are
expected to vary as the local and non-local ocean mixed layer temperature biases
develop. Putting X= ΔT gives:

dX=dt ¼ ðð1=ρcpDÞ � ðΔFA þ ΔCO þ RF þ RCÞ þ XðλF þ λCÞÞ ¼ a� bX
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With a= (ΔFA+ ΔCO+ RF+ RC)/ρcpD and b=−(λF+ λC)/ρcpD so that b is
positive. Integrating in time and introducing a constant to ensure that X is zero at
time, t= 0 gives:

X ¼ �a=bð Þ e�bt � 1
� � ðM20Þ

This provides a solution for ΔT which asymptotes to a stable equilibrium value
with an e-folding timescale, Te:

Te ¼ 1=b ¼ ρcpD=ðλF þ λCÞ

Using approximate values of cp and ρ of 4200 Jkg−1and 1000 kgm−3,
respectively, and dividing by 3600 x 24 to convert time units to days, gives a
timescale Te of:

Te � 49 D= λF þ λCj j days

We can apply this theory to investigate the time-evolution of the HadGEM3-
GC2 SST biases. For approximate area-mean equilibration to occur most of the
40–60°S region must equilibrate, including any areas with particularly deep mixed
layers. We therefore use the maximum annual mean mixed layer depth at any grid
point within the 40–60°S region of 1000 m. As we do not know |λF+ λC| for
HadGEM3-GC2 for the Southern Ocean, we assume the AMIP5/CMIP5 multi-
model mean value of |λF+ λC| of 10Wm−2K−1 approximately applies. This
suggests the e-folding timescale should be around 13 years. There are considerable
uncertainties in this estimate since we do know the regional mean |λF+ λC| value
for HadGEM3-GC2 and the most appropriate mixed layer depth value to use is
also uncertain (over most of the 40–60°S region the mixed layer depth is much
shallower than 1000 m and the area-mean annual-mean mixed layer depth is only
~ 75 m).

In HadGEM2-GC2 present day control runs the Southern Ocean 40–60°S
annual mean SST bias evolves over time with an e-folding timescale of around
8 years, asymptoting over around 20 years to a fairly stable mean value of around
~ 3 °C. The bias then persists for the remainder of the experiment (in this case
~ 200 years) with some smaller inter-annual fluctuations of less than approximately
1 K super-imposed. The simulated HadGEM3-GC2 e-folding time scale of ~ 8
years is therefore broadly consistent with our rather uncertain and crude
theoretical estimate of equilibration timescales of ~ 13 years.

The Southern Ocean SST bias is evident at a wide range of forecast timescales
across all of the systems in the Met Office traceable seamless forecasting suite
which employ the HadGEM3-GC2 model. This includes forecasts of a few days
from the coupled Numerical Weather Prediction system; forecasts of months to
years from Seasonal and Decadal forecasting systems; and forecasts of many
centuries in centennial climate prediction experiments74. This basic theory
provides a potentially useful framework to try to link certain biases in coupled
numerical weather prediction or seasonal/decadal forecasting systems to
equilibrated biases in long term climate simulations for models. Of course, this
would only be useful for model regions where the bias evolves as a negative
exponential which asymptotes towards a long term value such as the Southern
Ocean74. Note, however, that for many model regions the time evolution of the bias
in seasonal/decadal forecast is considerably more complicated74 suggesting our
crude theoretical assumptions may well not apply in these model regions.

Additional theoretical simplified conceptual case models. This subsection
considers three additional simplified conceptual solutions to Eqs. 1b and 2 in which
either or both of the ocean terms are assumed to be dominant. We contrast the
expectations from these models with those from the simplified conceptual case
model introduced in the main manuscript in which the ocean terms are assumed to
be small. We demonstrate that our AMIP5/CMIP5 ensemble Southern Ocean
40–60°S regression results are inconsistent with the expectations from these new
cases but are broadly consistent with the case when ocean terms are assumed small.
Note however, that it is possible that these alternative simplified conceptual cases
might be consistent with AMIP5/CMIP5 ensemble results for other regions.

Eq. 1b is (see main manuscript for definitions of terms):

ΔFA þ ΔCO � � ΔFR þ ΔCRð Þ ð1bÞ

To recap, the AMIP5/CMIP5 ensemble regression relationship results are: (R1)
a strong negative correlation (r=−0.66) of CMIP5-AMIP5 net flux biases on SST
biases, i.e. ΔFR on ΔT; (R2) a strong positive correlation (r= 0.84) of CMIP5 SST
biases on AMIP5 net flux biases, i.e. ΔT on ΔFA; (R3) a strong negative correlation
(r=−0.84) of CMIP5-AMIP5 net flux biases on AMIP5 net flux biases, i.e. ΔFR on
ΔFA; and (R4) a weak correlation (r= 0.35) of CMIP5 SST biases on CMIP5 net
flux biases, i.e. ΔT on ΔF (where ΔF= ΔFA+ ΔFR).

The four conceptual cases have different expected signatures across the model
ensemble for each of these four regression relationships. All four cases ignore
remote and indirect contributions to the coupled response terms that do not
depend on local SST (i.e. we assume ΔFR≈λFΔT and ΔCR≈λCΔT). If important,

these contributions will act as additional error terms reducing the correlations in
our expected regression results. The expected results for the R1 to R4 regressions
for each of the cases are detailed below, together with their agreement with the
AMIP5/CMIP5 ensemble results.

In case 1 (see main manuscript and Fig. 2c), atmospheric model surface heat
flux biases drive local SST biases through balancing surface heat flux response, i.e.
small ΔCO and ΔCR so ΔFR ≈ λFΔT ≈−ΔFA. The atmospheric model provides
surplus heat into the surface which causes the local SST to warm resulting in a
compensating positive surface heat loss response (or vice-versa). We expect for R1
a strong negative correlation of ΔFR on SST biases; for R2 an approximately
compensating strong positive correlation of SST biases on ΔFA; for R3 a strong
negative correlation of ΔFR on ΔFA; and for R4 no correlation of SST biases on
coupled net flux difference (ΔF), since ΔF= ΔFR+ ΔFA ≈ 0. Our results are
broadly consistent with all of these expectations.

In case 2, atmospheric model surface heat flux biases drive local SST biases
through ocean heat transport convergence balancing response, i.e. small ΔCO and
ΔFR so ΔCR ≈ λCΔT ≈−ΔFA. The atmospheric model provides surplus heat into
the surface causing the local SST to warm resulting in a compensating negative
ocean heat transport convergence response (or vice-versa). We expect for R1 no
correlation of ΔFR on SST biases (and a negative correlation of ΔCR on SST biases
which we can’t test); for R2 a strong positive correlation of SST biases on ΔFA; for
R3 no correlation of ΔFR on ΔFA; and for R4 strong positive correlation of SST
biases on coupled net flux bias (ΔΔF). Our results contrast with expectations for
R1, R2 and R3, ruling out this case.

In case 3, ocean model heat transport convergence biases drive local SST biases
through balancing surface heat flux response, i.e. small ΔFA and ΔCR so ΔFR ≈
λFΔT ≈−ΔCO. The ocean model produces surplus ocean heat transport
convergence causing the local SST to warm resulting in a compensating positive
surface heat loss response (or vice-versa). We expect for R1 strong negative
correlation of ΔFR on SST biases; for R2 no correlation of SST biases on ΔFA; for R3
no correlation of ΔFR on ΔFA; and for R4 strong negative correlation of SST biases
on coupled net flux biases, ΔΔF. Our results contrast with expectations for R2, R3
and R4, ruling out this case.

In case 4, ocean model heat transport convergence biases drive local SST biases
through balancing ocean heat transport convergence response, i.e. small ΔFA and
ΔFR so ΔCR ≈ λCΔT ≈−ΔCO. The ocean model produces surplus ocean heat
transport convergence, causing the local SST to warm, resulting in a compensating
negative ocean heat transport convergence response (or vice-versa). We expect for
R1 no correlation of ΔFR on SST biases (and a negative correlation of ΔCR on SST
biases which we can’t test); for R2 no correlation of SST biases on ΔFA; for R3 no
correlation of ΔFR on ΔFA; and for R4 no correlation of SST biases on coupled net
flux difference, ΔF. Our results contrast with expectation R1, R2 and R3, ruling out
this case. Note that an additional case when all of the local terms in Eq. 1b are
small, i.e. both the local component errors are small, and neither response depends
on local SST so local SST biases primarily result from non-local or momentum/
freshwater forcing component biases could also give this result.

In summary, to support our analyses in the main manuscript we have
considered 4 simple conceptual cases in which pairs of component error and
response terms in Eq. 1 are assumed small. Our four regression results for the
AMIP5/CMIP5 ensemble for 40–60°S rule out cases 2 to 4 but are broadly
consistent with case 1 (the conceptual case model presented in the main
manuscript), where the ocean model C bias (ΔCO) and C response terms (ΔCR and
λC) are assumed small.

Code availability. Due to intellectual property right restrictions, we cannot provide
the source code or the documentation papers for HadGEM3-GC2 or GC3.1. The
Met Office Unified Model (MetUM) is available for use under licence. A number of
research organisations and national meteorological services use the MetUM in
collaboration with the Met Office to undertake basic atmospheric process research,
produce forecasts, develop the MetUM code and build and evaluate Earth system
models. For further information on how to apply for a licence, see http://www.
metoffice.gov.uk/research/collaboration/um-partnership.

Data availability
The AMIP5/CMIP5 data are available from the Coupled Model Inter-comparison Project
archive. The HadGEM3-GC2 and HadGEM3-GC3.1 present day control experiment and
associated stand-alone atmosphere experiment data are available from Met Office on
reasonable request. All of the observational datasets are publically available (see
associated references for details).
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