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ABSTRACT 20 

   Tropical eastern Pacific sea surface temperature plays a pivotal role in mechanisms that determine 21 

global mean surface temperature variability. In this study, the surface flux contribution to recent 22 

cooling of the tropical eastern Pacific is investigated using data from three atmospheric reanalyses 23 

with full assimilation of observations, an observations-based net surface energy flux reconstruction 24 

and fifteen atmospheric-only climate model simulations. For the ERA-Interim reanalysis, 78% of the 25 

decrease in net surface flux (-0.65 Wm-2yr-1 over 1988-2008) is explained by the latent heat flux 26 

variability. Latent heat flux variability differs between datasets and this is investigated using a bulk 27 

formula. We find that discrepancies in wind speed change explain contrasting latent heat flux trends 28 

across datasets. The significant increase of 0.26 ms-1decade-1 in wind speed over the tropical eastern 29 

Pacific in the ERA-Interim reanalysis is not reproduced by satellite or buoy observations and 30 

atmospheric-only climate model simulations, casting questions on the reliability of reanalysis-based 31 

surface fluxes over the tropical eastern Pacific. 32 

 33 

Key points: 34 

1) Latent heat flux explains decreasing surface heat flux trend over tropical eastern Pacific area. 35 

2) Near surface wind speed change is the main driver of the latent heat flux variability. 36 

3) Changes in heat flux over the tropical eastern Pacific depicted by reanalyses estimates are 37 

unrealistic 38 

Key words: Global warming slowdown, tropical eastern Pacific cooling, Surface flux contribution, 39 

Reliability  40 
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1. Introduction 41 

   Cooling over the Tropical Eastern Pacific (𝑇𝐸𝑃) has been identified as an important factor in 42 

explaining the mechanisms leading to supressed global warming at the beginning of the 21st century 43 

[Easterling and Werner, 2009; Knight et al., 2009; Trenberth and Fasullo, 2013; Huber and Knutti, 44 

2014; Watanabe et al., 2014; Kosaka and Xie, 2013; Meehl et al., 2014; England et al., 2015]. Using 45 

both NOAA (National Oceanic and Atmospheric Administration) 20th century [Compo et al., 2011] 46 

and ECMWF (European Centre for Medium-Range Weather Forecasts) Interim Reanalysis (ERA-47 

Interim) [Dee et al., 2011] atmospheric reanalysis data, as well as model simulations, England et al. 48 

[2014] found that the cooling is due to the observed pronounced strengthening in Pacific trade winds 49 

which enhance the ocean heat uptake and the upwelling of the subsurface cold water over the 𝑇𝐸𝑃 50 

area. Zhou et al. [2016] found that the sea surface temperature (𝑆𝑆𝑇) pattern-induced low cloud 51 

increase [Norris and Evan, 2015] over the 𝑇𝐸𝑃 region can enhance the shortwave reflection and 52 

modify the Earth’s energy budget. This has been linked to changes in atmospheric stability and can 53 

explain increases in climate sensitivity relating to the evolution of SST patterns in response to 54 

radiative forcing [Ceppi and Gregory, 2017; Andrews and Webb, 2017]. The cloud feedback on SST 55 

changes over the decadal time scale can amplify cooling in 𝑇𝐸𝑃 region where air descends. Brown et 56 

al. [2014] also showed that cooling may be enhanced in both duration and magnitude by increasing 57 

the shortwave reflection (𝑅𝑆𝑊) over 𝑇𝐸𝑃 region, where the reduced outgoing longwave radiation 58 

(𝑂𝐿𝑅) cannot fully compensate the shortwave reflection, due to the relatively cool marine stratiform 59 

clouds present [Klein and Hartmann, 1993], reducing the net downward surface energy flux (𝐹𝑠) and 60 

cooling the surface.  61 

 62 

   On one hand, the cooling 𝑇𝐸𝑃 will suppress the longwave radiation and the turbulent energy 63 

transfer from ocean to the atmosphere, so the net downward energy flux will be increased over this 64 

region, as depicted by the AMIP (Atmospheric Model Intercomparison Project) model simulations 65 
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[Liu et al., 2015]. On the other hand, increased winds [England et al., 2014] will cause more 66 

evaporation, so more latent heat may be lost to the atmosphere and decrease the net downward 67 

energy flux. In order to further understand the mechanisms and driving factors of the 𝑇𝐸𝑃 cooling, 68 

different surface flux data from atmospheric reanalyses, observational reconstructions [Liu et al., 69 

2017] and AMIP5 simulations are used to study the surface energy flux contributions to the 𝑇𝐸𝑃 70 

cooling in this study. Considering the imperfect temporal homogeneities in parameterized reanalysis 71 

fluxes [Berrisford et al. 2011; Balmaseda et al. 2013; von Schuckmann et al., 2016], the detailed 72 

analysis of the reasons causing the spurious changes is conducted in this study using a bulk formula, 73 

so as to investigate the role of meteorological variables in determining latent heat flux changes. 74 

 75 

2. Data and method 76 

   The three atmospheric reanalyses used in this study are ECMWF ERA-Interim reanalysis [Dee et 77 

al., 2011; Berrisford et al., 2011] (hereinafter referred to as ERAINT). JRA55 (the Japanese 55-year 78 

Reanalysis, [Kobayashi et al. 2015]) and MERRA2 (Modern Era-Retrospective Analysis for 79 

Research and Applications, [Gelaro et al., 2017]). Surface fluxes, including the surface shortwave 80 

(𝑆𝑊) and longwave (𝐿𝑊) radiation fluxes, the latent heat (𝐿𝐻) and sensible heat (𝑆𝐻) turbulent 81 

fluxes, forecasted directly by the reanalyses, are used. The monthly fluxes available for this study are 82 

averaged from the forecast every 12 hours for ERAINT, every 6 hours for JRA55 and every hour for 83 

MERRA2. A four-dimensional variational analysis is used in ERA-Interim and JRA55 reanalyses, 84 

and a three-dimensional variational data assimilation in MERRA2, where data from the full 85 

observing system are assimilated. The derived net surface heat fluxes based on the atmospheric 86 

energy tendencies and transports of ERAINT and TOA (top of atmosphere) satellite radiation budget 87 

data [Allan et al., 2014; Liu et al., 2015, 2017] are also exploited based on results from the DEEPC 88 

(Diagnosing Earth's Energy Pathways in the Climate system) project. DEEPC takes advantages of 89 

the assimilation of full observations in ERA-Interim and the observed energy budget of the Earth 90 
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system [Liu et al., 2015], the atmospheric energy transports are mass corrected [Trenberth et al. 91 

1995; Chiodo and Haimberger, 2010; Mayer and Haimberger, 2012] and the land surface fluxes are 92 

adjusted based on the energy budget conservation [Liu et al., 2017] and has applications in a number 93 

of previous studies [Williams et al., 2015; Valdivieso et al., 2015; Senior et al., 2016; Roberts et al., 94 

2017]. The CERES (Clouds and the Earth’s Radiant Energy System [Loeb et al., 2012]) surface 95 

radiation fluxes are used to infer the surface turbulent fluxes from DEEPC net surface flux. 96 

 97 

   The bulk formula used to calculate the latent heat fluxes at surface is from Singh et al. [2005], 98 

𝐿𝐻 =  𝜌𝐿𝐶𝐸𝑈(𝑄𝑠 − 𝑄𝑎)                                      (1) 99 

where 𝜌 is the air density, 𝐿 is the latent heat of evaporation, 𝐶𝐸 is bulk transfer coefficient for water 100 

vapor (also called the Dalton number) and can be estimated using near surface wind speed (Bentamy 101 

et al. 2003), 𝑈 is the wind speed at a height of typically 10 m, 𝑄𝑠 is the saturation specific humidity 102 

at the surface and can be estimated using 𝑆𝑆𝑇 and sea level pressure, and 𝑄𝑎 is the near-surface 103 

specific humidity at the atmospheric measurement level and can be empirically estimated from 𝑆𝑆𝑇 104 

and the total column water vapor content (please see Singh et al. [2005] for the detailed 105 

descriptions). The 𝐿𝐻 estimation is specially designed to use satellite observations. The four input 106 

fields are the total column water vapour content (𝑊𝑉), near surface wind speed, 𝑆𝑆𝑇 and mean sea 107 

level pressure (𝑀𝑆𝐿𝑃), which are all available as analysis time variables from the reanalyses. 108 

Considering the good temporal homogeneity of the SSM/I data (Fig. S1), the observed 𝑊𝑉 and 𝑈 109 

from SSM/I are employed and the time series is constructed using F08, F11 and F13 datasets. The 110 

wind speed has a general increasing trend before 2009, but decreases after 2012 (Fig. S1a). The data 111 

from 15 AMIP5 model simulations are also used, with prescribed observed 𝑆𝑆𝑇 and sea ice and 112 

realistic radiation forcings [Taylor et al., 2012]. The wind speed data from TAO (Tropical 113 

Atmosphere Ocean) moored buoy array [TAO Project Office, 2000] are also used for comparison. All 114 

datasets are listed in Table 1 with some brief descriptions. 115 
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 116 

3. Results 117 

3.1 Trends in surface heat flux 118 

   The net surface heat flux trends from ERAINT, DEEPC and AMIP5 ensemble mean over 1988-119 

2008 are shown in Fig. 1, together with the ERAINT 𝑆𝑆𝑇 trend. The corresponding area mean 120 

anomaly time series over 𝑇𝐸𝑃 are also plotted on the right column. The trends of ERAINT 𝑆𝑆𝑇       121 

(-0.06 K decade-1) and net surface flux from DEEPC (-0.32 Wm-2yr-1) and ERAINT (-0.65 Wm-2yr-1) 122 

show a consistent negative trend over 𝑇𝐸𝑃 (Figs. 1a-c). The DEEPC 𝐹𝑠 is based on a combination of 123 

satellite data and ERAINT atmospheric energy transports but does not use the simulated surface 124 

fluxes. While both datasets display a negative trend in downward net heat flux over 𝑇𝐸𝑃, the DEEPC 125 

trend is smaller in magnitude than that of ERAINT (Figs. 1f and g). The strong negative trend can 126 

also be seen from JRA55 data (Fig. S2a), but is weak in MERRA2 data (Fig. S2b) and not present in 127 

AMIP5 ensemble mean simulations (Fig. 1d). Both trends from ERAINT and JRA55 (Fig. 1c and 128 

Fig. S2a) show similar spatial patterns, with negative trends over central Indian Ocean, western and 129 

eastern Pacific, but positive trends in northeastern Pacific. A contrasting pattern is produced by 130 

MERRA2: the trend over northeasten Pacific is negative but positive over most of the 𝑇𝐸𝑃 area. 131 

Trend patterns in 𝑆𝑆𝑇 (Fig. 1a) and AMIP5 ensemble mean simulated 𝐹𝑠 (Fig.1d) are anti-correlated, 132 

indicating that reducing 𝑆𝑆𝑇 leads to reduced heat loss to the atmosphere so more surface flux into 133 

the ocean (increased 𝐹𝑠). While in contrast this is not seen in DEEPC (Fig. 1b) and ERAINT (Fig. 134 

1c). Although the input data used to generate the DEEPC product are not fully coupled, it is 135 

considered the best representation of the coupled system available to us. The errors can be introduced 136 

from incomplete coverage, biases and model inadequacies during observational input to ERAINT, 137 

but it is representative of the coupled system,  in which  heat fluxes can drive changes in 𝑆𝑆𝑇 (e.g. 138 

reduced 𝐹𝑠 can cool the ocean and reduce 𝑆𝑆𝑇).  139 

 140 
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   The deseasonalized anomaly time series of 𝐹𝑠 and its four components (𝑆𝑊, 𝐿𝑊, 𝑆𝐻 𝑎𝑛𝑑 𝐿𝐻) over 141 

𝑇𝐸𝑃 are plotted in Figs. 1g-h and Figs. S2c-d; the reference period for the anomaly calculation is 142 

from 2001-2008. It is clear that the 𝐿𝐻 variation dominates the 𝐹𝑠 variability in three atmospheric 143 

reanalyses and the AMIP5 ensemble mean. The 𝐿𝐻 trend follows the corresponding 𝐹𝑠 trend and the 144 

correlation coefficients (r) between 𝐿𝐻 and 𝐹𝑠 over 1988-2008 are 0.97, 0.94, 0.90 and 0.96, the 𝐿𝐻 145 

trend magnitudes are 78%, 98%, 169% and 44% of the 𝐹𝑠 trends for ERAINT, JRA55, MERRA2 and 146 

the AMIP5 ensemble mean, respectively. The turbulent fluxes (𝑆𝐻 𝑎𝑛𝑑 𝐿𝐻) are also derived from 147 

the difference of the DEEPC net surface energy fluxes and the CERES surface radiation fluxes and 148 

the anomaly time series is plotted in Fig. 1f. The corresponding correlation coefficient between 149 

turbulent flux and 𝐹𝑠 over 2002-2015 is 0.98. It is apparent that 𝑆𝑊 and 𝐹𝑠 variability are also well 150 

correlated (r = 0.69, 0.72, 0.73 and 0.56 for ERAINT, JRA55, MERRA2 and AMIP5 ensemble 151 

mean, respectively), but the 𝑆𝑊 trend is generally smaller than the 𝐹𝑠 trend. The corresponding 𝑆𝑊 152 

trend contribution to the 𝐹𝑠 trend is 22% for ERAINT and 11% for JRA55, and the contribution of 153 

31% in AMIP5 ensemble mean is relatively strong. The 𝑆𝑊 trend in MERRA2 is in opposite sign 154 

with 𝐹𝑠 trend. All these correlation coefficients are significant based on the two-tailed test using 155 

Pearson critical values at the level of 5% and the trends (except for the LH trend of AMIP5) are also 156 

significant using Mann-Kendall test at a significance level of 0.05 [Hipel and McLeod, 1994], which 157 

emphasise that the evaporation dominates variabilities and trends in surface fluxes in the equatorial 158 

eastern Pacific.  159 

 160 

   Both ERAINT and JRA55 show strong downward 𝐹𝑠 trends of 0.65 Wm-2yr-1 and 0.50 Wm-2yr-1 161 

over 1988-2008, respectively. MERRA2 also shows a weak negative trend in 𝐹𝑠 (-0.13 Wm-2yr-1) and 162 

𝐿𝐻 (-0.22 Wm-2yr-1). Considering the global changes may include spurious jumps, as a very crude 163 

adjustment, the global mean 𝐹𝑠 trend over the same period shown in Fig. S2e is removed, and the 164 

corresponding 𝐹𝑠 trends over 𝑇𝐸𝑃 are -0.53, -0.29 and -0.35 Wm-2yr-1 for ERAINT, JRA55 and 165 
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DEEPC, respectively. They are all significant using Mann-Kendall test at a significance level of 166 

0.05. Considering the ocean heat capacity of 4.2×106 J/K/m2/m, the mean mixing depth of 100m over 167 

eastern Pacific [Roberts et al., 2017] and 𝐹𝑠 is 3 Wm-2 lower in the 2000s vs the 1990s, the estimated 168 

temperature change ∆T ≈ -2.3 K is too large considering the observed ocean temperature change over 169 

𝑇𝐸𝑃 area (Fig. 1e). This suggests that either the trends are unrealistic or changes in ocean heat 170 

transport convergence offset these surface heat flux changes. It is noticed that there are 171 

discontinuities in global area mean 𝐹𝑠 time series of MERRA2 (Fig. S2e): it has a step change near 172 

1992, a large negative trend between 1992 and 2008 and an anomalous positive trend after 2009. 173 

Since the DEEPC global mean net surface flux is well constrained by the TOA satellite observations 174 

[Allan et al., 2014] and the zero global atmospheric energy convergence [Liu et al., 2015, 2017], so 175 

the global mean 𝐹𝑠 from DEEPC product can be regarded as realistic, and any large trend deviation 176 

in the global mean time series from that of DEEPC data can be questioned. It is also noticed both 𝐹𝑠 177 

and 𝐿𝐻 trends from MERRA2 over 𝑇𝐸𝑃 differ with the other two atmospheric reanalyses.  178 

The contributions of SW fluxes to the net surface flux trends over TEP are significant for the later 179 

periods (-0.50 Wm-2yr-1 for 1995-2015 in ERAINT and -0.42 Wm-2yr-1 over 2000-2015 for JRA55), 180 

consistent with evidence of increased low cloud cover (LCC) [Norris and Evan, 2015; Zhou et al., 181 

2016]. However, for the longer 1988-2008 period, LH is found to dominate the changes in Fs. 182 

  183 

 184 

3.2 Sensitivity of latent heat flux to atmospheric variables 185 

   Since the 𝐿𝐻 change dominates the 𝐹𝑠 variability over 𝑇𝐸𝑃 in three atmospheric reanalyses, 186 

observation and AMIP5 simulation ensemble mean, it is necessary to investigate the driver for the 187 

𝐿𝐻 change. In order to do this, the bulk formula developed by Singh et al. [2005] is employed to 188 

compute 𝐿𝐻. This bulk formula is designed for the application of satellite observations so only four 189 

meteorological variables are required for input: 𝑆𝑆𝑇, 𝑀𝑆𝐿𝑃, 𝑊𝑉 and 𝑈 (near surface wind speed, 190 
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generally at 10m). For the sensitivity test, climatologies of four fields are applied, and each time-191 

varying individual field is subsequently substituted into the bulk formula to isolate the contribution 192 

of the determinant variables. Effects on 𝐿𝐻 trend from the different 𝑆𝑆𝑇 and 𝑀𝑆𝐿𝑃 datasets are 193 

similar, so are not shown and discussed here. An unrealistic decline in global area mean ERAINT 194 

𝑊𝑉 around 1991-1993 compared with SSM/I observations [Allan et al. 2014; Allan, 2017] was 195 

removed by adjusting values prior to 1993 to force agreement with the global mean SSM/I 𝑊𝑉 196 

anomalies over the 1988-1992 period. The influence of water vapour and wind speed changes on 𝐿𝐻 197 

variability (downward defined as positive) are estimated for ERAINT, SSM/I and AMIP5 in Fig. 2. 198 

For ERAINT (Fig. 2a-e). The generally positive global net downward 𝐿𝐻 trend in Fig. 2a is due to 199 

the increasing 𝑊𝑉 (Fig. 3a) which decreases the surface evaporation, but the effect on the 𝐿𝐻 trend 200 

over the 𝑇𝐸𝑃 region is weak. The estimated influence of changes in 𝑈 on surface evaporation is 201 

substantial (Fig. 2b). The strong negative trend in downward 𝐿𝐻 over the central and eastern Pacific 202 

is driven by the wind speed variability. After combining 𝑈 and 𝑊𝑉, the trend pattern of 𝐿𝐻 is similar 203 

to that using 𝑈 alone (Fig. 2c). When all four actual fields of ERAINT are used, the trend pattern is 204 

still dominated by that using the wind speed alone (Fig. 2d) and the 𝐿𝐻 trend of -0.20 W/m2/yr over 205 

𝑇𝐸𝑃 is still significant (the corresponding global trend of -0.02 W/m2/yr is small and insignificant), 206 

indicating that the wind speed is the driver of negative 𝐿𝐻 trend over 𝑇𝐸𝑃 in ERAINT. Compared 207 

with the 𝐿𝐻 trend from direct model output (Fig. 2e), it can be seen that the model generated 𝐿𝐻 208 

trend has more extensive negative trend areas over the whole tropical region, and the 𝐿𝐻 trend over 209 

𝑇𝐸𝑃 is also stronger (-0.51 W/m2/yr, see Fig. 1g). After removing the global 𝐿𝐻 trend, the 210 

corresponding 𝐿𝐻 trend of -0.39 W/m2/yr over 𝑇𝐸𝑃 area is roughly consistent with  -0.18 W/m2/yr 211 

from the bulk formula, and their correlation coefficient is 0.81 over 1988-2008 (Fig. S3a).  212 

 213 

   To check the effect of the data type used in this study on the 𝐿𝐻 estimation, the results from both 214 

the daily and monthly data, from the analysis and forecast fields of 𝑆𝑆𝑇, 𝑀𝑆𝐿𝑃, 𝑊𝑉 and 𝑈, and from 215 
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the estimated and model output specific humidities were all tested. The estimated 𝐿𝐻 trends over the 216 

𝑇𝐸𝑃 area from 1988-2008 are -0.23, -0.22 and -0.20 W/m2/yr using the daily forecast, monthly 217 

forecast and monthly analysis fields of ERAINT, respectively. Since there is no direct specific 218 

humidity output available for us from ERAINT, the JRA55 data are used for the sensitivity test. The 219 

estimated 𝐿𝐻 trends are -0.35 and -0.46 W/m2/yr using the estimated specific humidity from 𝑊𝑉 and 220 

𝑆𝑆𝑇 and the reanalysis specific humidity, respectively. Therefore the impact of these factors on 221 

the 𝐿𝐻 trend over TEP area is small, so it is assumed that the discrepancies in spatial structure and 222 

values between 𝐿𝐻 estimates from bulk formula and direct model output are mainly due to different 223 

bulk formula used in the 𝐿𝐻 calculation. The bulk formula of Singh et al. [2005] is applied to the 224 

monthly data in this study. 225 

   Since only 𝑊𝑉 and 𝑈 are available from SSM/I data, the climatologies of four fields from 226 

ERAINT are used at first, then the corresponding climatologies are replaced by SSM/I 𝑊𝑉 (Fig. 2f) 227 

and SSM/I 𝑈 (Fig. 2g), respectively. The spatial pattern of the SSM/I 𝑊𝑉 effect on 𝐿𝐻 trend is 228 

similar to that of ERAINT 𝑊𝑉. The SSM/I wind speed variability also generates negative downward 229 

𝐿𝐻 trend over 𝑇𝐸𝑃 region, but it is relatively weak compared with that from ERAINT wind speed 230 

(Figs. 2b and g). When combining SSM/I 𝑊𝑉 and 𝑈 together, the negative trend over 𝑇𝐸𝑃 area is 231 

greatly reduced (Fig. 2h), and it is further smoothed out after the actual fields of 𝑊𝑉 and 𝑈 from 232 

SSM/I and 𝑆𝑆𝑇 and 𝑀𝑆𝐿𝑃 from ERAINT are used. This indicates that the SSM/I wind speed 233 

variability is not large enough to produce the strong negative 𝐿𝐻 trend and this will be further 234 

investigated in next section. 235 

   For the AMIP5 data, the above method is applied to each member and the trends are interpolated 236 

into a common grid of 3ox3o, the ensemble mean results are shown in Figs. 2j-m. The spatial pattern 237 

of the mean effect of 𝑊𝑉 on 𝐿𝐻 trend (Fig. 2j) is similar to those in Figs. 2a and f, implying similar 238 

𝑊𝑉 trend in three datasets [Allan, 2017]. The wind speed effect is strong in the central Pacific, but 239 

weak over 𝑇𝐸𝑃 area where the 𝐿𝐻 trend is overall positive (reduced evaporative flux). The 240 
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combined 𝑊𝑉 and 𝑈 effect enhances the positive trend over 𝑇𝐸𝑃 region, although the spatial 241 

patterns over other regions are similar between these three datasets. After all four fields are used 242 

(Fig. 2m), the trend over 𝑇𝐸𝑃 is very weak (~ -0.02 W/m2/yr) and insignificant (Fig. S3b). The mean 243 

𝐿𝐻 trend from 15 AMIP5 model simulation ensemble mean is in Fig. 2n, which shows similar but 244 

stronger spatial pattern compared to that from bulk formula (Fig. 2m) (spatial correlation r = 0.61), 245 

particularly the 𝐿𝐻 trend of 0.11 W/m2/yr over 𝑇𝐸𝑃 area (Fig. 1h) is stronger, but still insignificant 246 

(Fig. S3b). This implies that the application of the bulk formula to the monthly data may smooth the 247 

𝐿𝐻 calculation, even though the global spatial patterns are still consistent (Figs. 2m and n). 248 

Therefore, according to the sensitivity test using bulk formula and direct model output, it is clear that 249 

the bulk formula used in this study can reasonably capture aspects of the main features of the 250 

corresponding data. Furthermore, these sensitivity tests highlight discrepancies in 𝐿𝐻 trends between 251 

datasets over 𝑇𝐸𝑃 area and the overall sign of the 𝐿𝐻 trend depends primarily on the wind speed 252 

variability. 253 

 254 

3.3 Evaluation of water vapor and wind speed trends 255 

   To understand the influence of 𝑊𝑉 and 𝑈 variability on 𝐿𝐻 and surface heat flux trend patterns, 256 

the trends of 𝑊𝑉 and 𝑈 from ERAINT, SSM/I and the AMIP5 ensemble mean over 1988-2008 are 257 

investigated (Fig. 3). For 𝑊𝑉 trends (Figs. 3a-c), the spatial patterns from the three datasets are 258 

similar; the trend pattern from ERAINT 𝑊𝑉 is in close agreement with SSM/I which is unsurprising 259 

since this is assimilated by ERAINT over the ice-free oceans. Both JRA55 and MERRA2 show 260 

strong positive trends in the central and eastern tropical Pacific (Figs. S4a-b). The similarity of 261 

the 𝑊𝑉 trend across datasets can also be clearly seen from the area mean anomaly time series over 262 

𝑇𝐸𝑃 (Fig. 3g and Fig. S4e). The 𝑊𝑉 trends from the AMIP5 ensemble mean (Fig. 3c) and fifteen 263 

members (Fig. S5) are also similar. The 𝐿𝐻 trend spatial pattern in Figs. 2a,f,j and the 𝑊𝑉 trend 264 
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spatial pattern in Figs. 3a-c are similar, confirming that the higher 𝑊𝑉 in the atmosphere column will 265 

supress local evaporation. 266 

   The wind speed trends contrast across datasets. Both ERAINT (Fig. 3d) and JRA55 (Fig. S4c) 267 

show strong positive wind speed trends over the central and eastern Pacific, but positive trends from 268 

both SSM/I and MERRA2 are much weaker (Fig. 3e and Fig. S4d). This can also be clearly seen 269 

from the area mean wind speed anomaly time series over 𝑇𝐸𝑃 as shown in Fig. 3h and Fig. S4f 270 

(good agreement between 1995 and 2008 is due to the selection of the reference period of 2001-271 

2008). The trends over 1988-2008 are both 0.26 m/s/decade for ERAINT and JRA55, larger than 272 

those from SSM/I (0.10 m/s/decade, Fig. 3e) and the AMIP5 ensemble mean (0.07 m/s/decade, Fig. 273 

3f). Although the trends are different, variability is similar (Fig. 3h and Fig. S4f). All AMIP5 274 

members show strong wind speed trends in the central Pacific, but weak trends over 𝑇𝐸𝑃 (Fig. S6).  275 

    In order to see if the 𝑀𝑆𝐿𝑃 drives the wind changes, the 𝑀𝑆𝐿𝑃 trend over 1988-2008 and the 276 

multiannual mean were compared (Fig. S7). The similarity of the trend structure in ERAINT (Fig. 277 

S7a) and JRA55 (Fig. S7b) in the meridional direction indicates similar gradient changes of 𝑀𝑆𝐿𝑃 278 

between subtropics and equator, which may explain the agreement of wind speed trend structure 279 

between them. The relatively weak trend of the subtropical high south of the 𝑇𝐸𝑃 in MERRA2 (Fig. 280 

S7c) and AMIP5 (Fig. S7d) indicates weak gradient changes of 𝑀𝑆𝐿𝑃 between the south subtropics 281 

and equator, which may explain the weak wind speed trend over 𝑇𝐸𝑃 area. Therefore, although the 282 

𝑀𝑆𝐿𝑃 change over 𝑇𝐸𝑃 area has very small direct effect on the 𝐿𝐻 trend estimation, their spatial 283 

structure difference can affect the gradient and further change the wind speed. In addition, Boisséson 284 

et al. [2014] found good agreement for zonal wind speed trends over the tropical Pacific between 285 

ERAINT and observations. However they noted that the discontinuities between different satellite 286 

products are not taken into account, such as the big jumps between ERS2 (European Remote Sensing 287 

satellite) and QSCAT (Quick Scatterometer) near 2000 in their Fig. 2a and between ERS2 and 288 
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ENVISAT satellite near 2003 in their Fig. 2b. Different conclusions may be obtained if these 289 

discontinuities are considered. 290 

 291 

     3.4 Comparison with buoy observations 292 

   The large discrepancies in wind speed changes over 𝑇𝐸𝑃 cast doubt on the reliability of the wind 293 

speed in these datasets. To further check the wind speed quality, data from TAO moored buoy array 294 

(220-255oE, 9oN-8oS) are used in this study for comparison [TAO Project Office, 2000]. There are 27 295 

buoys working in this area; they are all calibrated before deployment and there is no post-deployment 296 

calibration involved. Data quality control information can be found at 297 

http://tao.ndbc.noaa.gov/proj_overview/qc_ndbc.shtml. The locations of the buoys are plotted in Fig. 298 

4a (colored dots represents the wind speed trend from the buoy), which is an enlargement of Fig. 3d 299 

showing the ERAINT wind speed trend. From January 1990 to December 2015, there are 312 300 

months; the minimum coverage period from start month to end month over all  stations  is 202 301 

months at station 8N110W (Fig. S8a), so all buoy records span at least 65% of the record length. 302 

However, there are considerable gaps in the buoy timeseries: the minimum fraction of the data 303 

coverage over 1990-2015 is about 30% at station 5N125W (Fig. S8b) and the mean fraction is 50%. 304 

At each station, the anomaly is calculated by removing the monthly mean (over 2001-2008) which is 305 

calculated if the total number of months is ≥ 2. The wind speed anomaly time series is plotted in Fig. 306 

S9, but the actual number of valid buoy data points is not well reflected due to the smoothing of six 307 

month running mean. The wind speed trends from individual buoy records (Table S1) are generally 308 

insignificant: only 9 out of 27 display significant trends and 8 of these are positive (see also Fig. S9) 309 

while the composite trend of -0.05 m/s/decade is small and insignificant. 21 out of 27 wind speed 310 

trends calculated from ERAINT grid points nearest to the corresponding buoy stations (bottom right 311 

matrix of Table S1) are positive and significant, and the composite trend of 0.28 m/s/decade is also 312 

significant. When the ERAINT grid box time series are sampled to mimic the intermittent buoy time 313 
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series (bottom middle matrix of Table S1), 16 out of 27 of the trends remain positive and significant 314 

and the composite trend of 0.25 m/s/decade is significant. Therefore, although intermittent data 315 

coverage reduces the significance of trends, there are more robust positive trends in the ERA-Interim 316 

data when sampled to mimic the buoy spatial and temporal coverage.   317 

   Mean wind speed variability in the 𝑇𝐸𝑃 for 1990-2008 is displayed in Fig. 4b for ERAINT using a 318 

variety of spatial and temporal sampling strategies and the composite of the buoy measurements. The 319 

fraction of valid buoy data in each month increases steadily from about 1990 to 2000 and then 320 

becomes stable afterwards while there is a drop between 2011 and 2015 (Fig. S8c). Variability in 321 

mean ERAINT wind speed over the 𝑇𝐸𝑃 (Fig. 4b, thick red line) is similar to when only grid boxes 322 

corresponding to the buoy locations are sampled (cyan line). This indicates that the area mean from 323 

the buoy spatial coverage is representative of the wider, completely sampled region; trends over the 324 

1990-2015 period are significant (based on the Mann-Kendall test at significance level of 0.05) and 325 

positive for both although is larger for the 𝑇𝐸𝑃 region (0.34 m/s/decade) than for the buoy grid 326 

points (0.28 m/s/decade). The composite wind speed time series from buoys (Fig. 4b, thick black 327 

line) displays an insignificant negative trend of -0.05 m/s/decade over 1990-2008. Sampling 328 

ERAINT to also match the temporal coverage of the buoys (magenta line) alters the timeseries 329 

substantially demonstrating the substantial effect of incomplete observational coverage. Agreement 330 

between ERAINT buoy spatial and temporal sampling (magenta line) and the buoy time series 331 

variability is markedly improved (r = 0.92), indicating successful assimilation of the observational 332 

variability by ERAINT. However, the ERAINT composite (magenta line) trend remains positive 333 

(0.25 m/s/decade) and substantially larger than the corresponding trend from the buoy data. The 334 

corresponding plot for 𝐿𝐻, similar to Fig. 4b, is shown in Fig. S8d for reference.   335 

   The ERAINT minus buoy wind speed difference using consistent spatiotemporal sampling (Fig. 336 

4c) depicts an increasing trend (0.14 m/s/decade over 1990-2015) which contributes about 50% to 337 

the overall trend of ERAINT wind speed over 𝑇𝐸𝑃. Thus, the discrepancy between the buoy and 338 
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ERAINT wind speed trends cannot easily be explained by the variable buoy coverage. It is not 339 

currently clear how the assimilation of data from an evolving observing system simply explains this 340 

discrepancy and further investigation is merited. The remaining difference is apparently associated 341 

with the fact the influence of the assimilation declines rapidly with distance from the buoy as pointed 342 

out by Josey et al. [2014]. Based on the comparison and analysis, the area mean from the limited 343 

buoy spatial coverage (cyan line in Fig. 4b) is representative of that over the wider, completely 344 

sampled 𝑇𝐸𝑃 area (red line in Fig. 4b), and the intermittent buoy wind speed variability is well 345 

assimilated into the ERA-Interim model. However, increases in the ERAINT minus buoy wind 346 

speed, when consistently sampled in space and time, indicate that increases in wind speed and 347 

therefore also surface latent heat flux are unrealistic and so the large decreases in net downward 348 

energy flux into the tropical eastern Pacific are questionable. 349 

 350 

4. Conclusions 351 

   Cooling of the surface ocean over the tropical eastern Pacific influences the global mean rate of 352 

surface temperature change [Kosaka and Xie, 2013; Trenberth and Fasullo, 2013; England et al., 353 

2015]. In order to understand the mechanism of the cooling, numerous studies have been conducted 354 

[Meehl et al., 2011; Hansen et al., 2011; Guemas et al., 2013; Katsman and van Oldenborgh, 2011; 355 

Solomon et al., 2010, 2011; Kaufmann et al., 2011; Norris and Evan, 2015; Brown et al. 2014; Zhou 356 

et al., 2016]. Motivated by a discrepancy between observations-based estimates of surface heat flux 357 

changes and simulations from atmosphere-only models over the 𝑇𝐸𝑃 [Liu et al. 2015], an 358 

investigation of the causes of the surface energy flux is conducted using data from three atmospheric 359 

reanalyses, fifteen AMIP5 model simulations and the DEEPC observations-based reconstruction. It is 360 

found that the net downward surface flux change over 𝑇𝐸𝑃 is dominated by the 𝐿𝐻 variability and 361 

the trend is significantly negative in ERAINT, JRA55 and DEEPC data. The negative trend 362 

over 𝑇𝐸𝑃 from DEEPC is not as strong as that from ERAINT (Figs. 1f and g) due to the contrasting 363 
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methodologies. In contrast, the 𝐹𝑠 and 𝐿𝐻 trends in AMIP5 ensemble mean show positive trend over 364 

𝑇𝐸𝑃 region, and the spatial pattern is closely related to the 𝑆𝑆𝑇 pattern, indicating that 𝑆𝑆𝑇 changes 365 

are driving heat flux changes in the AMIP5 model simulations. Since the atmosphere simulations do 366 

not permit a coupled response to the surface fluxes, it is possible that they are missing an important 367 

mechanism yet the negative trends depicted by the reanalysis-based estimates appear unrealistically 368 

large.  369 

   To investigate the realism and cause of the implied changes in surface heat flux, sensitivity tests 370 

using turbulent heat flux bulk formula are applied. These indicate that the 𝐿𝐻 changes depicted by 371 

ERAINT are dominated by wind speed changes, which show increasing trends over the eastern 372 

Pacific. This wind speed trend is very weak in SSM/I satellite observations and is absent in AMIP5 373 

ensemble mean simulations. After further comparison with buoy observations, it is found that few 374 

buoy stations show significant positive wind speed trends, although the corresponding composite 375 

trends from ERAINT grid points nearest to the stations are significantly positive. The variable spatial 376 

coverage of the buoy wind speed is assimilated by ERA-Interim and the buoy coverage is shown to 377 

reasonably represent the 𝑇𝐸𝑃 area mean wind speed (cyan line in Fig. 4b). However, an increase in 378 

ERAINT minus buoy wind speed, when consistently sampled in space and time, suggest that the 379 

increases in wind speed depicted by ERAINT are overestimated. This further implies that increased 380 

evaporative fluxes and reduced downward heat flux trends depicted by ERAINT and other datasets 381 

may be unrealistic. The discrepancies between different datasets cast questions on the reliability of 382 

the reanalysed surface fluxes over the tropical eastern Pacific area. In AMIP5 simulations, models 383 

are forced by 𝑆𝑆𝑇, so the 𝑆𝑆𝑇 decrease over 𝑇𝐸𝑃 suppresses the evaporation and reduce the upward 384 

𝐿𝐻 flux, enhancing the downward net surface flux. In the atmospheric reanalysis, such as the 385 

ERAINT the dominant contribution of strong wind speed trend to the 𝐿𝐻 flux changes is evident. 386 

The strong ERAINT 𝐿𝐻 trend is unrealistic considering the observed temperature changes over 𝑇𝐸𝑃 387 

region (based upon energy budget arguments) and comparison with buoy data when accounting for 388 
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sampling. This will indirectly affect the budget-based DEEPC product since erroneous wind speeds 389 

will influence the energy transports used in the calculation of surface fluxes; the precise influence is 390 

uncertain but has implications for budget-based indirect estimates of surface energy fluxes [Liu et al. 391 

2017; Trenberth et al. 1995; Chiodo and Haimberger, 2010; Mayer and Haimberger, 2012; 392 

Trenberth and Fasullo, 2017]. Josey et al. [2014] found that assimilation of TAO mooring 393 

contributed to unrealistic near surface humidity and wind speed anomalies in ERAINT. The impact 394 

of these unrealistic anomalies on the latent heat flux in the tropical Pacific may play a role in the 395 

unrealistic 𝐿𝐻 trend. However, these results do not appear to contradict the mechanisms invoked to 396 

explain 𝑇𝐸𝑃 cooling discussed by England et al. [2014] since this key region of wind enhancement 397 

centres on the central pacific where satellite data and simulations broadly agree on recent changes. 398 

Nevertheless, the TEP is a key region in determining global climate variability and time-varying 399 

climate sensitivity [Ceppi and Gregory, 2017; Andrews and Webb, 2017] so understanding the role 400 

of surface fluxes in this region is crucial. While AMIP5 simulations are temporally homogeneous, 401 

they do not represent the key atmospheric feedbacks on ocean temperature so additional in-depth 402 

investigation is necessary to elucidate the mechanisms of decadal variability in ocean temperature, 403 

including using data from the ocean reanalysis and ECMWF ERA5 for further comparisons and 404 

coupled reanalysis for feedback mechanism studies. 405 

  406 
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 588 

 589 

Table 1. Datasets 590 

 591 
Dataset Period                   

(in this study) 

Resolution References 

Reconstruct (DEEPC) 

Surface net flux: Fs 

 

1985-2015 

 

0.7o × 0.7o 

  

    Liu et al. [2015, 2017]  

CERES 2001-2016 1.0o × 1.0o     Loeb et al. [2012] 

SSM/I 

F08 

F11 

F13 

 

1987-2016 

 

0.25o × 0.25o 

 

   Wentz and Spencer [1998] 

   Vila et al. [2010] 

Atmospheric reanalyses 

    ERA-Interim (ERAINT) 

    JRA55  

    MERRA2 

 

1985-2015 

1985-2014 

1985-2016 

 

0.7o × 0.7o 

0.56o × 0.56o 

0.5o × 0.625o 

   

  Dee et al. [2011] 

  Kobayashi et al. [2015]  

  Gelaro et al.,  [2017] 

TAO buoy 1990-2017  TAO Project Office, [2000] 

AMIP5 models                             1985-2008 

    ACCESS1-0                                                          1.25o ×1.875o           Bi et al. [2013] 

    CanAM4                                                                2.79o ×2.81o             Arora et al. [2011] 

    CCSM4                                                                  0.94o ×1.25o            Gent et.al. [2011] 

    CMCC-CM                                                            0.75o×0.75o             Scoccimarro et al. [2011] 
    CNRM-CM5                                                         1.40o×1.41o              Voldoire et al. [2012] 

    FGOALS-g2                                                          3.0o×2.81o               Li et al. [2013]    

    GFDL-CM3                                                           2.0o×2.5o                 Delworth et al. [2006] 
    GISS-E2-R                                                            2.0o ×2.5o                 Schmidt et al. [2014] 

    HadGEM2-A                                                         1.25o ×1.875o          Collins et al. [2011] 

    INM-CM4                                                             1.5o ×2.0o                 Volodin et al. [2010] 

    IPSL-CM5A-LR                                                   1.89o ×3.75 o             Dufresne et al. [2013] 

    MIROC5                                                               1.39o  ×1.41o             Watanabe et al. [2011] 

    MPI-ESM-LR                                                       1.85o × 1.875o           Raddatz et al. [2007) 
MRI-CGCM3                                                       1.11o ×1.13o              Yukimoto et al. [2012]        

NorESM1-M                                                         1.89o ×2.5 o               Zhang et al. [2012] 
  592 
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Figure captions 593 

 594 

Fig. 1. Left column is the trend of (a) 𝑆𝑆𝑇 and (b-d) net surface flux over 1988-2008. Right column 595 

is the corresponding area mean anomaly time series over tropical eastern Pacific (marked area: from 596 

20°N–20°S and 210°E to the west coast of Central America). Four components of 𝐹𝑠 are also plotted 597 

in g and h, and the 𝑆𝑊 and 𝐿𝑊 from CERES are plotted in f, together with the turbulent flux derived 598 

from the difference between DEEPC net surface flux and CERES radiation fluxes. The reference 599 

period is 2001-2008. The datasets are from ERAINT, DEEPC and AMIP5 15 member ensemble. All 600 

fluxes are downward positive. All lines are six month running means and some linear trends are also 601 

displayed. 602 

 603 

Fig. 2. Sensitivity test of 𝐿𝐻 trend using bulk formula over 1988-2008. The climatologies of 𝑆𝑆𝑇, 604 

𝑀𝑆𝐿𝑃, 𝑊𝑉 and wind speed from ERAINT are used at first, then the corresponding climatologies are 605 

replaced by (a) ERAINT 𝑊𝑉, (b) ERAINT wind speed, (c) ERAINT 𝑊𝑉 and wind speed, (d) all 606 

four fields from ERAINT, (f) SSM/I 𝑊𝑉, (g) SSM/I wind speed, (h) SSM/I 𝑊𝑉 and wind speed and 607 

(i) 𝑊𝑉 and wind speed from SSM/I , 𝑆𝑆𝑇 and 𝑀𝑆𝐿𝑃 from ERAINT. The 𝐿𝐻 trend from directly 608 

ERAINT reanalysis is in (e). The same method is applied to each of 15 AMIP5 models, and the 609 

ensemble means are plotted in (j-m). The mean 𝐿𝐻 trend from 15 AMIP5 model simulations is in 610 

(n). 611 

 612 

Fig. 3. (a-f) Trends of 𝑊𝑉 and wind speed over 1988-2008 from ERAINT, SSM/I and AMIP5 613 

ensemble mean. (g-h) Corresponding deseasonalized time series of area mean 𝑊𝑉 and wind speed 614 

over 𝑇𝐸𝑃. The shaded areas of AMIP5 are 15-member ensemble mean (solid black line) ±1 standard 615 

deviation. The reference period is 2001-2008 for anomaly calculation. The wind speed trends over 616 

1988-2008 are also displayed in (h). 617 
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Fig. 4. (a) Wind speed trend from ERAINT (enlargement of Fig. 4d). Colored dots indicate 27 TAO 618 

buoy locations and wind speed trends. (b) Deseasonalized wind speed anomaly (relative to 2001–619 

2008 period) time series from buoy stations (composite, thick black line), ERAINT area weighted 620 

mean over 𝑇𝐸𝑃 (thick red line), ERAINT mean from grid points nearest to buoy stations including 621 

all data points (thick cyan line, no area weighting) and the ERAINT mean including data points 622 

where the buoy station has the valid data (magenta line, no area weighting). All lines are 12 month 623 

running mean. (c) The time series of mean wind speed bias between ERAINT  and buoy data using 624 

consistent spatiotemporal sampling. The trend of 0.14/m/s/decade over 1990-2015 is also displayed. 625 

 626 

  627 
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Fig. 1. Left column is the trend of (a) 𝑆𝑆𝑇 and (b-d) net surface flux over 1988-2008. Right column 654 
is the corresponding area mean anomaly time series over tropical eastern Pacific (marked area: from 655 

20°N–20°S and 210°E to the west coast of Central America). Four components of 𝐹𝑠 are also plotted 656 

in g and h, and the 𝑆𝑊 and 𝐿𝑊 from CERES are plotted in f, together with the turbulent flux derived 657 
from the difference between DEEPC net surface flux and CERES radiation fluxes. The reference 658 

period is 2001-2008. The datasets are from ERAINT, DEEPC and AMIP5 15 member ensemble. All 659 
fluxes are downward positive. All lines are six month running means and some linear trends are also 660 

displayed. 661 
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Fig. 2. Sensitivity test of 𝐿𝐻 trend using bulk formula over 1988-2008. The climatologies of 𝑆𝑆𝑇, 686 

𝑀𝑆𝐿𝑃, 𝑊𝑉 and wind speed from ERAINT are used at first, then the corresponding climatologies are 687 

replaced by (a) ERAINT 𝑊𝑉, (b) ERAINT wind speed, (c) ERAINT 𝑊𝑉 and wind speed, (d) all 688 

four fields from ERAINT, (f) SSM/I 𝑊𝑉, (g) SSM/I wind speed, (h) SSM/I 𝑊𝑉 and wind speed and 689 

(i) 𝑊𝑉 and wind speed from SSM/I , 𝑆𝑆𝑇 and 𝑀𝑆𝐿𝑃 from ERAINT. The 𝐿𝐻 trend from directly 690 

ERAINT reanalysis is in (e). The same method is applied to each of 15 AMIP5 models, and the 691 

ensemble means are plotted in (j-m). The mean 𝐿𝐻 trend from 15 AMIP5 model simulations is in 692 

(n). 693 
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Fig. 3. (a-f) Trends of 𝑊𝑉 and wind speed over 1988-2008 from ERAINT, SSM/I and 721 

AMIP5 ensemble mean. (g-h) Corresponding deseasonalized time series of area mean 𝑊𝑉 722 

and wind speed over 𝑇𝐸𝑃. The shaded areas of AMIP5 are 15-member ensemble mean (solid 723 

black line) ±1 standard deviation. The reference period is 2001-2008 for anomaly calculation. 724 

The wind speed trends over 1988-2008 are also displayed in (h). 725 
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Fig. 4. (a) Wind speed trend from ERAINT (enlargement of Fig. 4d). Colored dots indicate 751 

27 TAO buoy locations and wind speed trends. (b) Deseasonalized wind speed anomaly 752 

(relative to 2001–2008 period) time series from buoy stations (composite, thick black line), 753 

ERAINT area weighted mean over 𝑇𝐸𝑃 (thick red line), ERAINT mean from grid points 754 

nearest to buoy stations including all data points (thick cyan line, no area weighting) and the 755 

ERAINT mean including data points where the buoy station has the valid data (magenta line, 756 

no area weighting). All lines are 12 month running mean. (c) The time series of mean wind 757 

speed bias between ERAINT  and buoy data using consistent spatiotemporal sampling. The 758 

trend of 0.14/m/s/decade over 1990-2015 is also displayed. 759 

 760 


