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Abstract. We use microwave retrievals of upper tropospheric humidity3

(UTH) to estimate the impact of clear-sky-only sampling by infrared instru-4

ments on the distribution, variability and trends in UTH. Our method iso-5

lates the impact of the clear-sky-only sampling, without convolving errors6

from other sources. On daily time scales IR-sampled UTH contains large data7

gaps in convectively active areas, with only about 20-30% of the tropics (30◦S–8

30◦N) being sampled. This results in a dry bias of about −9%RH in the area-9

weighted tropical daily UTH time series. On monthly scales, maximum clear-10

sky bias (CSB) is up to −30%RH over convectively active areas. The mag-11

nitude of CSB shows significant correlations with UTH itself (-0.5) and also12

with the variability in UTH (-0.6). We also show that IR-sampled UTH time13

series have higher interannual variability and smaller trends compared to mi-14

crowave sampling. We argue that a significant part of the smaller trend re-15

sults from the contrasting influence of diurnal drift in the satellite measure-16

ments on the wet and dry regions of the tropics.17
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1. Introduction

Water vapour in the upper troposphere is important for radiative and hydrological feed-18

backs in the climate system [e.g., Held and Soden, 2000]. Measurements of 6.7µm channel19

(Channel 12) radiance from the High Resolution Infrared Radiation Sounder (HIRS) in-20

strument on National Oceanic and Atmospheric Administration (NOAA) polar orbiting21

satellites have provided a vital infrared (IR) record of upper tropospheric humidity (UTH,22

defined as the relative humidity in the upper troposphere weighted by the Jacobian of23

Channel 12) since 1979 [e.g., Soden and Bretherton, 1996]. HIRS UTH data have been24

used for a variety of purposes such as evaluating the humidity distribution [e.g., Soden25

and Bretherton, 1996], comparing with in situ measurements [Soden and Lanzante, 1996],26

studying the variability [Bates et al., 1996, 2001; McCarthy and Toumi , 2004], evaluating27

climate models [Bates and Jackson, 1997; Allan et al., 2003; Soden et al., 2005], and for28

estimating trends [Bates and Jackson, 2001; Soden et al., 2005]. These studies have used29

various versions of the clear-sky HIRS data set developed by the NOAA’s National Cli-30

mate Data Center (NOAA/NCDC). Since clouds are not transparent to IR radiation and31

the tropics contain extensive coverage of upper level clouds [e.g., Sassen et al., 2008], IR32

UTH retrievals require careful screening of cloud.33

Cloud contamination of IR measurements can introduce a positive UTH bias [Soden34

and Lanzante, 1996]. However, more important is a dry bias or clear-sky bias (CSB)35

introduced by the preferential sampling of drier, lower UTH cloud-free scenes by the36

IR measurements [Lanzante and Gahrs , 2000]. This poses a challenge in comparing IR37

UTH data sets with consistently sampled clear-sky UTH simulated by climate models38
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[Cess and Potter , 1987; Allan et al., 2003]. From a climate model, clear-sky diagnostics39

are calculated at any required time step by setting cloud fraction to zero in a radiative40

transfer model. However, IR satellite measurements of clear-sky radiances are not possible41

when there is a cloud at or above the dominant emitting layers of the atmosphere in the42

field of view of the satellite instrument. This issue was also raised in Buehler et al. [2008]43

when comparing IR UTH with other humidity data sets and is a general problem in the44

estimates of clear-sky fields from satellite infrared and visible measurements [Erlick and45

Ramaswamy , 2003; Allan et al., 2003; Allan and Ringer , 2003; Sohn et al., 2006; Sohn46

and Bennartz , 2008]. Lanzante and Gahrs [2000] reported a modest (a few percent of47

RH) CSB in satellite IR measurements although the analysis remains inconclusive due48

to limitations [e.g., Soden and Lanzante, 1996; Moradi et al., 2010] of the radiosonde49

observations.50

Recently, Sohn et al. [2006] also estimated the dry bias in IR clear-sky UTH estimates51

using upper tropospheric water vapour (UTW, in kgm−2) retrieved from the Special52

Sensor Microwave/Temperature-2 (SSM/T-2), seasonal mean atmospheric temperature53

and water vapour profiles from the NCEP [Kalnay et al., 1996] reanalysis, and cloud54

information from the International Satellite Cloud Climatology Project (ISCCP) data55

set. Through this indirect method, they estimated the dry bias to be 20–30%RH in56

highly convective areas, a significantly higher value than the estimate of Lanzante and57

Gahrs [2000]. However, errors in UTW, ISCCP cloud products, and NCEP profiles are58

likely to have affected these results.59

The aim of the present study is to isolate only the impact of clear-sky-only sampling60

and to avoid errors from other factors and data sets. Another motivation of this study is61
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to explore the impacts of clear-sky-only sampling on the variability and trend of a UTH62

data set. Lanzante and Gahrs [2000] speculated IR satellite data may underestimate UTH63

trend in the tropics by a factor of 0.15. Allan et al. [2003] used climate model simula-64

tions to suggest that clear-sky sampling did not affect interannual variability significantly.65

However, so far in the literature, discussions on the impacts of clear-sky-only sampling66

are generally limited to the distribution of humidity.67

To illustrate the potential influence of clear-sky sampling on trends and variability, we68

show time series of 400 hPa relative humidity (RH) anomalies, area-weighted over the69

tropical (30S-30N) all and clear areas, in the upper panel of Figure 1, using 20 years70

(1989-2008) of daily humidity and cloud cover data from the ERA-Interim reanalysis71

[Simmons et al., 2007]. Clear areas are identified here by grid boxes with less than 30%72

cloud cover. It is evident that the interannual variability and trend of the clear areas are73

significantly different from those for the whole tropics. This suggests that caution should74

be taken when analysing the IR UTH data, which samples only clear areas, to find out75

variability and trends in UTH and provides a further motivation for assessing the effect76

of clear-sky-only sampling on satellite IR UTH datasets.77

Since late 1998, microwave (MW) instruments such as the Advanced Microwave Sound-78

ing Unit-B (AMSU-B) and the Microwave Humidity Sounder (MHS) have been flown79

together with HIRS. The instruments have similar spatial sampling characteristics (cross-80

track scanning, with very similar viewing geometries) and the weighting function of one81

of the microwave channels (183.31±1.00GHz) is similar to that of HIRS Channel 12,82

thus allowing for coincident UTH measurements. Microwave data are only contaminated83

by precipitating cold clouds: less than 5% of the data are discarded as cloud contami-84
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nated, thus they provide an almost all-sky UTH dataset [e.g., Brogniez and Pierrehumbert ,85

2007]. The present study therefore provides a unique opportunity to estimate the impacts86

of clear-sky-only sampling in the IR UTH using MW UTH.87

This article is organised as follows: Section 2 contains description of data sets used and88

analysis method, Section 3 discusses the results and Section 4 provides the summary and89

discussion.90

2. Data and Method

2.1. Study approach

Buehler et al. [2008] estimated the impact of cloud-filtering on UTH from microwave91

measurements on monthly time scales to be less than 5%RH in the tropics (see their Fig-92

ure 4). They calculated the difference between UTH from using all pixels and UTH from93

only clear pixels. Note that “clear” for microwave is different from “clear” for infrared.94

UTH data calculated without cloud filtering have some values more than 100%RH with95

respect to water due to cloud contamination. Therefore, estimates of Buehler et al. [2008]96

can be considered as the upper limit of the sampling bias in microwave UTH data and97

the true bias will be less than their estimate. Thus, the microwave estimate of UTH can98

be used to estimate the CSB in IR data, although CSB can be a few %RH higher where99

precipitating cold clouds are present.100

The basic idea of our study is to select those microwave scenes which would be considered101

cloud-free by HIRS, and compare this sub-sample to the cloud-cleared (as described in102

Section 2.5) AMSU-B/MHS data. In this way we can isolate the effect of the HIRS clear-103

sky only sampling, while at the same time ignoring any other differences between the two104

sensor types (such as slightly different weighting functions of HIRS and AMSU-B/MHS,105
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calibration errors, or RT model errors). Note that the HIRS data are only used to define106

sampling, the HIRS UTH data themselves are not used anywhere in this study.107

We focus our study in the tropics (30◦S–30◦N) as it is the most important area of the108

globe for water vapour feedback [Held and Soden, 2000].109

2.2. HIRS clear-sky brightness temperature

We used clear-sky HIRS data from http://www.ncdc.noaa.gov/HObS [Shi and Bates ,110

2011] to identify pixels which were cloud-free according to the NCDC HIRS cloud clear-111

ance algorithm which is similar to Rossow and Garder [1993] and is as follows. Observed112

window channel brightness temperatures at 11.1µm are compared spatially and tempo-113

rally to an estimated clear-sky value and rejected as cloudy if the observation is too cold.114

For obtaining clear-sky observations, the thresholds are chosen to remove all clouds at115

the expense of removing some clear-sky pixels. It should be noted that most of the cli-116

mate analyses of UTH have been conducted using the NCDC HIRS data set (e.g., studies117

mentioned in Section 1). In this study we use “infrared (IR)” to denote the NCDC HIRS118

data.119

2.3. Microwave brightness temperature

We obtained brightness temperatures from the Microwave Humidity Sensor (MHS,120

equivalent to AMSU-B) on the MetOpA satellite for 2008 and mapped them on to the121

HIRS resolution (Level 1d) using the ATOVS and AVHRR Processing Package [AAPP;122

Atkinson and Whyte, 2003]. The spatial resolution of the MHS measurements is about123

16 km at nadir and for the HIRS/4 instrument is 10 km at nadir. Mapping the MHS to124
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HIRS grid eliminates biases which could originate from different spatial resolutions of the125

instruments.126

2.4. UTH estimation from microwave data

UTH can be estimated using the 183.31±1.00GHz microwave channel measuements of

MHS (Channel 3). The weighting function of this channel is generally sensitive to the rel-

ative humidity of a wide atmospheric layer, approximately between 500 and 200 hPa. The

weighting function can move up or down according to variations in total humidity content

of the atmosphere which is not very large for a tropical atmosphere (see Buehler and John

[2005] and Buehler et al. [2008] for a detailed discussion). According to Buehler and John

[2005], there is a simple transformation of the brightness temperature of 183.31±1.00GHz

channel (TB3) to UTH as shown in the following equation:

ln(UTH) = a+ b ∗ TB3 (1)

where UTH is the relative humidity in the upper troposphere weighted with the channel’s127

weighting function, and a and b are regression coefficients which are derived for each128

viewing angle of the instrument. More details on the retrieval methodology can be found129

in Buehler and John [2005]. UTH data are not affected by the limb effect because we use130

appropriate regression coefficients for each viewing angle [John et al., 2006]. The data131

set has been validated using high-quality radiosonde and satellite measurements [Buehler132

et al., 2004; John and Buehler , 2005; Buehler et al., 2008; Milz et al., 2009; Moradi et al.,133

2010]. Ideally, a comparison of these data to other (either observed or modelled) humidity134

data sets should be done by simulating the 183.31±1.00GHz radiances from the latter135
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humidity data and then converting them to UTH as described above for a like-to-like136

comparison.137

2.5. Filtering cloud-contaminated microwave scenes

Microwave radiances are affected by precipitating ice clouds so all the microwave radi-138

ances used in this study are filtered for clouds using a method developed by [Buehler et al.,139

2007] which works as follows. Firstly, Channel 3 of MHS is sensitive to higher altitudes of140

the troposphere than Channel 4 (183.31±3.00GHz). In clear-sky conditions, because of141

the lapse rate of air temperature, the brightness temperature of Channel 3 (TB3) is colder142

than the brightness temperature of Channel 4 (TB4). But ice clouds can make TB4 colder143

than TB3 because ice particle scattering is stronger at the sensitive altitudes of Channel 4,144

owing to the higher average ice water content. When the cloud is very high and opaque,145

it can be considered like a low emissivity surface for both channels. TB3 is then warmer,146

because of the higher water vapour emission for this channel above this quasi-surface,147

which will increase both up- and down-welling radiation for this channel. Therefore, in148

the presence of an ice cloud ∆TB = TB4 − TB3, which is positive in clear-sky conditions,149

becomes negative. Secondly, clouds also reduce the value of TB3 directly, so that a viewing150

angle dependent threshold Tthr(θ) was utilized. In summary, the conditions for uncon-151

taminated data are ∆TB > 0 and TB3 > Tthr(θ). Data not fulfilling both conditions are152

considered cloud and/or rain contaminated. Values of Tthr for each viewing angle are153

given in Buehler et al. [2007]. The fraction of data detected as cloudy in the tropics varies154

from 3–5% depending on the sampling time of satellite. In this study the base data set155

used is the cloud-filtered AMSU-B/MHS data, i.e., cloud contaminated microwave scenes156

are discarded before analysing the data.157
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3. Results and discussion

3.1. Impact on UTH distribution

In this section we discuss the impact of the clear-sky sampling of HIRS on the distribu-158

tion of daily and monthly average UTH. Also, the dependence of the clear-sky bias (CSB)159

on the UTH is discussed. We iterate that the IR data are only used for sampling, the IR160

UTH data themselves are not used anywhere in this study. All of the UTH data in this161

study are retrieved from MW radiances. IR UTH refers to the UTH data which is created162

from MW UTH data by mimicking the HIRS instrument’s clear-sky-only sampling.163

3.1.1. Daily data164

We created gridded (1◦x1◦ longitude-latitude) data sets of MW UTH for both165

microwave-coverage and infrared-coverage sampling for each day of 2008. Examples of166

daily maps for January (upper panels) and July (lower panels) are shown in Figure 2.167

The left panels in Figure 2 show the microwave sampling and the right panels show in-168

frared sampling. Microwave sampling is nearly uniform in the whole tropics, with only169

small data gaps which are mainly due to orbital gaps around 20◦N and 20◦S, and the pres-170

ence of deep convective or precipitating clouds. By contrast, infrared-coverage sampling171

in the right panels shows large gaps. In fact, the IR sampling is good only in the dry de-172

scending regions where the humidity is considerably lower than in the humid areas. Note173

also the intermittent presence of high UTH values in convective regions in IR sampling.174

Studies, such as Xavier et al. [2010] which investigated the variability of UTH associated175

with the Indian summer monsoon using microwave data require daily UTH data. Such a176

study would have been impossible using infrared data because of persistent cloud cover177
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over the monsoon region, but there is good coverage in microwave sampling over the178

Indian region in July.179

The upper panel of Figure 3 shows the fraction of tropical sampling of infrared data180

for all available days in 2008. The sampling fraction is about 20%, i.e., 80% of the data181

are rejected as cloud contaminated. There are also some days with the fraction as low182

as 12%. It is noteworthy that there is no clear seasonal dependence in tropical average183

sampling fraction.184

Area-weighted, tropical averaged UTH time series for microwave-coverage and infrared-185

coverage sampling are shown in the bottom panel of Figure 3. It shows that infrared-186

coverage tropical average UTH is always about 7%RH lower than the microwave-coverage187

UTH. The yearly mean value of MW UTH is 31.2%RH and for IR UTH it is 24.74%RH.188

The mean of the difference (IR-MW, not shown) time series is −7.18±0.69%RH. The189

infrared-coverage time series is noisier than the microwave-coverage one owing to limited190

sampling (the standard deviation of IR time series is 1.24%RH and that of MW time191

series is 1.05%RH). It is not clear how this will translate to variability on inter-annual192

and longer time scales. Changes in cloud detection algorithms can also introduce spurious193

changes in bias or variability. For example, cloud detection is mostly done on the basis of194

brightness temperature thresholds, so changes in brightness temperature of channels, due195

to instrument degradation etc., can impact the magnitude of clear sky bias. Though we196

can see a seasonal dependence in CSB for some regions when sampled in infrared-coverage,197

this does not lead to seasonal biases in the tropical averaged, infrared-coverage UTH time198

series.199
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According to Buehler and John [2005] the retrieval bias of microwave UTH varies be-200

tween +2%RH for low humidity values and -4%RH for high humidity values. This be-201

haviour is typical of a linear regression method, in which the dry profiles are retrieved202

too moist and the moist profiles too dry. This occurs because components of the retrieval203

come from the prior information used and, in a linear regression scheme, the a priori204

profile is the mean of the data set used to compute the regression coefficients, and the a205

priori error covariance is the covariance of the same data set [Eyre, 1987]. This means206

dry regions have a moist bias and wet regions have a dry bias, therefore the difference207

between them is smaller than that in reality. From Buehler and John [2005] (see their208

Figure 5), IR-sampled UTH values in dry regions have about 2%RH moist bias, but this209

would not contribute to the difference in Figure 3, because the IR sampled UTH are also210

sampled by MW. However, high UTH values in the wet regions which are sampled only211

by MW have on average about −2%RH dry bias (although the maximum could be up to212

−4%RH) and this has to be considered while estimating the clear-sky bias. This means213

that in Figure 3 the difference will be about 9%RH instead of the 7%RH depicted.214

3.1.2. Monthly data215

In general, monthly means of UTH are used for data analysis as well as for model216

evaluation [e.g., Bates et al., 1996, 2001; McCarthy and Toumi , 2004; Bates and Jackson,217

1997; Soden et al., 2005], so we attempt to estimate the CSB based on monthly mean218

UTH values. This is one of the main differences compared to previous studies which219

could estimate CSB only on seasonal [Sohn et al., 2006] or longer time scales [Lanzante220

and Gahrs , 2000]. Figure 4 shows January and July monthly maps of microwave-coverage221

and infrared-coverage UTH. Monthly averages are obtained by collecting all the pixels222
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available per grid box during the whole month and then computing the mean. One could223

also construct the monthly mean by first computing daily means and then averaging224

them. In the former method, a few clear days having many pixels (probably drier UTH)225

can outweigh a large number of humid days with few pixels. However, we found that the226

difference between the two averaging methods is only a few %RH and has noisy spatial227

patterns.228

UTH values are high along the inter tropical convergence zone (ITCZ) and over mon-229

soon regions and low over the subsidence areas of the Hadley/Walker circulations. The230

distinction between humid and dry regions is better observed in the microwave-coverage231

compared to infrared-coverage. Seasonal migration of UTH patterns associated with the232

movements of ITCZ is also better represented in the microwave-coverage data.233

The distributions are similar but with smaller UTH values in ascending areas for234

infrared-coverage, as expected (Figure 6, which will be discussed later, shows the dif-235

ferences directly). In some of the persistent convective regions, e.g., some areas in the236

Bay of Bengal during July, there is no infrared sampling for the whole month. Figure 5237

shows the distribution of the number of pixels in each grid box for MW and IR-sampling.238

MW-sampling shows a nearly uniform distribution of pixels with a range of 200–400 pix-239

els per grid point. The convective regions show fewer pixels, but still have more than240

sufficient pixels (>200) to represent the distribution of monthly means. In IR sampling,241

convective and clear areas show a very large difference in the numbers of pixels with clear242

areas having 300 pixels and convective regions less than 40 pixels per grid point. There243

are also about 1% of grid points with no IR sampling for a whole month.244
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The spatial distribution of CSB in infrared-coverage UTH is shown in Figure 6 for245

January and July. It is calculated as infrared-coverage minus microwave-coverage UTH.246

In regions of precipitating and deep convective clouds, microwave data also will have a247

small dry bias which according to Buehler et al. [2007] is about 2–3%RH. However, this248

is negligible compared to the CSB in convective regions which is up to −30%RH. CSB is249

larger than −20%RH at 1.3% and 0.4% of grid points for January and July, respectively.250

The maximum bias for both months is −32%RH. As noted previously there are grid points251

with no IR data at all for a whole month. Maximum CSB, % of grid points with missing252

data and CSB more than −20%RH for all months are given in Table 1. Maximum CSB253

values are in the range of 30–36%RH. There are 0.8 to 3.3% of grid boxes (ie., about 200254

to 700 grid points out of 21600 grid points in the tropics) with no IR sampling for the255

entire month and 70–330 grid boxes with CSB larger than −20%RH.256

The main difference of these results compared to Lanzante and Gahrs [2000] is that257

we get coherent patterns of CSB by just using one month of data and without using258

robust statistical parameters. This is because statistical noise is reduced by the larger259

sample and by avoidance of no error contributions from spatio-temporal mis-matches and260

measurement methodology diferences in our comparison method. Another difference is261

the magnitude of CSB: they estimated the bias to be 5–10%RH whereas our results show262

at least twice this magnitude in convective regions.263

We have also analysed the entire ±60 latitude range and the results show CSB similar264

to the tropics over the storm tracks in the mid latitudes. An example for this is shown265

in Figure 7. The NCDC HIRS data are cloud cleared not only for high clouds, but also266

for all types of clouds including low level clouds which do not contaminate Channel 12267
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measurements. Therefore the clear-sky bias is not only confined to the convectively active268

regions but also to low/mid level cloud regions (e.g., Eastern Pacific, north of maritime269

continent during January).270

3.2. Dependence of CSB on UTH and its variability

We have seen in previous sections that the magnitude of CSB is associated with the271

presence of convection. Also, convection is the main source of humidity in the tropical272

upper troposphere [Soden, 2004]. To explore the relation between CSB and UTH, we did a273

correlation analysis using all grid point values for January and July monthly averages and274

the results are shown in the upper panels of Figure 8 (scatter density plots on which the275

contours show the fraction of data points outside the contour). In general, the magnitude276

of CSB increases with increasing UTH. The correlation is −0.48 for January and −0.52277

for July. The slope of the linear fit is −0.241±0.003%RH per %RH for January and278

−0.182±0.002%RH per %RH for July.279

However, there are grid points with high humidity but small CSB. This could be due280

advection of humidity to clear areas. For example, Xavier et al. [2010] reported that,281

though convection mainly happens in the Bay of Bengal during the active phases of the282

Indian monsoon, there are high values of UTH over cloud free areas of the Arabian sea ,283

because the strong easterly jet advects humidity from over the Bay of Bengal. In this case284

over the Arabian sea CSB will be small even if high UTH values are present. Therefore285

the high noise in the correlation analysis for higher humidity values is expected.286

Figure 9 shows the standard deviation of UTH values at each grid point for MW and287

IR-sampling. A very noticeable feature is the lower grid point variability in IR-sampled288

UTH on monthly scales. It is expected that the variability of humidity will be high in289
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locations with medium UTH, for example, near the boundaries of dry and humid regions290

due to changing dynamical regimes on intra-seasonal time scales [Xavier et al., 2010].291

Also, the minimum variability is expected to be at grid points with persistently either292

low or high UTH on monthly to seasonal time scales. Note that clear-sky-only sampling293

reduces variance in medium UTH areas by preferentially removing high UTH values. But294

in convective areas clear-sky only sampling may increase variance by removing most of295

the samples, leaving only a few high values and few low values (instead of many high296

values and a few low values and thus low variance).297

The lower panels of Figure 8 illustrate a very good correlation between the clear-sky298

bias and the grid point standard deviation of MW-sampled UTH for January and July.299

The correlation is −0.6 for both months. Small variability in UTH will generally produce300

small CSB since all values, clear and cloudy, will have similar UTH. This may not apply301

where there is persistent cloud cover and high UTH but a few clear events with low UTH,302

however. Larger variability in UTH gives the potential for large CSB providing that there303

is a correlation between UTH and mid to upper level cloudiness.304

3.3. Impact on inter-annual variability and trend

Lanzante and Gahrs [2000] used the association between the UTH and the CSB to infer305

the temporal variability in the CSB. They speculated that the IR UTH in the tropics306

will underestimate the magnitude of either a positive or a negative trend, because if UTH307

increases in the tropics, it will lead to more cloudy days which results in CSB increasing308

with time. Conversely, if UTH decreases in the tropics, it will lead to fewer cloudy days309

which results in CSB deceasing with time. They estimated that the underestimation is310

by a factor of 0.15.311
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In Section 1 we discussed this issue using ERA-Interim 400 hPa relative humidity and312

cloud cover data. It was shown that inter-annual variability and trend are significantly313

different for the clear and whole tropics (see Figure 1). UTH for clear areas shows a314

larger decreasing trend (−1.50±0.10%RH per decade) compared to the entire tropics315

(−1.08±0.10%RH per decade) which is at odds with the speculations of Lanzante and316

Gahrs [2000]. The bottom panel of Figure 1 shows the clear fraction of the tropics which317

indicate a small, but statistically significant decrease (−0.5±0.13% per decade) in the318

area of clear regions in tropics in the ERA-Interim reanalysis.319

Though the microwave data are available only for about 10 years, we make an attempt320

to see how clear-sky-only sampling affects variability and trend in the actual UTH time321

series using data from AMSU-B on-board NOAA-15. The data are available since 1999.322

The HIRS instrument on NOAA-15 is HIRS/3 whose pixels have a spatial resolution of323

18.9 km at nadir which is similar to the AMSU-B (16 km). To find the AMSU-B pixel324

closest to a HIRS clear-sky pixel, we have used the collocation method described in Holl325

et al. [2010]. Firstly, for each HIRS clear-sky pixel, we collected all AMSU-B pixels with a326

centrepoint of at most 30 km from the HIRS centrepoint. Then we select only the closest327

AMSU-B pixel thus found. In this way, we get a one-to-one mapping between HIRS328

clear-sky and AMSU-B, where the distances between the centrepoints are mostly between329

0 and 15 km, with some cases of distances between 15 and 30 km (corresponding to HIRS330

pixels outermost on the scan line where the pixel size increases to almost three times the331

nadir value). The time difference between the measurements is always negligibly small.332

Figure 10 shows the area-weighted, tropical, daily, UTH anomaly time series. The333

standard deviations of IR- and MW-sampled time series are 1.05%RH and 0.85%RH,334
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respectively. This excess noise of for IR-sampling is comparable to that of the IR time335

series in Figure 3. The linear trends in the IR and MW-sampled time series are−0.67±0.22336

and −1.10±0.17%RH per decade, respectively which means a smaller trend in clear-337

sky-only sampling. This is at odds with the ERA Interim results shown in Figure 1,338

but appears consistent with the speculation of Lanzante and Gahrs [2000]. The error339

estimate of the linear trend was calculated by taking into account the autocorrelation340

of the time series as described in Santer et al. [2000]. We also calculated the trend341

in the difference time series (IR-sampling minus MW-sampling) which is is statistically342

significant at 0.43±0.14%RH per decade.343

It is plausible that the difference in the IR and MW trend does not fully relate to a real344

difference in UTH trends between the wet and dry regions as proposed by Lanzante and345

Gahrs [2000]. A likely explanation for the trend difference in this case is that satellite346

orbit drift causes aliasing of the diurnal cycle of UTH to preferentially affect the moist347

regions of the tropics. The orbit of NOAA-15 has drifted about 3 hours since 1998. The348

equator crossing time of NOAA-15 was 7:30AM/PM in 1998 and is 4:30 AM/PM in 2010.349

This drift causes observed UTH to decrease for the ascending node (PM) and increase at350

a slower rate for the descending (AM) node according to Chung et al. [2007]. However,351

note that the diurnal cycle estimated by Chung et al. [2007] was only for METEOSAT-8352

domain using IR UTH data and this may not be representative for the whole tropics.353

Separate analysis of NOAA-15 UTH data for ascending and descending nodes revealed a354

small decreasing trend for the descending node and a much larger decreasing trend for the355

ascending node (not shown). This suggests the diurnal cycle from orbit drift is affecting356

the overall trend although decreasing trends for both nodes may indicate other factors357
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such as instrument degradation contributing to the overall trend. The aliasing will have358

been greater in the MW-sampling time series because it better samples the moist regions359

of the tropics where the diurnal cycle of UTH is greater. Correcting for aliasing of the360

diurnal cycle is a major task which we are pursuing.361

It is not clear why the trend result is opposite for reanalysis, although the latter is362

not generally good at reproducing observed trends in the hydrological cycle [Bengtsson363

et al., 2004; John et al., 2009]. The trends in real data and reanalysis for clear areas are364

statistically similar. The satellite observations assimilated in the reanalysis over cloudy365

regions or errors arising from assimilating cloud affected radiances may be the reason for366

the unrealistic trend over wet regions in the reanalysis.367

4. Summary and discussion

We have presented a unique method of estimating the impact of clear-sky-only sampling368

on the HIRS estimates of upper tropospheric humidity. The uniqueness of this study is its369

method which isolates only the sampling effects which is a clear advantage over previous370

studies. Previous studies have used radiosonde data, cloud and reanalysis information371

to deduce the impacts but at the cost of propagating errors in these data sets into the372

estimated impacts.373

Our method uses co-flying infrared and microwave sensors on the same satellite. Mi-374

crowave data are affected only by deep convective precipitating clouds, so they provide an375

almost all-sky estimate of UTH. We use clear sky infrared pixels provided by the NCDC376

data set to sub-sample the microwave data to simulate the infrared sampling of UTH.377

Thus, we do not use IR-measured UTH. If we had used IR-measured UTH, it would378

have introduced errors due to different sensitivities of IR and MW channels to humidity379
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changes. We also mapped the microwave data to IR resolution using AAPP, thus reducing380

errors arising from different spatial resolution. Our method also eliminates errors caused381

by differing measurement times. Because these features of our method reduce the statis-382

tical noise we do not need a longer time period average or robust statistical parameters383

to obtain stable results.384

Daily IR-sampled UTH data sample only the dry descending regions in the tropics, thus385

not giving any information on the upper tropospheric humidity in moisture-source areas.386

Daily, area-weighted, tropical averaged, IR-sampled UTH is always about 9%RH lower387

than the MW-sampled UTH. Time series of IR and MW-sampled UTH were analysed388

for a year, but no seasonal variations in bias for tropical averaged time series are evident389

which is consistent with Allan et al. [2003].390

IR-sampled monthly mean UTH data show excessively indistinct boundaries between391

ascending and descending regions. There are some areas in the tropics with no infrared392

coverage for an entire month. We estimated coherent patterns of clear-sky bias (CSB),393

which is the IR-sampled UTH minus MW-sampled UTH, on monthly time scales. Over394

some convective regions the CSB is as large as −30%RH which is about a 50% relative395

bias in UTH. Seasonal migration of CSB is also seen due to the movement of the tropical396

convergence zone. The bias is correlated not only with UTH values but also with UTH397

variability; the larger the variability the higher the bias. Inter-annual variability of tropical398

UTH time series is higher for IR-sampled UTH owing to larger spatial noise arising from399

limited sampling.400

The implication of clear-sky-only sampling by infrared measurements for longwave cloud401

radiative forcing comparisons between models and satellite data has been discussed and402
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documented [Cess and Potter , 1987; Allan and Ringer , 2003; Sohn et al., 2006; Sohn and403

Bennartz , 2008; Sohn et al., 2010]. The major contribution to the model-observation404

inconsistency in longwave cloud radiative forcing originates from upper tropospheric hu-405

midity [e.g., Sohn and Bennartz , 2008]. The large clear-sky bias in UTH corresponds to406

about 15Wm−2 bias in satellite estimates of cloud radiative forcing.407

The clear-sky HIRS measurements are sampling meteorologically unusual situations408

of cloud free conditions, so they only represent a limited aspect of the climate system.409

Therefore, there is the potential for misinterpretation of feedbacks and variability in the410

climate system if this is not accounted for.411

There is a small decreasing trend in the tropical UTH in the reanalysis and in AMSU-412

B estimated UTH. But the impact of clear-sky-only sampling on the UTH trend has413

shown opposite results for reanalysis data and AMSU-B data. In the ERA Interim data414

the decreasing trend is larger in clear areas compared to the whole tropics, but it is the415

other way around for AMSU-B data. AMSU-B results are in line with the speculation of416

Lanzante and Gahrs [2000] that the clear-sky-only sampling will underestimate any trend417

in the UTH. However, it is plausible that a large part of UTH trend in AMSU-B data418

relates to diurnal cycle aliasing due to satellite orbital drift rather than a real trend. The419

MW-sampling is more sensitive to this as the diurnal cycle of UTH is larger in the moist420

regions which are not sampled by the IR method. Therefore the difference in trend for421

MW and IR sampling time series is not entirely due to the clear-sky-only sampling.422

One might argue that it is not necessary to clear all clouds, but only mid- and high-423

level clouds, when creating a UTH data set using HIRS Channel 12 measurements. We424

agree with this, but there is no HIRS data set with such cloud clearance that is readily425
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available for climate analysis. In fact, the only HIRS data set available is the NCDC426

clear-sky radiance data set. Brogniez et al. [2006] have created a clear-sky radiance data427

set of METEOSAT 6.3µm channel radiances by clearing only high/middle clouds by428

using ISCCP cloud properties. This significantly enhanced the sampling mainly in the429

subtropical subsidence regions. However, the HIRS Channel 12 is sensitive to even thin430

cirrus clouds which cover a significant area in the tropics [Wylie et al., 2005; Sassen et al.,431

2008, 2009]. Also, some studies, for example, Jackson and Bates [2001], demonstrated432

the use of HIRS temperature sounding channels to improve the UTH retrieval algorithm.433

These temperature channels (HIRS Channels 4 and 6) are sensitive to upper and lower434

tropospheric temperatures, so they account for the tropospheric lapse rate. However,435

their method demands a completely clear-sky satellite radiances. Despite this, it would436

be useful to have a HIRS Channel 12 radiance data set with only high and mid level437

clouds cleared, cloud top heights being determined from AVHRR measurements.438
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Figure 1. The upper panel shows area-weighted, tropical, 400 hPa relative humidity

(RH) anomaly time series of the ERA-Interim reanalysis. Daily data are used and a 30 day

smoothing is applied for clarity. Clear areas represent grid points where the total cloud

clover from the reanalysis is less than 30%. The slopes of linear trends are −1.08±0.10,

and −1.50±0.10%RH per decade for all and clear areas, respectively. The clear minus all

time series (not shown) has a linear trend of −0.43±0.07%RH per decade. Error estimate

of the linear trend is calculated by taking into account the autocorrelation of the time

series as described in Santer et al. [2000]. The lower panel shows the clear fraction of the

tropics. A linear fit which has a slope of −0.50±0.13% per decade is also shown.

Figure 2. Examples of gridded daily UTH (in %RH) for January and July for MW

and IR sampling (see Section 2 for details on sampling). Note that the data themselves

are microwave in all cases, only the sampling differs. In the IR maps, large areas appear

white, because they are cloudy.
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Figure 3. The upper panel shows the IR sampling fraction. Lower panel shows the

area-weighted average (tropics, 30 S to 30N) of UTH calculated from gridded daily fields

(Figure 2) for all available days of 2008. The black line represents MW-sampling and the

red line represents IR sampling.

Figure 4. Mean of UTH at each grid point for all available UTH values in a month.

The upper panels are for January and the lower panels are for July. The left panels are

for microwave sampling and the right panels for infrared sampling.

Figure 5. Total number of pixels in each grid box for a month. The upper panels are

for January and the lower panels are for July. The left panels are for microwave sampling

and the right panels for infrared sampling.

Figure 6. Clear-sky bias (CSB, which is the difference between IR-sampled and MW-

sampled UTH) in %RH for (left) January and (right) July.

Figure 7. Clear sky bias (difference between IR-sampled and MW-sampled UTH) in

%RH for July for tropics and midlatitudes.
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Figure 8. Scatter density plots showing the dependence of clear-sky bias on UTH and

its variability. Upper panels show dependence of tropical clear-sky bias on microwave

sampled UTH and lower panels show its dependence on grid point standard deviation of

microwave sampled UTH for (left) January and (right) July. Coloured contours show the

fraction of data points outside each contour. Black is 0.01, green is 0.1, blue is 0.3 and

red is 0.5.

Figure 9. The standard deviation of UTH (in %RH) at each grid point for all available

pixels in a month. The upper panels are for January and the lower panels are for July.

The left panels are for microwave sampling and the right panels for infrared sampling.

Figure 10. Time series of tropical, area-weighted, UTH anomalies for (red) microwave

sampling and (black) infrared sampling using NOAA-15 AMSU-B satellite data. A 30

days smoothing is applied. Straight lines show a linear trend in the data. It should be

noted that the time series is not corrected for diurnal cycle aliasing due to satellite orbital

drift which is identified as the main reason for the spurious trend seen in the time series.

Please see the text for details.
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Table 1. Statistics of clear-sky bias (CSB) for all months in 2008. ”Miss” denotes %

of grid points with missing values due to no IR sampling for the entire month. ”>20”

denotes % of grid points where CSB is higher than 20 %RH. There are 21600 grid points

in the tropics.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Max -31.87 -36.20 -36.27 -33.94 -30.27 -31.27 -32.25 -29.88 -31.08 -27.14 -32.50 -33.84

Miss 1.49 3.32 2.07 1.23 1.05 1.54 1.77 0.76 1.19 0.98 1.44 1.91

>20 1.31 1.18 0.67 0.94 0.88 0.48 0.41 0.32 0.50 0.58 0.79 1.53
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