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Introduction by the Organisers

The workshop Mathematical Theory and Modelling in Atmosphere-Ocean-Science,
organized by Andrew J. Majda (New York), Rupert Klein (Berlin) and Bjorn
Stevens (Hamburg) was held August 8th–August 14th, 2010. This meeting was
the third workshop of its type over the last decade, and has helped to cultivate
interests in mathematics as related to the atmospehric, oceanic and climate sci-
ences. This year’s workshop was well attended by over 50 participants from mostly
North America and Europe. Participants from the broader fields of fluid dynam-
ics, atmospheric, oceanic and climate science were joined by mathematicians with
interests in PDEs, stochastics and numerical methods. The workshop touched on
a wide range of themes including: (i) data assimilation; (ii) multi-scale asympo-
totics; (iii) numerical methods for PDEs; (iv) stochastic methods; (v) information
theory, (vi) time-series analysis; (vii) turbulence; and (viii) geophysical fluid dy-
namics. As such the workshop outlined the cutting edge of applied mathematics
as related to problems in the atmospheric and oceanic sciences.
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In a departure from the standard Oberwolfach workshop, but in keeping with
the breadth of the material covered, all participants were invited to give a short
presentation outlining critical issues or results pertaining to their research. These
short talks, which are sketched out in the abstracts below, served as the basis for
more focused discussions among those with relevant expertise and interest. As is
evident from the material below, the development and application of mathematics
to atmospheric and oceanic science is a vibrant enterprise, and the talks gave
participants the chance to see the breadth of the science within the intimate setting
that Oberwolfach provides.
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Averaging the global atmospheric circulation . . . . . . . . . . . . . . . . . . . . . . . . 2070

Sebastian Reich (joint with Kay Bergemann, Georg Gottwald)
Data assimilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2071

Marco Restelli
Hybridizable discontinuous Galerkin methods for geophysical applications 2073

Ian Roulstone
Incompressible Navier–Stokes flows: eigenvalue problems and complex
structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2074

Frank Selten (joint with Leonie van de Berge,Wim Wiegerinck,Gregory
Duane)
A multi-model ensemble method that combines imperfect models through
learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2075

Fabian Senf (joint with Ulrich Achatz)
The impact of solar thermal tides on the propagation and dissipation of
gravity waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2077

Leslie Smith (joint with Susan Kurien)
Aspect ratio effects in rotating Boussinesq flows . . . . . . . . . . . . . . . . . . . . . 2078

Shafer Smith (joint with Elsa Bernard)
Geostrophic turbulence near rapid changes in stratification . . . . . . . . . . . . 2080

Ashwanth Srinivasan (joint with W. C. Thacker, M. Iskandarani, O. M.
Knio)
Uncertainty propagation and quantification in numerical ocean
simulations using polynomial chaos expansions . . . . . . . . . . . . . . . . . . . . . . 2082

Samuel N. Stechmann (joint with Bjorn Stevens)
Multiscale models for cumulus cloud dynamics . . . . . . . . . . . . . . . . . . . . . . 2083

Esteban G. Tabak (joint with Paul A. Milewski)
The diurnal cycle and the meridional extent of the tropics . . . . . . . . . . . . 2083

Bruce Turkington (joint with Petr Plecháč)
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Abstracts

Gravity waves, scale asymptotics, and the pseudo-incompressible
equations

Ulrich Achatz

(joint work with Rupert Klein, Fabian Senf)

Multiple-scale asymptotics is used to analyze the Euler equations for the dynamical
situation of a gravity wave (GW) near breaking level. A simple saturation argu-
ment in combination with linear theory is used to obtain the relevant dynamical
scales. As small expansion parameter the ratio of inverse of the vertical wave num-
ber and potential-temperature and pressure scale heights is used, which we allow to
be of the same order of magnitude here. It is shown that the resulting equation hi-
erarchy is consistent with that obtained from the pseudo-incompressible equations,
both for non-hydrostatic and hydrostatic gravity waves, while this is not the case
for the anelastic equations unless the additional assumption of sufficiently weak
stratification is adopted. To describe vertical propagation of wave packets over
several atmospheric scale heights, WKB theory is used to show that the pseudo-
incompressible flow divergence generates the same amplitude equation that also
obtains from the full Euler equations. This gives a mathematical justification for
the use of the pseudo-incompressible equations for studies of gravity-wave breaking
in the atmosphere for arbitrary background stratification. The WKB theory inter-
estingly also holds at wave amplitudes close to static instability. In the mean-flow
equations we obtain in addition to the classic wave-induced momentum-flux diver-
gences a wave-induced correction of hydrostatic balance in the vertical-momentum
equation which cannot be obtained from Boussinesq or anelastic dynamics.
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Spectral collocation methods on semi–infinite domains and application
to open boundary conditions

Tommaso Benacchio

(joint work with L. Bonaventura, MOX–Politecnico di Milano)

The aim of the work is to study the analytical and numerical aspects of a
spectral approach to the problem of open boundary conditions, with particular
attention to applications in environmental modelling. Indeed, in many situations
one may be interested in solutions to differential problems defined on unbounded
or semi–infinite domains; in these cases an artificial boundary B is introduced to
encompass a finite region of interest, and the equations are solved in the finite
domain by standard numerical discretization techniques [3]. However, on one
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hand, for the problem to be well–posed, suitable boundary conditions have to be
enforced on B; on the other hand, no spurious or unphysical phenomena should
arise throughout this process. This is for instance the case of vertical propagation
of internal gravity waves in the atmosphere: if the upper boundary of the domain
is not designed properly, it can give rise to spurious reflection of wave energy back
into the computational domain [6]. While conventional boundary conditions such
as rigid lid or constant pressure surfaces entail total reflection of wave energy,
two classical solutions for this problem, e.g. radiative boundary conditions and
absorbing/sponge layers, have been extensively applied in the last three decades
to atmospheric models for numerical weather prediction and climate [2, 4, 8, 5, 7].

In the context of the present work, we explore the possibility to tackle the prob-
lem in a more direct way, approximating the equations of interest with spectral
methods in a semi–infinite domain attached to the finite region of interest. To
this end, we review the main results concerning polynomial approximation and
interpolation on the real positive half line by means of Laguerre polynomials and
Laguerre functions, with specific reference to quadrature formulas and spectral
derivatives [9, 10]. Notably, we take into account a special class of generalized
Laguerre functions dependent on a parameter β, tuning which we are able to rep-
resent functions on different spatial scales in the same framework [11]. Next, we
apply these results to the numerical approximation of Partial Differential Equa-
tions with spectral methods on semi–infinite domains. In particular, we consider
the advection–diffusion equation and the shallow water equations for open channel
flow, discretized on the half line with a pseudospectral (collocation) method and
semi-implicit time discretization.

The resulting stable, spectrally accurate method yields a reliable tool which in
principle can be interfaced with any numerical discretization of the equations in
a finite domain. Among other advantages, the proposed method could outper-
form the traditional absorbing layer approaches in terms of computational cost,
as long as low–order Gaussian quadrature formulas can be used without excessive
degradation of the solution accuracy. As a demonstration of the feasibility of this
approach, in our work we consider a standard finite volume discretization on the
finite domain, attaching to the right endpoint of the interval the spectral discretiza-
tion on a semi–infinite domain. Numerical simulations show that a reasonably low
number of spectral base functions is sufficient to reproduce the solution behaviour
at infinity. A more complete description of methods and numerical results can be
found in [1].
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An asymptotic description of the interaction of waves on the ITCZ
with midlatitude quasigeostrophic dynamics

Joseph A. Biello

(joint work with Andrew J. Majda)

In a ground breaking paper, Majda & Klein [1] introduced two new dynami-
cal regimes describing the tropical troposphere. The first regime, called IPESD,
describes the modulation of planetary scale flows through the upscale fluxes from
equatorial synoptic scale dynamics on intraseasonal timescales. This asymptotic
regime provides a framework for the recent multiscale models of the Madden-
Julian oscillation [2, 3]. The second regime, called MEWTG (for mesoscale equa-
torial weak temperature gradient), describes a circulation forced (primarily) by
latent heating due to moist convection. The weak temperature gradient feature of
this regime implies that diabatic heating balances vertical velocity on equatorial
mesoscales, O(500km), and within timescales of less than one day.

Dolaptchiev [4] generalized the model by allowing for stronger temperature vari-
ations over larger scales. Majda has recognized that this new multiscale MEWTG
is a closed model by going to higher order in the asymptotics [5]. The resulting
model contains the original MEWTG equations modulated by a large scale, zon-
ally propagating gravity wave. The temperature and wind properties of the large
scale wave are independent of both the zonal and meridional mesoscales and are,
thereby, consistent with the weak temperature gradient nature of the tropics.

In my talk I showed that the mean zonal winds described by the multiscale
MEWTG equations become unbounded at large latitudes away from the equa-
torial belt. Unless specific restrictions are made on the mean of the diabatic
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heating, the theory also yields solutions with non-zero meridional velocities far
from the equatorial belt; i.e. an open Hadley circulation. Furthermore, merid-
ional geostrophic balance (equivalently, thermal wind balance) is not described by
this theory, yet this is known to be the main balance for subtropical and midlat-
itude winds. These facts strongly suggest that a meridional matching condition
must be supplied both to close the multiscale MEWTG theory and to describe the
interaction of the equatorial flows with midlatitude dynamics.

MEWTG uses a non-dimensionalization of the equatorial primitive equations
where horizontal velocities are measured in units of 5 m/s; vertical velocity, 5
cm/s; heating rates, 33 Kelvin/day; temperatures, 3 Kelvin; horizontal scale, 500
km; time scale, 1 day. These equations, with Coriolis parameter extended to the
whole sphere, are

D

Dt
u− sin(ǫ y)v

ǫ
+

Πx

ǫ
= Su, ux + vy + wz = 0,

D

Dt
v +

sin(ǫy)u

ǫ
+

Πy

ǫ
= Sv, Πz = Θ,

ǫ
D

Dt
Θ+ w = Sθ

(1)

where the asymptotic parameter ǫ ∼ 0.1 is a measure of the weakness of the
tropical temperature gradient. We show that multiscale MEWTG arises from (1)
at the first two orders of a regular asymptotic expansion of the variables allowing
for large zonal variations (X = ǫx) and for meridional extents, y ∼ O(1). The
classical quasigeostrophic balance appropriate to midlatitudes also arises at the
first two orders of a regular asymptotic expansion assuming latitudes away from
the equator (ǫy ∼ O(1) ) and weaker heating rates, Sθ ∼ O(ǫ).

These two dynamical regimes can be connected through a subtropical transi-
tion layer with a stretched meridional coordinate, Y = ǫ1/3y, and weaker heating,
S ∼ O(ǫ1/3). The subtropical asymptotics describe stronger zonal flows and tem-
perature gradients, but meridional flows have the same order of magnitude as those
in the deep tropics and midlatitudes

u = ǫ−2/3
(

U(X,Y ) + ǫ1/3 u′(X,Y, t)
)

v = V (X,Y ) + v′(X,Y, t)

Π = ǫ−1/3
(

Π(X,Y ) + ǫ1/3Π′(X,Y, t)
)

w = ǫ1/3 (W (X,Y ) + w′(X,Y, t)) .

(2)

The subtropical matching equations break up into a steady circulation and fluc-
tuations. The steady flows

(U∂X + V ∂Y +W∂z)U − Y V = − dU,

Y U +ΠY = 0, W = S̄,

UX + VY +Wz = 0, Πz = Θ

(3)
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are in weak temperature gradient and thermal wind balance and the equations
describe the zonal variation of the Hadley circulation. The fluctuations,

u′t + (v′∂Y + w′∂z)U − Y v′ = 0

Y w′ +Π′
Y = 0 w′ = S′

u′X + v′Y + w′
z = 0 Π′

z = Θ′

(4)

conserve total angular momentum. The subtropical meridional velocity and po-
tential temperature are matched to multiscale MEWTG as Y → 0 and with mid-
latitude geostrophic dynamics as Y → ∞.
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What drives large-scale monsoons in the Earth’s atmosphere?

Simona Bordoni

(joint work with Tapio Schneider)

The word monsoon comes from the Arabic word mausim for season [1]. For Arab
merchant sailors of the past, the defining aspect of seasons was the reversal of the
near-surface winds over the Indian Ocean from the northeast during the winter to
the southwest during the summer, in association with what we now understand
to be the Asian monsoon. The strong cross-equatorial southwesterly wind, which
flows from the coast of Africa to the shores of India and is known as the Somali
Jet, is one of the strongest low-level jets in the Earth’s atmosphere [2, 3]. With
increased understanding of monsoon systems, the word monsoon has been more
generally applied to the seasonal reversal of both the atmospheric circulation and
the associated precipitation patterns over the tropical and subtropical continents,
and adjacent oceans, of Asia, Australia, Africa, and both North and South Amer-
ica, which all feature monsoonal climates. Despite the importance of monsoons in
the global circulation of the atmosphere and oceans, and their strong impact on
society, agriculture and economics around the world, the fundamental mechanisms
responsible for monsoons are still not completely understood.

The classic view of monsoons has been based on the existence of a strong con-
trast in temperature between ocean and land masses, arising from their differing
thermal response to the annual cycle of radiative heating [1, 4], with monsoons
manifesting themselves as planetary-scale sea breeze circulations [5]. However,
this depiction of monsoons fails to account for, among other features, the rapidity
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with which changes in precipitation and atmospheric circulation patterns occur at
monsoon onset [6].

In this talk, we presented results from simulations with an idealized general cir-
culation model (GCM) coupled to a slab ocean (i.e., in aquaplanet configuration),
which show that rapid transitions in the tropical overturning circulation can occur
even in the absence of land-sea contrast, provided that the lower boundary has low
enough thermal inertia. These transitions are accompanied by precipitation and
atmospheric circulation changes similar to those occurring in large-scale monsoon
regions in the Earth’s atmosphere. Consistent with similar simulations with a dry
GCM [7], the rapid transitions in the tropical overturning circulation mark shifts
in the dominant balance of the zonal momentum budget in the circulation upper
branch, from regimes in which momentum flux divergence by large-scale, midlati-
tude eddies dominates near the center of the circulation cell, to regimes in which
the eddy momentum flux divergence is negligible and the mean momentum flux di-
vergence dominates. Feedbacks among large-scale eddy fluxes, upper-level winds,
and the tropical overturning circulation mediate these transitions and render them
rapid, if the near-surface moist static energy is able to adjust rapidly, therefore
requiring a lower boundary with sufficiently low thermal inertia [7, 6]. These re-
sults therefore suggest that subtropical continents might be needed for monsoon
development only insofar as they provide a surface with low enough thermal inertia
for the feedback mechanisms between the large-scale eddies and the overturning
circulation to be able to act on intraseasonal time scales. Monsoons can occur
over an homogeneous swamp surface.

Unlike the global monsoon simulated in the aquaplanet simulations, Earth’s
monsoons are zonally localized and it is to be expected that surface inhomo-
geneities, such as land masses and tropography, will modify the dynamical mech-
anisms described above and will influence the morphology of the monsoonal flow.
Future work will be aimed at elucidating the role of purely dynamical mechanisms
that act irrespectively of surface inhomogeneities (i.e., the feedbacks between the
large-scale extratropical waves and the tropical circulation) and such surface in-
homogenieties (i.e., distribution and orography of tropical and subtropical land-
masses) in the dynamics of large-scale monsoons.
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Long time impact of a small, slowly evolving, source term in a
convection model

Yann Brenier

We consider the (generalized) convection mode l

(1) ∂tv + (v · ∇)v − α∆v +∇p = f, ∇ · v = 0,

(2) ∂tf + (v · ∇)f = εG(εt, x, f(t, x))

where f = f(t, x) is advected by the velocity field v with a small, slowly evolving,
vector-valued, source term. We are interested in the impact of such a source term
for large times of order O(ǫ−1). After rescaling (t, v(t, x)) as (t/ε, εv(εt, x)), we get

(3) ε2(∂tv + (v · ∇)v)− αε∆v +∇p = f, ∇ · v = 0,

(4) ∂tf + (v · ∇)f = G(t, x, f(t, x))

We now consider the formal limit of these equations obtained by setting ε = 0

(5) ∇p = y, ∇ · v = 0,

(6) ∂tf + (v · ∇)f = G(t, x, f).

The main application is the case when d = 2 and the source term

(7) G(x, y) = (x2, y1 − x1).

Then the limit equations coincide with the semigeostrophic equations in the special
incompressible “x− z” situation.

1. Motivation for a convexity assumption

At first glance, the limit equations look strange since there is no evolution equa-
tion for v. However, y is constrained to be a gradient. In three space dimension,
for instance, since v is divergence-free, we can write v = ∇×A for some divergence
free ”potential vector” A = A(t, x) ∈ R3. Then, by curling equation (6), we get a
linear system for A, namely:

(8) ∇× (D2
xp(t, x) · ∇ ×A) = ∇× (G(x,∇p)),

This system is elliptic in A whenever

(9) c|ξ|2 ≤ D2
xp(t, x) · (ξ, ξ) ≤ c−1|ξ|2, ∀ t, x, ξ,

for some constant 0 < c < 1. This strong convexity assumption is therefore a
natural solvability condition for the limit equations.
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However, this condition may break down in finite time. The simplest example is
when

G = −∇g(x)
with D2g > 0. Indeed, then, a trivial global solution of both the original equations
and their limit, is obtained just by setting:

f(t, x) = ∇p(t, x), v(t, x) = 0, p(t, x) = p(0, x)− tg(x)

which obviously violates condition (9) in finite time.

2. Main results

Combining several recent results (quoted below), we can say:
i) the limit system admits local smooth solutions satisfying the strong convexity
condition (9) and these solutions can be rigorously derived from the original equa-
tions as ε→ 0;
ii) existence of global (generalized) solutions y = ∇p ∈ C0(R+;L

2) can be estab-
lished under the weak convexity condition

(10) D2
xp(t, x) · (ξ, ξ) ≥ 0, ∀ t, x, ξ.
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The rapid decay of large-scale internal tides due to interactions with
random small-scale topography

Oliver Bühler

(joint work with Miranda Holmes–Cerfon)

The global-scale circulation of the ocean is intimately linked to unresolvable
small-scale waves such as inertia–gravity waves, which owe their restoration mech-
anism to a combination of the stable stratification of the ocean (ie the fact that the
water density increases with depth) and the Coriolis forces due to the Earth’s ro-
tation. Because these small-scale waves provide the lubrication for the functioning
of the large-scale circulation of the ocean, there is a pressing need to improve our
understanding of the dynamics of these waves, including their energy sources. An
important energy source for these waves are the lunar tides, and an open problem
in present-day oceanography is how this tidal wave energy is converted into the
wave energy at the very small scales at which the lubrication can take place.

In this talk the interaction of tidal waves with small scale random undulations of
the sea floor are investigated, which mathematically leads to an ill-posed problem
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of a type first studied by Sobolev. We solve this problem using a specialized
numerical technique and show that the random topography is a very efficient wave
energy converter and thus helps lubricating the ocean circulation.

What sets the oceanic mid-depth stratification and overturning
circulation?

Paola Cessi

(joint work with Christopher L. Wolfe)

The processes maintaining the stratification in the oceanic mid-depth region
(between approximately 1000 and 3000 m) are explored using an eddy-resolving
general circulation model in a simple geometry composed of a two-hemisphere,
semi-enclosed basin with a zonally-reentrant channel in the southernmost eighth
of the domain [1]. The mid-depth region lies below the wind-driven main ther-
mocline but above the diffusively-driven abyssal ocean. Here, it is argued that
the mid-depth stratification is determined primarily in the reentrant portion of
the domain, which represents the Antarctic Circumpolar Current (ACC) region.
Competition between mean and eddy overturning in the channel leads to steeper
isotherms and thus deeper stratification throughout the basin than would exist
without the channel. This is because in a reentrant geometry only mesoscale ed-
dies can restratify the fluid by counteracting the wind-driven, thermally indirect
cell. In the enclosed portion of the domain, basin-scale gyres can be supported
which transport heat down-gradient, providing a much more effective restratifica-
tion mechanism than mesoscale eddies. Thus in a geometry with an ACC region
deep stratification is much stronger than in a fully enclosed geometry. Changes
in wind forcing over the channel influence the stratification throughout the do-
main. Since the mid-depth stratification is controlled by adiabatic dynamics in
the channel, it becomes independent of the interior diapycnal diffusivity, κ, as
κ→ 0.

Isotherms which outcrop only in the channel are nearly horizontal in the semi-
enclosed portion of the domain, whereas isotherms which also outcrop in the North-
ern Hemisphere (NH) deviate from horizontal and are accompanied by geostro-
phically-balanced meridional transport. Along the set of isotherms that outcrop
in both the ACC region and the NH, an adiabatic circulation can be established
along the shared temperature surfaces, with diabatic processes confined to the
surface mixed layer. In this configuration, a northern source of deep water can
be supported, which leads to the formation of a thick mid-depth thermostad and
a sizeable meridional overturning circulation (MOC) circulation which also shows
a tendency to become independent of κ as κ → 0. A non-local scaling for the
MOC is developed which relates the strength of the northern MOC to the depth
of the isotherms at the equatorward edge of the southern channel. If there are
no outcropping isotherms shared between the ACC region and the NH, the MOC
depends on κ and vanishes in the limit κ→ 0.
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The results of our simplified computations compare favorably to observations
of large-scale neutral density in the world ocean.
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Statistics and interactions in deep cumulus convection

George C. Craig

Deep moist convection is a canonical example of a non-linear, non-Gaussian pro-
cess in the atmosphere. The error growth timescale of order ten minutes is not
resolved by the observing network, and is short in comparison to the timescales of
interest for description and prediction of the atmospheric state. In effect, cumu-
lus clouds influence the weather and climate as stochastic process - clouds appear
out of nowhere - and can at best be described statistically. The distributions of
clouds and precipitation in convective weather regimes are characterized by inter-
mittency, associated with fat tails that deviate strongly from Gaussian. Indeed,
active convective cores in a convecting region occupy only about 2-3% of the area,
and a point-process model is likely to be more appropriate. The purpose of the
line of research described briefly here is to use physical knowledge of cumulus
convection to develop such a stochastic point process model, as an alternative to
developing general approaches to non-linear, non-Gaussian systems that may be
both complex and uneconomical. Cumulus clouds will be regarded as individual,
well-separated entities, that interact through a small number of specific physical
mechanisms. Since the main results described at the meeting are from published
works, this abstract will simply direct the reader to the appropriate references.

Three interaction mechanisms between individual convective clouds can be iden-
tified. First, localized transfer of mass from lower to upper levels in the tropo-
sphere (effectively a dipole source-sink pair) generates horizontally propagating
gravity waves that lead to a net subsidence and hence warming of the atmosphere
between the clouds [1]. Temperature anomalies are thus communicated by wave
propagation, leading to a characteristic response timescale for the convecting at-
mosphere as a whole that is given by the time taken for a gravity wave to cross
the characteristic cloud spacing distance (typically a few tens of kilometers) [3].
A second interaction mechanism occurs when precipitation falls from the cloud
into unsaturated air. The ensuing evaporation produces a pool of cold air at the
ground that spreads as a density current and can initiate new convective clouds by
lifting boundary layer air to its level of saturation. Since density currents travel
slowly in comparison to deep gravity waves, and are eroded by surface heat fluxes,
this effect is of short range (a few kilometers at most), and produces local cluster-
ing and in extreme cases an intense squall line. The third interaction mechanism
is through the influence of lower tropospheric moisture on cumulus clouds, since
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buoyant updrafts are strongly inhibited by entrainment of dry air. Moisture can
only be communicated from the cumulus clouds to their environment by advec-
tion, and since the clouds are inefficient at generated horizontal motions in the
mid-troposphere, the timescale of this transport is set by the rate at which envi-
ronmental air sinks from the upper troposphere where the clouds detrain, which is
in turn set by the rate at which the air can give off heat through radiation, leading
to a timescale of a month or more [9].

If the convective clouds are widely separated in space, it might be expected
that they will feel the influence of the cloud field as a whole, rather than feeling a
dominant effect of their nearest neighbors. In this limit, a simple mean field the-
ory can be constructed [5], taking the form a spatial Poisson process, with a mark
corresponding to the mass flux of the individual cloud. Comparison with explicit
simulations of a field of convective clouds shows that the spatial distribution of
convective mass flux can be predicted to within about 10%, with the deviations
taking the form of a clustering on scales of a few kilometers and a weak suppression
over distances of 10-20 km, as might be anticipated from the first two interactions
mechanisms above. The relatively good quantitative agreement of the mean field
theory has motived its use as the basis for a stochastic cumulus parameteriza-
tion for use in weather forecasting and climate models [7]. The third interaction
mechanism (moisture advection) acts only weakly in the small domains used in
the early simulations. There is a tendency for the domain to be divided into wet
and dry regions, with all the convection occurring in the wet regions [8]. This
effect is seen clearly in more recent simulations on larger domains [2], where over
many weeks the convective clouds become concentrated in a single region, with
the remaining atmosphere becoming very dry. It has recently been argued that
the observed large-scale organization of convection has characteristics of a phase
transition [6], a point of view that also follows naturally from the considerations
listed here.
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Subgrid scale closure for the Burgers equation based on stochastic
mode reduction

Stamen Iankov Dolaptchiev

(joint work with Ilya Timofeyev, Ulrich Achatz)

Applying a systematic stochastic mode reduction strategy [1, 2] a local closure
for the subgrid scale dynamics in the inviscid Burgers equation is constructed.
Using an energy and momentum conserving finite difference discretization and
introducing a fine and a coarse grid, the model variables are split into fast and
slow modes. This is a different approach compared to previous studies, where
the separation between the modes is done by truncation in EOF or Fourier space
[3, 4]. First, the closure assumptions for the stochastic mode reduction strategy
are verified. Next, an effective stochastic model for the dynamics of the slow
modes is presented. The model performs well in reproducing the variance and the
autocorrelation function of the full model. The contributions of different terms in
the subgrid scale model are discussed.
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Is potential temperature inversion complementary to potential
vorticity inversion?

Joseph Egger

(joint work with Klaus-Peter Hoinka, Thomas Spengler)

Given the distribution of one atmospheric variable, that of nearly all others can be
derived in balanced flow. In particular, potential vorticity inversion (PVI) selects
PV to derive pressure, winds and potential temperature on the basis of a balance
relation and for hydrostatic conditions. Potential temperature inversion (PTI)
starts from available fields of PT to derive pressure, winds and PV. While PVI
requires at least to invert a threedimensional elliptic operator with corresponding
boundary conditions, PTI is easier to apply since one has to solve only an equation
of first order , namely the hydrostatic equation with one boundary condition, in
the simplest version. Nevertheless, PTI has hardly been used as a research tool
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in contrast to the popular PVI which has been applied widely also in the form of
piecewise PVI.

The electrostatic analogy as discussed carefully by Bishop and Thorpe (1994)
is a paradigm of PVI where it is claimed that local anomalies of PV exert an
influence on the atmsophere just as do electric charges on the electric field. This
view is exemplified by Bishop and Thorpe (1994) for a spherical PV anomaly. It
is shown, however, that the quasigeostrophic solution to this problem as presented
by Bishop and Thorpe (1994) contains potential temperature perturbations which
cannot be induced by the spherical PV ’charge’. It follows that PV does not
have any special inducing characteristics and is thus on equal terms with potential
temperature which is conserved in adiabatic flow.

Idealized examples of PTI and PVI are compared. The inversions are equivalent
but PTI is easier to perform and understand than PVI. ERA analyses are used
to determine typical anomalies of PV and PT in the North Atlantic stormtrack
region. Statistical form of PVI and PTI are applied to these anomalies. It turns
out again that PTI is easier to understand than PVI.
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Thermostats for point vortices

Jason Frank

(joint work with Svetlana Dubinkina, Ben Leimkuhler)

The statistical mechanics of a molecular dynamics system observed to be in
thermal equilibrium with a heat reservoir at constant temperature is governed by
the Gibbs distribution

(1) ρ(X) = Z−1 exp−βH(X),

where X is the state of the system, H(X) is the Hamiltonian, β is the inverse sta-
tistical temperature, and Z =

∫

exp−βH(X) dX is the partition function. While
it is straightforward to construct numerical integrators that conserve the Hamil-
tonian exactly, thereby allowing simulations at constant energy, the construction
of an integrator that preserves the unique invariance—under the Liouville flow—of
the measure (1), is significantly more challenging. Typically this is done by aug-
menting the vector field of the free dynamics with a thermostat device, such as
was originally proposed by [1, 2] and later generalized by [3].

In [4] we introduce a generalized thermostat as a means of model reduction,
with the motivation of applying this idea to point vortices and (in forthcoming
work) other fluid models. The idea is to decompose a given system into resolved
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and unresolved variables, where the unresolved variables are treated as a ther-
mal reservoir into and from which energy can be dumped or drawn. The energy
exchange between the resolved variables and the reservoir is modeled with a ther-
mostat. The resolved system is augmented with one or more additional degrees
of freedom such that the dynamics on the extended phase space, when projected
back onto the original phase space, preserves the desired measure.

Consider a dynamical system

Ẋ = f(X),

whose vector field is assumed to be divergence-free divf ≡ 0 and to possess a first
integral H(X). We introduce an auxiliary scalar variable ζ, a perturbation vector
field g(X), and a function h(X) such that phase flow of the augmented system

Ẋ = f(X) + ζg(X)

ζ̇ = h(X)− ζ +

√

2

α
ẇ

preserves the generalized product measure

ρ̃(X, ζ) = Ẑ−1 exp−F (H(X)) exp−α
2
ζ2,

where F is a differentiable function, chosen to appropriately model the reservoir
exchange (e.g. F (H) = −βH). Under the above assumptions on f , the function
h(X) can be determined for any g(X), leaving α and g(X) as the only free param-
eters. It is important to choose g to guarantee controllability if ergodic sampling is
required. If this cannot be achieved with a single thermostat variable, the system
can be augmented as above with additional thermostats. The rate of relaxation is
controlled by α.

The methodology was applied to a point vortex model originally proposed by
Bühler in [5] to study the classical analysis of Onsager [6]. Bühler’s system con-
sisted of 4 strong 96 weak point vortices on a disc, where each set had an equal
number of positive and negatively signed vortices. The statistics of the strong
vortices were recorded under conditions corresponding to positive, negative and
neutral inverse temperature regimes. In [4] we successfully reproduce Bühler’s
results using just the four strong vortices and the thermostat device. To obtain
accurate results, it was necessary to model the finite reservoir effects of Bühler’s
direct simulations.

An important open question about this approach concerns the nonequilibrium
behavior of the thermostated dynamics. Can one consider the dynamics to be
predictive on short time scales? can correlations be computed accurately? In the
context of gridpoint/PDE models additional open questions are how to model a
reservoir of sub-grid scale energetics and the definition of appropriate perturbed
vector fields.
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Identification of climate switching during the last glacial using
Bayesian statistical methods

Christian Franzke

(joint work with Daniel Peavoy)

Ice core data for the last glacial period indicate large temperature changes occur-
ring on timescales of centuries or less. They are most pronounced in Greenland
ice cores where they are characterised by a rapid warming of up to 10 ◦C, followed
by a slow cooling period. They are known as Dansgaard-Oeschger (DO) events
and were numbered and subjectively dated by eye [1]. There is evidence that the
dramatic climate shifts at high latitudes in the Northern Hemisphere had global
scale effects. For example, [2] observed an out of phase signal in Antarctic ice
cores, whereas [3] note general agreement of temperature changes between one
Greenland ice core (GISP2) and stalagmite records from the Hulu cave in China.

We propose the following model to systematically identify the DO events from
ice core data. We assume that the time series can be modelled as a random walk
dependent upon the state of the climate. This is intended to capture the differing
distributions of the increments that occur during different climate regimes.

Under the random walk model the data Xi at time i evolves according to

Xi+1 = Xi + µSi
+ σSi

ǫi ,

where ǫi ∼ N (0, 1) is the standard normal distribution, µSi
is the forcing and σSi

is the standard deviation in state Si. For N data points, the probability of the
data given the unobserved state sequence is

P (X |µ, σ, S) =
N−1
∏

i=0

N (Xi+1 −Xi − µSi
, σ2

Si
) .

To capture the uncertainty about the time spent in each climate regime an
extra layer is introduced into the hierarchy that conditions S on an unknown
parameter λj , j ∈ {0 . . .M}. This is the probability that Si is in state j, which is
then distributed according to the multinomial distribution. In a Bayesian setting
λj , and the other parameters, are random variables with a prior distribution.
By defining conjugate priors the model can be inferred using a Gibbs sampling
algorithm. The conjugate prior for λj is given by a Dirichlet distribution with
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hyperparameter α. This respects the constraint
∑

j λj = 1. For σj one defines

τj = 1/σ2
j and assigns a Gamma prior τj ∼ Γ(a, b), whereas µj is a priori normally

distributed µj ∼ N (0, σ2
µ). The hyperparameters a, b and σµ are fixed. The

posterior distribution can then be simulated by drawing sequentially from each of
the conditionals. For µj , we have

µj ∼ N
(

(
∑N−1

i=0 I[Si = j]Xi+1 − ΣN−1
i=0 I[Si = j]Xi)

∑N−1
i=0 I[Si = j] + σ2

j /σ
2
µ

,
σ2
jσ

2
µ

σ2
µ

∑N−1
i=0 I[Si = j] + σ2

j

)

,

where I[Si = j] = 1 if Si = j or 0 otherwise. The posterior for τj is the Gamma
distribution

τj ∼ Γ

(

a+

N−1
∑

i=0

I[Si = j]

2
, b+

1

2

N−1
∑

i=0

I[Si = j](Xi+1 −Xi − µSi
)2

)

.

Each unobserved state is sampled from the updated multinomial distribution with
probability

P (Si = j) ∝ λj
√
τj exp(−

τj
2
(Xi+1 −Xi − µj)

2) .

By cycling through the above distributions one obtains a dependent sample from
the posterior. As is usual for MCMC algorithms we discard an initial “burn in”
period to allow for convergence to the posterior distribution.

Using this model we investigated the recurrence properties of the events. We
found a significant signal at the 1450 year period for GISP2, agreeing with previous
authors and supporting our method. This period is absent in the other data sets,
in agreement with [4]. Due to the strong agreement between the climate regimes
in two other Greenland ice cores (GRIP and NGRIP), and their recurrence times,
we assign a higher significance to the results from these data sets. We conclude
that there is no lasting periodic signal for the rapid warming or cooling events of
the last glacial period and suppose that the apparent periodicity seen in GISP2
is due to a small number of events that occur at the regular interval of 1450-1500
years.

More background and details of this study can be found in [5].
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Energy transports and tropical precipitation shifts in simulations of
20th and 21st century climate

Dargan M. W. Frierson

(joint work with Yen-Ting Hwang, Sarah M. Kang)

Most state-of-the-art global climate models (GCMs) predict an increase in atmo-
spheric poleward energy transport with global warming; however, the amount of
increase varies significantly from model to model. The differences among models
are interpreted with a one-dimensional partial differential equation (PDE) model
that diffuses moist static energy, similar to that found in [1]. By prescribing ra-
diative forcings and feedbacks, and changes in ocean circulation and ocean heat
uptake from the GCMs, the PDE model with constant diffusivity is able to explain
the spread among models. The increase in poleward transport in all models is due
to increases in moisture content of the atmosphere. This work suggests that ra-
diative feedbacks and forcings dominate dynamical changes in eddies to determine
atmospheric energy transport changes, and that biases in feedbacks and forcings
will not only affect climate locally but will also influence other latitudes through
energy transports.

Even more different among GCM simulations are the predictions of zonally av-
eraged tropical precipitation. Some models predict increases of several tens of
centimeters per year at the same latitude where other models predict decreases
in precipitation. Much tropical precipitation on Earth happens in relatively nar-
row bands such as the inter-tropical convergence zone (ITCZ), so the question
of whether the ITCZ shifts northward or southward with warming is key to the
future of tropical precipitation. We show that the one-dimensional PDE model
described above can also explain the behavior of the ITCZ in the models. Models
with more positive radiative feedbacks/forcings in the Northern Hemisphere have
more of a northward shift, with terms closer to the equator being especially effec-
tive in shifting the ITCZ. The cross-equatorial energy transport predicted by the
simple model is well-correlated with the ITCZ shifts in the GCMs, as described in
the theory of [2].

The simple model also allows attribution of the ITCZ shifts. We find that
aerosol cooling of the Northern Hemisphere in the 20th Century is key to the
modeled southward shifts of the ITCZ, with cloud feedbacks causing a significant
spread among models.
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On the time scales of midlatitude atmospheric variability

Edwin P. Gerber

The processes that set the time scales of internal variability in the midlatitude
atmosphere are investigated in a hierarchy of systems, from the barotropic vorticity
equation on the sphere to coupled atmosphere-ocean climate prediction models.
The dominant patterns of variability in the extratropics are the annular modes,
which characterize meridional shifts of the midlatitude westerly jets [5]. Even a
relatively modest shift in the midlatitude jets can make a big difference on a local
level. In the northeastern United States, for example, a jet shift of a few degrees –
just a couple grid boxes in a typical General Circulation Model – is the difference
between record snow in Washington, DC and a typical wintry weekend for Boston.
The persistence of these shifts on intraseasonal time scales makes the difference
between a lone storm and a very cold winter.

The persistence of the midlatitude jet shifts is characterized by the e-folding
time scale of the annular mode. This time scale varies as a function of height and
season, exhibiting a curious asymmetry between the two hemispheres: it peaks
during the boreal winter in the Northern Hemisphere and the austral fall/early
summer in the Southern Hemisphere [1]. Comprehensive models capture many
of the key features of the seasonal cycle in annular mode time scales, including
the interhemispheric asymmetry, but exhibit significant biases, particularly in the
Southern Hemisphere summer where the time scales are too long [2]. A model’s
ability to capture the variability appears related to its ability to capture the time
mean climatology. Models with an equatorward bias of the midlatitude jet exhibit
longer annular mode time scales [4]. Systems of intermediate complexity help
illustrate the connection between jet position and the annular mode time scale,
and explain why model biases tend to be largest in the Southern Hemisphere.
In particular, the contract in behavior between a barotropic [6] and baroclinic
[3] model of the atmosphere highlights the importance of interactions between
baroclinic eddies and the zonal mean flow in setting the time scale of the annular
modes.
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Identifying and predicting the extensional and meandering phases of
the jet in a double-gyre ocean model

Dimitrios Giannakis

(joint work with Andrew J. Majda)

Large-scale oceanic circulation plays an important role in climate variability on in-
terannual, interdecadal, and longer timescales. Intensified eastward currents (e.g.,
the Gulf Stream and the Kuroshio current), which are ubiquitous features of the
Earth’s ocean basins, exhibit a pronounced metastable behavior, characterized by
transitions between persistent regimes, with lifetimes spanning several months to
several years. The origin of regime behavior on these timescales (which are of high
relevance to human activity and mid-term climate change) is generally attributed
to the nonlinear response of the ocean to steady, large-scale wind-stress forcing,
rather than systematic changes in solar forcing and/or thermohaline effects.

The essential physics of wind-driven ocean circulation are adequately described
by reduced-barotropic quasigeostrophic (QG) models [6]. Driven by a double-
gyre forcing (mimicking the subpolar and subtropical gyres in ocean basins), these
models develop an eastward, Gulf-Stream-like jet separating from the western
domain boundary. Here, the empirical phenomenology is that regime behavior is
organized around three states, characterized by low, middle, and high kinetic and
potential energy. The main feature of the high-energy (or extensional) phase is the
large penetration length and small curvature of the jet. In the low-energy state,
the jet is significantly weaker, and follows a meandering path. The middle-energy
state spatially resembles the steady-state temporal average of the flow field.

In this talk we discuss a method based on finite-element (FEM) data clustering
[3] and empirical information theory [4, 5] for identifying and predicting the cir-
culation regimes in this class of ocean models. Our data-driven approach involves
using numerical realizations of the full model (in this case, the 1.5-layer model
by McCalpin & Haidvogel [6]) to build low-order dynamical models that associate
each circulation regime with a cluster in the phase space of the full model, and
describe the transitions between the regimes as a Markov jump process [7].
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Central to the procedure is the notion of temporal coarse graining, implemented
here via FEM discretization of the input time series for data clustering. We
describe how coarse graining induces the physically appealing property of time-
regularity of cluster affiliations, and demonstrate that it results to superior quality
of phase-space partitioning and long-term (decadal) prediction skill compared to
standard K-means clustering. Throughout, we assess the quality of phase-space
partitioning and predictive skill by means of the relative entropy between time-
dependent probabilities for the total energy conditioned on the clusters and the
climatological distribution [1]. We also employ relative entropy to estimate a pos-
teriori the error in modeling the transitions between the states as a Markov jump
process.

Our main results [2] are that (i) the optimal partitioning of the phase space
of the full model is into three clusters, characterized by low, middle and high ex-
pected values of the total energy; (ii) the spatial configuration of the streamfunc-
tion associated with these clusters is in excellent agreement with the meandering,
steady-state, and extensional phases of the jet; and (iii) decade-horizon predic-
tions about the regime of the model can be made by coarse observations spanning
2–3 years. Thus, our results provide independent and objective verification of
the empirical phenomenology of the 1.5-layer model. Our method for identifying
circulation-regimes and making long-term forecasts should be applicable to more
comprehensive ocean models.
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Development of the non-hydrostatic unified model of the atmosphere
(NUMA)

Francis X. Giraldo

(joint work with James Kelly, Emil Constantinescu)

The current vision at operational numerical weather prediction centers is to
develop unified (global to mesoscale) models that can be used for global NWP as
well as for regional modeling. We have seen this trend already in Canada (with
GEM) and the UK (with the Unified Model) but are also seeing it in Japan (with
NICAM) and Germany (with ICON), although these last two systems are primarily
focused on the climate problem. In the U.S., there is currently a joint effort
between NOAA (National Oceanic and Atmospheric Admininstration) and the
Navy to develop a unified model for both NWP (5-7 day forecasts) and for decadal
simulations (10-30 years). The unifying theme in all of these efforts is “multi-scale”
modeling, meaning that both operational NWP and climate research centers are
focusing on developing a model that is applicable across a disparate range of scales;
the reason for this is economics (the reduced cost in maintaining only one model per
organization). From a science perspective, this opens the door for the construction
of radically new models that must use fewer underlying physical simplifications
(e.g., cannot use the hydrostatic approximation). In addition, computing power
has reached a sufficiently high-level that it is now possible to propose the use of
the anelastic, non-hydrostatic, or pseudo-incompressible equations instead of the
hydrostatic equations that have been typically used for global models (such as in
NWP and in climate GCMs).

In this talk, I will describe our strategy for constructing such unified models. It
turns out that addressing this issue from the standpoint of a modeling framework
simplifies the model construction significantly. What I mean by a modeling frame-
work is that the model is constructed by increasing levels of complexity that are
all built within the same infrastructure. This simplifies the validation by adding
new components to the existing ones in a hierarchical approach. For example, one
could first begin by constructing a model that simulates the transport of a scalar
variable; this will tell you if you are doing the transport properly. Then one adds
a few more variables to solve the shallow water equations, until one gets to the
compressible Navier-Stokes equations. Finally, one can add the proper vectors to
be able to handle not just flow in a box (as in mesoscale applications) but also
flow on a sphere (as in global applications).

Estimation of the sensitivity of atmospheric systems using
fluctuation-dissipation theorem and unstable periodic orbits

Andrey Gritsun

In this study we discuss two possibilities to estimate response operators of the
statistical characteristics of (chaotic, dissipative) atmospheric system onto small
external forcing.
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The first method is based on applying fluctuation-dissipation theorem (FDT)
which states ([1],[2]) that for systems with stationary quasi-Gaussian PDF the
response of the system statistical characteristics to weak external forcing could
be expressed in terms of covariances and lag-covariances of fluctuations of the
undisturbed system. C.Leith ([3]) expressed an idea that the dynamics of the
earth’s atmosphere is reasonably close to the conditions required by FDT and
suggested to use FDT in climate studies. The major advantage of this approach
is that one may calculate climate system approximate response operator (relating
changes in the system statistics with changes in the system external forcing) using
observational data only.

In this study we use FDT to construct approximate response operators for the
atmospheric general circulation model CCM0 of National Center for atmospheric
research. It is demonstrated that with these operators one may solve inverse
problem of finding external forcing producing a prescribed response of the system
average state with sufficient accuracy (see also [4], [5]). Another important appli-
cation is the analysis of the system sensitivity (i.e. the calculation of the external
forcing that produces the maximum possible response of the system).

Second approach for calculation of the system response operator onto small
forcing is based on the approximation of the system invariant measure using un-
stable periodic orbits (UPOs) of the system. Indeed, UPOs are dense on the
system attractor for axiom A system and any trajectory of this system can be
approximated by some orbit with any given accuracy ([6],[7]). The system invari-
ant measure could also be expressed in terms of UPOs characteristics. Under this
approximation orbits are taken into account according to their weights related to
their instability properties ([8]). As a rule, models describing the dynamics of the
atmosphere are not axiom A systems but belong to a wider class of systems with
nonzero Lyapunov exponents. Nevertheless, there are grounds to suppose that
such systems have a sufficient number of unstable periodic solutions forming the
skeleton of the system attractor ([9]).

In this study we are using above approach to estimate the response operator of a
simple barotropic atmosphere model to small external perturbation consisting in a
change of the external forcing of the system. Approximately 2000 unstable periodic
trajectories were found for the system ([10]). Orbits approximate the PDF of the
system and its statistical characteristics with reasonable accuracy ([11]). Response
operators of the system mean state to small external perturbations were calculated
for different settings of UPO weight coefficients. It is shown that under a correct
choice of the weight function one can reproduce the response operator with a good
accuracy. Finally, we analyze the relationships between UPOs and system modes
of variability ([12]).
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Entropy, targeted, and redundant observations for filtering turbulent
signals

Marcus J. Grote

(joint work with Andrew J. Majda)

Many contemporary problems in science involve making predictions based on par-
tial observation of extremely complicated spatially extended systems with many
degrees of freedom and with physical instabilities on both large and small scale.
Various new ensemble Kalman filtering strategies have been developed for these
applications and new mathematical issues arise. Recently, Majda et al. developed
explicit off-line test criteria for stable accurate discrete filtering [1, 2] and various
reduced Fourier domain Kalman filters for spatially extended turbulent systems
[3]. Here we extend the analysis and explore the filter skill to the situation of
sparse irregular (non-equispaced) observations, in particular for the prediction of
large-scale singular events. By using the relative entropy and the Shannon entropy
difference to measure the information content we develop new strategies for remov-
ing redundant observations [4] and positioning optimal targeted observations.
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Nonstationarity in discrete multifactor models, memory and
application to cloud modeling

Illia Horenko

Unified framework for identification of models with discrete state space (dis-
crete independent variable models and discrete Markov chains) is introduced [1].
It extends the recently developed methods of nonstationary Markov model param-
eterisation [2] towards indirect ensemble observations under influence of multiple
exogenous factors and allows to test whether the available observational or sim-
ulation data is best described via the stationary or nonstationary, Markovian or
independent processes. It also allows estimation of the relative significance of the
exogenous factors on the process dynamics. The resulting numerical algorithm is
applied to analysis of the total relative cloud cover data in Europe, interpreted as
a discrete probability density of an ensemble of discrete microscopic cloud mod-
els switching between the two states: cloud and no-cloud states. The obtained
discrete data-based cloud models are analyzed wrt. their memory, stationarity
and relative importance of external factors (such as surface air temperature, total
column water quantity, North-Atlantic and Arctic oscillations indices). The qual-
ity of online predictions based on the new method is compared with the results
obtained by standard linear and stationary methods of time series analysis.
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Simulation of the MJO in a coarse resolution GCM using a simple
multicloud parametrization

Boualem Khouider

(joint work with Andrew Majda, Amik St-Cyr, Joseph Tribbia)

The Madden Julian oscillation (MJO) is the dominant feature of the low frequency
variability of the tropical atmosphere. It is observed to propagate over the Indian
Ocean/Western Pacific warm pool region at a slow speed of about 5 m/s with a
period of 40 days and a wavelength of about 20,000 km in the form of an envelope
of higher frequency organized cloud clusters and super-clusters (e.g. [9]). The
MJO is believed to affect strongly the tropical and extra-tropical climate and
weather patterns such as monsoons, ENSO, tropical cyclones, and teleconnection
patterns, e.g. the North Atlantic and Pacific North American oscillations [1],
which modulate the weather in the Northern Hemisphere midlatitudes. However,
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current operational general circulation models (GCMs) used for climate and long-
range weather predictions represent poorly the MJO and organized convection
on synoptic scales known as convectively coupled waves (CCW) and thus fail to
capture accurately the large-scale circulation associated with organized convection
in the tropics. Although poorly understood, this poor performance of GCMs is
often associated with the inadequate treatment of organized convection by the
underlying cumulus parametrizations.

While the synoptic scale CCWs are recognized as being the moist equivalents
of the equatorially trapped normal modes, the spectral peak associated with the
MJO outgoing longwave radiation (a proxy for convective precipitation) appears
completely separated from the dispersion relation curves of the equatorial waves,
in the frequency-wavenumber domain [8]. Detailed observations reveal the per-
sistence of three cloud types (congestus, deep and stratiform) that characterize
organized convective systems in the tropics on a long range of scales, from the
individual convective cell of about 1 to 10 km up to the planetary scale MJO [2].
During the recent years K. and Majda introduced and analyzed a simple mathe-
matical model based on the three cloud types that characterize organized tropical
convection with plausible interactions of the clouds with each other and with the
large scale flow. The so-called multicloud model is very successful in reproducing
very realistic convectively coupled waves both in linear theory and in non-linear
simulations based on a simple model with crude vertical resolution reduced to
the first two baroclinic modes of vertical structure [3, 5, 6, etc]. In this talk
we present numerical simulation results of two benchmark examples for the MJO
and CCWs, in realistic parameter regimes characterized by high and low moisture
content in the lower troposphere, respectively, using the multicloud model as a
cumulus parametrization in the next generation of the U.S. National Centre for
Atmospheric Research GCM (HOMME: High Order Methods Modelling Environ-
ment) at low resolution on the order of 170 km grid mesh in the horizontal and 26
vertical levels. The so-coupled model demonstrated very high skill in reproducing
realistic MJO-like and synoptic scale CC waves with physical and morphological
features resembling the observational record. The details of the model coupling
and discussion of the results are reported in [7].
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On A Mimetic Discretization of the Ocean Primitive Equations

Peter Korn

Ocean Primitive Equations. Current state-of-the-art numerical ocean climate mod-
els are based on the incompressible Navier-Stokes equations on a rotating sphere
with a free surface, subject to the hydrostatic and Boussinesq approximation. The
equations are completed by advection-diffusion equations for salinity and temper-
ature and an equation-of-state that relates density to salinity and temperature.
The resulting set of equations is called the “ocean primitive equations”’ (PE), (for
details see [1]).

Velocity : ∂tv + (f + ω)k × v + w∂zv + ∇|v|2

2 + ∇p
ρ0

−∇ · (Kv∇v) = Fv,

Hydrostatic : ∂zp = −ρg,
Incompress. : ∇ · v = 0,

Free Surface : ∂th+∇ · (hv) = Fh,

Tracer : ∂tC +∇ · (Cv) −∇ · (KC∇C) = FC ,

Eq. of State : ρ = ρ(C).

We describe a new discretization of these equations that is based on the method
of”mimetic finite differences” (MFD).

Mimetic Discretization Method. The idea of MFD is to discretize continuous
equations by defining (discrete) difference operators that mimic the behavior of
(continuous) differential operators and implement within the discrete setting re-
lations from vector calculus such as the Theorems of Gauss and Stokes. This is
fundamentally different from classical finite differences that rely on Taylor expan-
sions. MFD, pioneered by J. Hyman, M. Shashkov and F. Brezzi, can be described
by the following four generic steps

(1) Specify the degrees of freedom of the discrete variables and their location,
i.e. choose discrete spaces for velocity, pressure etc.

(2) Specify scalar product for the discrete velocity and pressure spaces.
(3) Choose a “primal operator” (e.g. divergence) and discretize by vector

calculus.
(4) Define the “dual operator” (gradient) via primal operator and the scalar

product.

The grid that we use consists of a Delaunay triangulation of the sphere with
a associated Voronoi grid of hexagons. On this grid we use a so-called C-grid
staggering: scalar variables such as pressure are assumed to be constant within
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a triangle and are located at the triangles circumcenter, the normal component
of the velocity vector is constant along an edge and resides at the midpoint of a
triangle edge and the vorticity, which is constant on a dual hexagon, sits at the
vertices of triangles. In the vertical direction we use a z-ccordinate system.

The Discretized Primitive Equations. The variable staggering requires a con-
sistent (linear) mapping from cell centers to edges and from vertices to edges and
back. In order to avoid ad-hoc interpolations we start from a discrete weak form
of the PE. An important observation is that the weak form requires that the map-
ping Q from cell centers to edges has to be the transposed of the mapping P from
edges to cells, i.e. Q = PT . The composite PT ◦ P then defines an inner product
on the discrete velocity space. Finally this leads to the discrete ocean PE:

Velocity : d
dtP

TPve,k + P̂T ((ω + f)P̂ v)e,k + PT (wc,k+ 1

2

∂zPvk
z
)

+PTP∇
( |Pv|2k

2 + pk

ρ0

)

− PT∇ · Kv∇Pve,k − ∂zAv∂zP
TPve,k = Fv,

Hydrostatic : ∂zp = −ρ̄g,
Incompress. : ∇ · (PTPv) + ∂zw = 0,

Freesurface : ∂h
∂t +∇ ·

[

PT (
∫ h

−H Pv dz)
]

= Fh,

Tracer :
dCc,k

dt +∇ ·
[

PT (CPv)
]

c,k
−∇ · KC∇Cc,k − ∂zAC∂zCc,k = FC ,

k denotes a vertical level and ¯z a vertical interpolation. Examples from [2] for

the edge-to-cell mapping are ~PvK := 1
|K|△zK

∑

e ve|e|△ze(~xe − ~xK), with ~xK the

position of the center of triangle K, ~xe the edge midpoint, |e| the edge length and

△ze height at edge e. The tranposed operator is PTF |e := 1
|~xK−~xL|

{

~FK · (~xe −
~xK)− ~FL · (~xe − ~xL)

}

, with e the edge between triangles K and L. The mapping

P̂ , P̂T between edges and vertices has an analogous form on the dual Voronoi grid.
Properties of Discrete Equations. It can be shown that the discretized PE con-

serve mass and total energy. If one applies the two-dimensional equivalent of the
discretization above to the shallow-water equations, then enstrophy is addition-
ally conserved. The Nullspace of the discretized Coriolis operator contains the
Null-vector only, in accordance with the continuous Coriolis operator. This avoids
a common problem of many C-grid discretizations that have a large Null-space,
a fact that may create artificial modes. For the specific pair of mappings P, PT

and P̂T P̂ from [2] all properties translate from a triangular C-grid to a C-grid
staggering on arbitrary polygons. Many of the described discretization properties
do not depend on the specific functional form of the edge-to-cell and cell-to-edge
mapping but on their transposed character. In this sense we have suggested a
whole family of PE discretizations, parametrized by the metric PT ◦ P .
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Stochastic subgrid-scale parametrisation using cluster-weighted
modelling

Frank Kwasniok

The dynamics of weather and climate encompass a wide range of spatial and
temporal scales which are coupled through the nonlinear nature of the governing
equations of motion. This gives rise to the closure problem; any weather or climate
model needs a parametrisation scheme to account for the impact of unresolved
scales and processes. A stochastic climate model resolves only a limited number
of large-scale, low-frequency modes; the effect of unresolved scales and processes
onto the resolved modes is represented by stochastic terms. Here, such low-order
stochastic models are derived empirically from time series of the system using
statistical parameter estimation techniques.

Firstly, we explore the proposed stochastic closure scheme using the Lorenz ’96
model [6] as a multi-scale testbed. The governing equations are:

Ẋk = Xk−1(Xk+1 −Xk−2)−Xk + F +Bk

Ẏj,k =
1

ε
[Yj+1,k(Yj−1,k − Yj+2,k)− Yj,k + hyXk]

with k = 1, . . . ,K and j = 1, . . . , J . The subgrid term describing the impact of the

fast modes onto the slow modes is Bk = hx

J

∑J
j=1 Yj,k. By combining a clustering

algorithm with local regression fitting [2] a stochastic model of the subgrid term
is obtained which is conditional on the state of the resolved variables [4]. The
joint probability density of Xk and Bk is represented as a sum over clusters, each
associated with a predictive model:

p(Xk, Bk) =

M
∑

i=1

wi p(Xk|i) p(Bk|Xk, i)

The conditional predictive distribution is given as a weighted sum of the individual
predictive models

p(Bk|Xk) =

M
∑

i=1

gi(Xk) p(Bk|Xk, i)

where the state-dependent weights gi(Xk) are given as the posterior probabilities
of associating the state Xk with model i. Extensions of the scheme are possible,
e. g., regression or conditioning also on past values to capture serial correlation or
more complex dependences.

Secondly, stochastic reduced-order models of extratropical atmospheric low-
frequency variability are constructed [5]. A quasi-geostrophic (QG) three-level
atmospheric model with realistic mean state, variability and teleconnection pat-
terns is used as dynamical framework. The equations of motion are projected
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onto a limited number of leading empirical orthogonal functions (EOFs). Then a
regime-weighted model of the tendency error conditional on the state of the re-
solved modes is estimated from data similar to the one described above for the
Lorenz ’96 system and added to the bare truncation. A reduced model based on
15 EOFs is able to self-consistently model important statistical and dynamical
properties of the low-frequency variability of the QG model. Monitored quanti-
ties include the mean state, the variability pattern, momentum fluxes, probability
density functions, autocorrelation functions and nonlinear regime behaviour. The
present scheme compares favourably with other recently proposed stochastic mode
reduction schemes [1, 3].

References

[1] C. Franzke, A. J. Majda, Low-order stochastic mode reduction for a prototype atmospheric
GCM, Journal of the Atmospheric Sciences 63 (2006), 457–479.

[2] N. A. Gershenfeld, B. Schoner, E. Metois, Cluster-weighted modelling for time series pre-
diction and characterization, Nature 397 (1999), 329–332.

[3] D. Kondrashov, S. Kravtsov, M. Ghil, Empirical mode reduction in a model of extratropical
low-frequency variability, Journal of the Atmospheric Sciences 63 (2006), 1859–1877.

[4] F. Kwasniok, Stochastic subgrid-scale parametrization using cluster-weighted modelling, sub-
mitted.

[5] F. Kwasniok, Nonlinear stochastic low-order models of atmospheric low-frequency variability

using an empirical regime-weighted closure scheme, submitted.
[6] E. N. Lorenz, Predictability – a problem partly solved, in Predictability, ECMWF, Seminar

Proceedings (1996), 1–18.

Investigation of latent heat effects at the stratocumulus top using
direct numerical simulations

Juan Pedro Mellado

(joint work with Bjorn Stevens, Heiko Schmidt, Norbert Peters)

The marine stratocumulus-topped boundary layer plays a fundamental role in the
planet radiative energy balance because of its contribution to the earth’s albedo.
The mixed layer theory from Lilly [1] already identified the relevant parameters
several decades ago, pointing to the entrainment rate at the top of the boundary
layer as a determining quantity. A complete understanding of the physics of the
boundary layer top, however, is still missing, which translates into a variability of
order 1 in current models [2].

The cloud-top mixing layer has been used as an idealized configuration designed
to investigate particular questions related to the local dynamics of the cloud bound-
ary over length scales of the order of meters and under controlled conditions using
direct numerical simulation.

Buoyancy reversal due to evaporative cooling has been considered in the first
place. At the stratocumulus top, the relatively warm and dry air current descend-
ing from the upper troposphere meets the convection boundary layer and forms
a strong inversion. When a parcel of cool fluid from the cloud mixes with the
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upper subsiding layer, molecular transfer of heat tends to warm the former and,
at the same time, mass diffusion promotes droplet evaporation, which tends to
cool the resulting mixture. When this second mechanism dominates, the final
mixture acquires a buoyancy smaller than that of the local environment and tends
to sink, setting the fluid into motion. The implications of such processes for the
large-scale behavior of the stratocumulus-topped boundary layer, like the observed
cloud break-up [3, 4], have been debated for a long time.

A simplified formulation based on a mixture fraction variable χ has been em-
ployed [5]. Physically, the mixture fraction is equal to the relative amount of
matter in the fluid particle that proceeds from one of two differentiated regions in
the system, and it appears naturally in the limit of very small droplets as a nor-
malized conserved scalar measuring conserved properties, such as the total-water
content and the total enthalpy at the cloud boundary. The major assumptions
(and thus limitations) of this approach are: (1) the liquid phase can be described
as a continuum, (2) local thermodynamic equilibrium exists, and (3) the liquid-
phase diffusivity is equal to that of vapor and dry air. The main parameter of the
system so defined is the non-dimensional ratio D = −bs/b1 between the minimum
buoyancy anomaly (relative to the lower layer) of the intermediate mixtures, bs,
and the buoyancy difference across the inversion, b1.

The linear stability analysis shows that, ifD > 0, there is an unstable mode with
a characteristic time

√

4πλ/|bs|, where λ is the wavelength of the perturbation , in

addition to interfacial gravity waves with a phase velocity
√

λb1/(4π) – the system
is unstable to small disturbances and there exists a route to turbulence [6]. This
instability is the so-called buoyancy reversal instability and the condition D > 0
is the non-dimensional Randall-Deardorff criterion [3, 4].

However, in the usual atmospheric conditions, the subsequent turbulent motion
is too weak to break the inversion and to create cloud holes; the turbulent motion
is restricted to the cloud. The argument is that the time scale associated with
the restoring force of the inversion and the time scale of the unstable downdraft
are in a ratio equal to

√
D and D is a small number, i.e. the inversion returns to

the equilibrium position fast compared to the time that the heavy mixture below
needs to move downwards a distance λ. Results from direct numerical simulations
confirm this conjecture [7] . The entrainment rate and turbulent fluctuations
caused purely by latent heat effects are about one order of magnitude smaller than
the measurements, suggesting that buoyancy reversal due to evaporative cooling
alone is not the driving mechanism in cloud-top entrainment.

These simulations also show that molecular processes at the inversion base
determine the evolution of the whole system, which helps to explain the difficulties
encountered in the past using large-eddy simulation, and highlights the potential
of direct numerical simulations as a tool to study some specific problems.

Questions about the cloud-top that remain to be addressed are, for instance:
what is the role of local mean shear, finite evaporation rates, settling velocities or
preferential clustering of droplets? Can there still be a non-linear coupling between
buoyancy reversal and other external forcings, like radiation?
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An adaptive discontinuous Galerkin method for modelling cumulus
clouds

Andreas Müller

(joint work with Jörn Behrens, Francis X. Giraldo, Volkmar Wirth)

Theoretical understanding and numerical modeling of atmospheric moist convec-
tion still pose great challenges to meteorological research. The present work ad-
dresses the following question: How important is mixing between cloudy and en-
vironmental air for the development of a cumulus cloud? A Direct Numerical
Simulation of a single cloud is way beyond the capacity of today’s computing
power. The use of a Large Eddy Simulation in combination with semi-implicit
time-integration and adaptive techniques offers a significant reduction of complex-
ity.

So far this work is restricted to two-dimensional geometry. The compressible
Navier-Stokes equations are discretized using a discontinuous Galerkin method
introduced by Giraldo and Warburton in 2008 [1]. Time integration is done by
a semi-implicit backward difference [2, 3]. For the first time we combine these
numerical methods with an h-adaptive grid refinement. This refinement of our
triangular grid is implemented with the function library AMATOS and uses a
space filling curve approach [4].

Validation through different test cases shows very good agreement between the
current results [5] and those from the literature. For comparing different adaptivity
setups we developed a new qualitative error measure for the simulation of warm
air bubbles. With the help of this criterion we show that the simulation of a rising
warm air bubble on a locally refined grid can be more than six times faster than
a similar computation on a uniform mesh with the same accuracy.
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A potential vorticity dynamics for rotating shallow water on the
sphere

David J. Muraki

(joint work with Andrea Blazenko, Kevin Mitchell & Chris Snyder)

The standard theory for weather systems in the midlatitude atmosphere is quasi-
geostrophy (QG), in which the slow, synoptic-scale airflow is described through
the advection of potential vorticity (PV). The mathematics of QG is often justified
by a limit of zero Rossby number. But, this assumed limit is made invalid across
the equator by the vanishing of the Coriolis effect.

A globally-valid analog of QG (sPV), that is based upon the dynamics of PV,
is developed for rotating shallow water (rSW) on the sphere. Specifically, a PV-
streamfunction relationship is defined which determines the flow velocities for the
entire sphere. At midlatitudes, the fluid dynamics are asymptotically equivalent
to the beta-plane theory of QG, in the usual small Rossby number sense. In the
equatorial regions, wave propagation at short-scales mimics the dispersion rela-
tion for equatorial beta waves. Global Rossby waves, as described in recent works
by Verkley (2009, 2010) and Schubert (2009), are also included within this sPV
framework. The sPV model is an extension, to the entire sphere, of the hemi-
spherical PV inversion of McIntyre & Norton (1999) which imposed a dynamical
symmetry across the equator. In addition, the current work includes a large-scale
jet so that as a benchmark test of the dynamics, the propagation of waves in the
sPV model are shown to be an excellent approximation to computations of the
equatorial crossing of topographic waves by Grose & Hoskins (1979). Finally, the
mathematical consistency of these sPV dynamics is demonstrated by the result
that the ray theory for the sPV equations is exactly the same as that for the slow
modes of the rSW primitive equations.

The computations of the sPV model are done using a double-Fourier spectral
method that is efficient, yet accessible to novice modellers of PDEs on the sphere.
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The approach is a modernization of ideas originating from Merilees (1973) and
Orszag (1974).

Combining the midlatitude and equatorial wave dynamics into a unified model
has been a long-standing conundrum. This work represents a globally-valid asymp-
totic theory for short-wave dynamics. However, there remains the open question
of the significant errors seen in the longest waves in the equatorial region. This is
unfortunate for the subgroup of this conference who focus upon the waves of equa-
torial tropics. Initial discussions with participants, Joseph Biello and Sam Stech-
mann, seem to suggest that the missing dynamical ingredients near the equator
are those captured by the equations of equatorial long-wave theory (Majda/Biello
2002, Schubert 2010). Should this connection prove correct, this represents a sig-
nificant clue to the form of possible extensions leading to a global wave theory
having validity across all scales.

Figure 1. The equatorial crossing of topographic waves within the
sPV model: disturbance PV, and the associated disturbance height.
The flow is similar to that used in the study of Grose & Hoskins (1979)
— super-rotation flow past an isolated mountain centered at 30◦N.
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Some exact solutions for a column model of moist convection

John Norbury

(joint work with Anthony Lock)

A radiative-convective column model of moist convection is presented. In this
model, a single-column atmosphere of finite depth is driven by heat and moisture
sources at sea-level and throughout the body of the column. Moist convection
occurs whenever the column atmosphere is not statically stable; if during con-
vection the atmosphere becomes super-saturated, moisture is released and the
air is heated. By adopting a Lagrangian view-point, exact equilibrium solutions
for vertical profiles of potential temperature and specific humidity are found by
means of our choice of radiative cooling and source terms for moisture and la-
tent heat release. Explicit analytical equilibrium solutions, and bounds on the
downward equilibrium velocity, are calculated for three cases: a dry atmosphere;
a moist atmosphere for which the saturation specific humidity varies only with
pseudo-height; and a moist atmosphere for which the saturation specific humidity
varies with both pseudo-height and potential temperature. A numerical method
for solving the time-dependent problem is also presented. The system evolves in
time towards equilibrium in each of the three cases above. Convergence to the
analytical solutions is shown.

For a descending parcel, the solution is classical (smooth) and a parcel descends
in finite time according to the environmental lapse rate. We also calculate bounds
on the rate of subsidence at equilibrium. In addition, we present a numerical
model for the time-dependent behaviour of our system. The numerical equilibrium
solutions converge to their analytical counterparts.

The structure of the talk is as follows. First, we introduce the radiative-
convective model, and subsequently write it in Lagrangian form. Second, we cal-
culate explicit analytical equilibrium solutions for three different formulae for qsat
(the saturation specific humidity). We consider: (i) a dry atmosphere (specific
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humidity q ≡ qsat ≡ 0); (ii) a moist atmosphere where qsat is a linear function of
pseudo-height only; and (iii) a moist atmosphere where qsat is a linear function of
both potential temperature and pseudo-height. Third, we describe the numerical
method. Fourth, we calculate explicit expressions for the equilibrium numerical
solutions for each of the three formulae for qsat from before. As the vertical extent
of the geometric elements decreases, we recover the analytical solutions. Fifth,
we present representative numerical simulations, and show that equilibrium is at-
tained for sufficiently long time and for a suitably chosen time step. Finally, we
draw conclusions. This material summarises the pre-print [1].
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Flow structure and uncertainty estimation of Ekman boundary layer
flow over rough surfaces

Antony Z. Owinoh

(joint work with Omar Knio, Rupert Klein)

Ekman [1] provided analytical solutions of approximate boundary layer equa-
tions which revealed how frictional stresses impact on ocean currents on a rotating
Earth. He predicted that the surface wind direction was at 45 degrees to the iso-
bar assuming constant eddy diffusivity. The velocity profiles actually observed
in the Ekman boundary layer indicate significant deviations from these solutions.
The aim of talk is to elucidate how the Ekman layer is modified by the surface
properties. This is done by solving the Ekman layer equations [2] with the eddy
diffusivity parameterised using the mixing length hypothesis [3]. We find that
changes in surface roughness can generally enhance momentum transfer, reduce
wind speeds and changes in shear stress direction. An empirical relation express-
ing the surface shear stress as a function of the surface roughness length and
geostrophic wind is also presented.

We next investigate the effect of horizontal heterogeneity of the geostrophic
wind on the Ekman pumping. From classical theory one would expect the same
magnitude of the Ekman pumping provided the magnitudes of the geostrophic
vorticity for both cyclonic and anti-cyclonic system are equal but this has proved
not to be the case when one considers the mixing length parameterisation to the
eddy diffusivity. We further investigate the influence of the characteristics of the
underlying surface in a three-level Quasi-geostrophic (QG) model developed by
[4]. In the model, the effect of the surface friction is represented via the process
of Ekman pumping. Significant differences are noted when we compare the QG
model runs based on classical Ekman pumping and those based on the mixing
length hypothesis.

These findings naturally lead us to the question: what is the impact of the
surface roughness uncertainty on the model outputs such as the wind profiles, the



2068 Oberwolfach Report 34/2010

surface stress and on the Ekman pumping? We use the polynomial chaos expan-
sion, recently reviewed by [5], to derive the statistics of the boundary layer flow
response to surface roughness uncertainty. The polynomial chaos method employs
a spectral representation of the response of the solution to changes of the uncer-
tain parameter and was originally developed by [6] as a relative of the Wiener’s
Homogeneous Chaos theory [7]. Some results are presented that demonstrate the
use of non-intrusive polynomial chaos approach [8] to propagate uncertainty in
roughness length using the Ekman layer model. Assuming a Gaussian distribution
for the roughness length, it is found that the propagation of surface roughness
uncertainty to surface stress is not significant. The next step would be to choose
other forms of distributions, such as the uniform distribution for the roughness
length. Also, since we have a formula that relates the surface shear stress to the
surface roughness length and geostrophic wind, we hope to take the advantage of
the polynomial chaos approach to construct a complete spectral representation of
the surface shear stress as function of surface roughness length and geostrophic
wind based on this formula and thereafter, analyse the effect of surface hetero-
geneity by coupling the polynomial chaos representations with Karhunen-Loève
decompositions of the roughness length and geostrophic wind. Finally, the result-
ing model will be incorporated into the QG model and effects of roughness length
heterogeneity on the larger-scale predictions analysed.

References

[1] V. W. Ekman, On the influence of the Earth’s rotation on ocean currents, Arch. Math.
Astron. Phys., 2 (1905), 1– 52

[2] J. Pedlosky, Geophysical Fluid Dynamics, Springer-Verlag, Berlin / New York, 1987
[3] A. K. Blackadar, The vertical distribution of wind and turbulent exchange in the neutral

atmosphere, Journal of Geophysical Research 67 (1962), 3095–3102.
[4] J. Marshall and F. Molteni, Towards a dynamical understanding of planetary-scale flow

regimes, Journal of Atmospheric Sciences 50 (1993), 1792–1818
[5] H. N. Najm, Uncertainty quantification and polynomial chaos techniques in computational

fluid dynamics, Annual Review of Fluid Mechanics 41 (2009), 35–52
[6] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach. Springer-

Verlag, Berlin / New York, 1991
[7] N. Wiener The homogeneous chaos, Amer. J. Math., 60 (1938), 879–936.
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A generalized Eliassen balanced vortex model

Eileen Päschke

(joint work with Antony Owinoh, Rupert Klein)

The Eliassen balanced vortex model is an idealized two-dimensional model that was
originally derived by Eliassen [1] in order to investigate the dynamical response of
an arbitrary axisymmetric vortex in gradient wind regime to axisymmetric sources
of heat and angular momentum. The balance of the vortex is disturbed if the
sources are acting on the fluid and a secondary circulation in the meridional plane
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develops. Later on, tropical meteorologists discovered that this model could be
used to study certain aspects of tropical cyclone development (e.g. [2], [3] and
others).

One shortcoming of the Eliassen balanced vortex model is its limitation to
studies of purely axisymmetric tropical cyclone like vortices. Real tropical cyclones
are however often highly asymmetric so this model may not capture the effects of
azimuthal variations in the wind and thermal fields on the vortex intensification.

In this talk we present a generalized Eliassen balanced vortex model valid for
strong vortical flow with higher order asymmetric structure. The derivation of
the model is based on a mathematical framework named “An unified approach
to meteorological modelling” [4] and which uses asymptotic methods to derive
simplified meteorological model equations starting from the full three-dimensional
compressible flow equations on the rotating earth. Using this framework together
with an explicit treatment of a diabatic source term that describes diabatic heating
due to moisture conversion processes [5], two sets of asymptotic equations are de-
rived. The first one (Part I) describes the temporal evolution of the leading order
vortex flow in response to sources of momentum and heat and which are repre-
sented by the horizontal and vertical advection of a higher order wave-number one
wind and potential temperature field, respectively. In a pure axisymmetric setting
these sources disappear and the equations reduce to the original balance vortex
equations as given by Eliassen. The second one (Part II) includes the governing
equations that describe the higher order wave-number one wind and thermal fields
and thus can be used to determine the sources of heat and momentum occur-
ing in Part I. Moreover it can be shown that the asymmetric wind and thermal
fields described by Part II (i) are entirely induced by diabatic effects, and (ii) are
influenced non-trivially by the vortex tilt and the vortex motion.
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Averaging the global atmospheric circulation

Olivier Pauluis

(joint work with Frédéric Laliberté and Tiffany Shaw)

Atmospheric motions occur on a wide range of spatial and temporal scales, from
the microscopic scale associated with cloud droplets and ice crystals to the plane-
tary scale responsible for the redistribution of energy, momentum and water vapor
around the globe. When describing such global circulation, it is common to con-
sider the zonal-mean flow averaged over a long period of time. It is then possible
to obtain a streamfunction associated with the mean meridional overturning cir-
culation. However, the results of such analysis depends critically on the choice for
the vertical coordinate. For instance, the Eulerian-mean circulation is obtained
by averaging the flow on surfaces of constant pressure. It exhibits a three-cell
structure in each hemisphere, with the Hadley cell in the tropical and subtropical
regions, the Ferrel cell in the midlatitudes, and the polar cell in the polar re-
gions. In contrast, when the flow is averaged on dry isentropes, defined as surface
of constant potential temperature, the circulation exhibit a single Equator-to-Pole
overturning cell, with high potential air flowing toward the Pole, and low potential
temperature air flowing toward the Equator. More recently, [1, 2, 3] have shown
that when the circulation is averaged on moist isentropes, defined as surface of
constant equivalent potential temperature, the circulation still exhibits a single
cell structure, but with a significantly larger mass transport.

Exact computation the circulation on an arbitrary set of iso-surfaces requires a
complete 4-dimensional description of the atmosphere. As such extensive dataset
is not always readily available, we have developed a new procedure, the Kinetmatic
Transformed Eulerian-Mean (KTEM) that makes it possible to approximate the
circulation averaged on surface of a constant state variable ζ using solely infor-
mation on the mean state of the atmosphere and second order statistics. Our
approach can be viewed as a generalization of the Transformed Eulerian method
(TEM) [4, 5, 6, 7, 8] which has been previously used to approximate the circu-
lation on dry isentropes. The TEM however has an important limitation in that
it can only be applied to cases where the vertical profile for ζ is monotonic. In
contrast, KTEM can be applied to any arbitrary variable ζ. Here, we use KTEM
to reconstruct the circulation on dry and moist isentropes based on monthly data
from the NCEP Reanalysis [9], and show that the KTEM accurately reproduce all
the key features of the isentropic circulations obtained from direct computation.
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Data assimilation

Sebastian Reich

(joint work with Kay Bergemann, Georg Gottwald)

Data assimilation is a technique for combining mathematical models of physical
systems with measurements in order to estimate either the state of the system or
the parameters of the model. For simplicity, we assume that our model is given in
form of a differential equation

(1) ẋ = f(x)

with the initial conditions x(0) = x0 treated as a random variable with given
probability density function (PDF) π0. In the absence of observations the time
evolution of π0 is provided by Liouville’s equation

(2) πt = −∇x · (πu), u(x) := f(x),

A measurement

(3) yj = Hx(tj) + ηj ,

at time tj leads to a discontinuous change of the PDF π. Here ηj represents the
measurement error, which is a Gaussian distributed random variable with mean
zero and variance R. The change in measure is provided by Bayes’ theorem, which
states that

(4) π(x, t+j ) ∝ π(x, t−j )× exp (−L(x,yj))

with loglikelihood

(5) L(x,yj) =
1

2
(yj −Hx)TR−1(yj −Hx).

Mathematically, sequential data assimilation is completely characterized by (2)
and (4). However, its numerical implementation is not obvious for nonlinear and
high-dimensional models (1).



2072 Oberwolfach Report 34/2010

An exception is provided by the variance minimizing approach of the ensemble
Kalman filter (EnKF) technique [4], which replaced the general PDFs in (4) by
Gaussian distributions. The extension of EnKFs to more general PDFs is the
subject of intense research.

Our own approach to tackle this problem starts from a continuous embedding
of (4), which is obtained from the trivial reformulation

(6) π(x, t+j ) ∝ π(x, t−j )×
N
∏

i=1

exp (−∆sL(x,yj)) ,

of (4) with ∆s = 1/N . In the limit N → ∞, one obtains the evolution equation

(7)
∂π

∂s
= −π (L− Eπ[L])

in the artificial time-like variable s ∈ [0, 1] [5]. Here Eπ[L] denotes the expectation
of the loglikelihood function L with respect to the PDF π. The key idea is now to
find a vector field v(x, s) such that (7) becomes a continuity equation

(8)
∂π

∂s
= −∇x · (πv)

similar to Liouville’s equation (2) for the differential equation model (1). The
obvious requirement is

(9) ∇x · (πv) = π (L− Eπ[L]) .

Solutions v are not uniquely determined. A possible restriction is provided by
v = ∇xψ, where ψ is a suitable potential and which provides a link to optimal
transportation theory. The sequential data assimilation problem has now been
rephrased in form of two continuity equations (2) and (8) for the PDF π. Both
equations can be approximated by standard (Lagrangian) particle methods with
the initial particle locations drawn from the initial PDF π0.

While to above abstract methodology has not yet been applied to the gen-
eral sequential data assimilation problem, variance minimizing EnKFs can be put
into the above framework which provides new insight and improved algorithmic
implementations [1, 2, 3].
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Hybridizable discontinuous Galerkin methods for geophysical
applications

Marco Restelli

The discontinuous Galerkin (DG) method is an attractive option for the numer-
ical approximation of the flow equations for geophysical problems [6, 11, 7]. An
important drawback of this method is however its computational cost, due to the
larger number of unknowns compared with more standard continuous finite ele-
ment formulations as well as with finite volume/finite difference schemes. In this
presentation we sketch two possible strategies that allow reducing the computa-
tional cost of a linear system arising from a DG spatial discretization. The first
strategy exploits an approximate quadrature rule to reformulate the linear system
resulting from a discretization using DG finite elements in space and a semi-implicit
integrator in time for the compressible Navier–Stokes equation with stratification
as an elliptic problem for the sole pressure variable [11]. The second strategy is
based on the hybridization of the DG method and is the subject of a series of
papers [1, 2, 3, 4, 5, 8, 9, 10]; in this presentation, it will be discussed considering
the steady-state advection-diffusion-reaction model problem, following [4].
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Incompressible Navier–Stokes flows: eigenvalue problems and complex
structures

Ian Roulstone

1. Introduction

There is an extensive literature on the relationship between the velocity gra-
dient tensor M = {ui,j} and the Hessian matrix of the pressure P = {p,ij}; see,
for example, Gibbon (2008) for a review. We point out some connections between
certain eigenvalue problems and the existence of complex structures, thereby ex-
tending the results of Roulstone et al. (2009) to the pressure Hessian.

2. Eigenvalue problems

The incompressible Navier–Stokes equations in two or three dimensions

(1)
Du

Dt
+∇p = ν∆u, ∇ · u = 0,

can be written, upon taking the gradient of the momentum balance, in the form

(2)
DM

Dt
+M2 + P = D,

where D = ν∆M . Henceforth we shall consider inviscid incompressible flows in
three dimensions.

The Poisson equation for the pressure can be written

(3) TrP = −Tr(M2),

and we note that −Tr(M2) = 2QM , where QM denotes the second invariant of the
matrix M . Equation (3) is the starting point for generalising the notion of elliptic
and hyperbolic conditions on flows in two dimensions to almost-complex and real
structures in three dimensional Navier–Stokes flows (Roulstone et al. 2009). The
key point is that, for incompressible flows, QM can be expressed in terms of three-
forms. We shall now explore such issues with the Hessian matrix of the pressure
as our starting point.

3. Linear algebra of P and complex structures

The first invariant of P is simply its trace, which is ∆p. The second invariant,
QP , of P is equal to the sum of the product of pairs of eigenvalues QP = ρ1ρ2 +
ρ1ρ3 + ρ2ρ3. This invariant is given by the sum of the minors of P , which in turn
can be expressed as the sum of three three-forms.

To see this, let (l,m, n) = (px, py, pz) (the first derivatives of the pressure).
Consider R

6 spanned by (x, y, z, l,m, n) (also known as the first jet bundle over
R

3, J1
R

3) be a symplectic manifold, with symplectic form Ω = dx ∧ dl + dy ∧
dm+ dz ∧ dn. Then defining

(4) ̟p ≡ f(x, t)dx ∧ dy ∧ dz − (dl ∧ dm ∧ dz + dl ∧ dy ∧ dn+ dx ∧ dm ∧ dn),
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where f(x, t) = ρ1ρ2+ρ1ρ3+ρ2ρ3 (emphasising the dependence of the eigenvalues
on space and time), we restrict this three-form to the graph of ∇p. That is,
(5) ̟p|∇p = 0

is equivalent to

(6) f(x, t) =

∣

∣

∣

∣

pxx pxy
pyx pyy

∣

∣

∣

∣

+

∣

∣

∣

∣

pxx pxz
pzx pzz

∣

∣

∣

∣

+

∣

∣

∣

∣

pyy pyz
pzy pzz

∣

∣

∣

∣

.

Following precisely the same calculation set out in Roulstone et al. (2009), we
can show that the Hitchin Pfaffian, λ̟p

, of the three-form ̟p, is given by

(7) λ̟p
= −f(x, t)/4.

When λ̟p
< 0 an almost-complex structure exists. This is the case when f(x, t) >

0, i.e. when QP > 0. From (6), this implies

(8) pxxpyy + pxxpzz + pyypzz > p2xy + p2xz + p2yz.

4. Discussion

Roulstone et al. (2009) show that an almost-complex structure exists on T ∗
R

3

when ∆p > 0. The first jet bundle, J1
R

3, is the appropriate space in which to
study the Hessian matrix of the pressure (jet bundles are the setting for the study
of Monge-Ampère equations using differential forms). The calculation in Section 3
shows how an almost-complex structure is induced on this manifold when the
second invariant of P is positive.

It may be possible to investigate complex structures within the semi-geostrophic
equations of meteorology in three dimensions by applying Hitchin’s construction to
the invariants of the ‘stability matrix’ — a generalisation of the pressure Hessian.
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A multi-model ensemble method that combines imperfect models
through learning

Frank Selten

(joint work with Leonie van de Berge,Wim Wiegerinck,Gregory Duane)

Often an ensemble of numerical models is developed to simulate and predict the
behavior of real complex systems, like for example models of the climate system.
Each typically has its strengths and weaknesses, but all are imperfect representa-
tions of the true system. The standard strategy in predicting the behavior of the
true system is to combine the outcomes of all available models by some form of
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weighted averaging and arrive at a best guess supplemented with an assessment
of the uncertainties.

In this talk we propose a multi-model ensemble method that allows information
exchange between the models during the simulation and learn from observed data
of the true system how to optimally implement this. The idea is that the ensemble
of interacting models form a consensus on the best simulation by combining the
strengths of each.

To illustrate and test the proposed method, we use a chaotic, 3 dimensional
ODE system, the Lorenz 1963 model. Imperfect models are created by taking
three copies of this system with perturbed parameter values. A super-model is
created by the introduction of linear connection terms

ẋk = σk(yk − xk) +
∑

j 6=k

Cx
kj(xj − xk)

ẏk = xk(ρk − zk)− yk +
∑

j 6=k

Cy
kj(yj − yk)(1)

żk = xkyk − βkzk +
∑

j 6=k

Cz
kj(zj − zk) k = 1, 2, 3,

where k indexes the three imperfect models with perturbed parameter values σk,
βk and ρk and Cx

kj , C
y
kj and Cz

kj are referred to as connection coefficients. The 18
coefficients involved are learned from data that sample the truth. The solution of
the super-model is defined as the average of the three models. By the introduction
of the connection coefficients we have effectively constructed a new dynamical
system of 3 times the dimensionality of the individual models and may expect
much richer dynamical behavior.

For the learning we assume that we have a long time series of observations of
the truth. We pick initial conditions from this long time series and perform short
integrations with the super-model. A cost function, that depends on the vector of
connection coefficients C, is defined to measure the ability of the super-model to
follow the truth. A super-model solution is determined by finding a minimum in
the cost function in the 18 dimensional space of C

We randomly perturbed the parameters of the Lorenz models with perturba-
tions as large as 30% of the standard values and were able to find super-model
solutions that matched the chaotic solution of the standard model very close and
much closer than the combined solutions of the separate imperfect models. While
integrating, the interconnected models fall into synchronized behavior. For a given
set of imperfect models a multitude of super-model solutions exist that correspond
to local minima and stretched valleys in the cost function. The solutions differ
in their ability to simulate the truth by various measures. Not always could we
find a super-model solution of good quality for a given set of perturbed models,
suggesting that there are certain constraints on the imperfections that must be
met in order for the method to work.
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We repeated the same procedure for the 3-dimensional Rössler system and the
Lorenz 1984 model and arrived at similar conclusions. These illustrative examples
suggest that the super-modeling approach is a promising strategy in modeling real
complex systems like the climate system. A number of questions remains to be
answered:

• Are other forms of the connections more effective?
• How many connections are required?
• Which variables are to be connected and how often?
• How much data is needed for the learning?
• Are there more effective learning strategies?
• How to handle the slow oceanic time scales?
• What if reality falls outside of the model class?
• Does the supermodel also perform well in a changing climate?
• Do balances and conservation laws place restrictions on the connections?
• Can one choose connections on the basis of insight, without learning?
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The impact of solar thermal tides on the propagation and dissipation
of gravity waves

Fabian Senf

(joint work with Ulrich Achatz)

Gravity waves (GWs) and thermal tides are important phenomena in middle-
atmosphere dynamics. Breaking GWs have a major impact on the mean circula-
tion in the middle atmosphere (MA) [1]. Due to the limitations in computational
power most complex MA circulation models have to incorporate the effect of un-
resolved GWs via an efficient parametrization [2]. Typically, these are of vertical
column type and ignore horizontal and temporal variations in the background
fields. However, highly transient tidal perturbations are always present and dom-
inate diurnal variations in the MA through which the GWs propagate. Even in
studies of the interaction between GWs and these thermal tides, a possibly im-
portant aspect of tidal dynamics, columnar parametrizations of GWs have been
applied which do not account for the time dependence of thermal tides.
A ray tracing technique [3] is used to illuminate the impact of horizontal gradients
of the background (including the tides) and its time dependence on the propagation
and dissipation of GWs. It is shown that tidal transience leads to a modulation of
the absolute, or sometimes called ground-based, frequency of slowly propagating
GWs. Due to large tidal wind variations in the upper mesosphere most parts of the
assumed GW spectrum are slowed down in critical layer type regions. Then, the
combined action of horizontal wave number refraction and frequency modulation
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induce changes in the horizontal phase speed which may exceed the initial phase
speed by orders of magnitude. The phase speed variations have the tendency to
follow the shape of the tidal background wind. This effect leads to less critical
layer filtering of GWs and therefore decreased periodic background flow forcing
due to momentum flux divergences as compared to a classical vertical column
parametrization of instantaneously adjusting GW trains.
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Aspect ratio effects in rotating Boussinesq flows

Leslie Smith

(joint work with Susan Kurien)

The Boussinesq approximation is a starting point to describe a fairly broad range
of oceanic and atmospheric phenomena, depending on the choice of parameters.
Despite the fact that geophysical flows are confined to small-aspect-ratio domains,
idealized numerical studies of the Boussinesq equations are a mix of calculations
performed in domains of unit aspect ratio and small aspect ratio. From this mix,
it is difficult to discern aspect ratio effects from other effects of physical and/or
numerical choices such as external forcing, grid spacing and effective viscosity. Here
we take initial steps toward quantifying aspect ratio effects. Our investigation is
a fundamental study in the sense that we address qualitative and quantitative
aspects of the rotating Boussinesq equations, rather than attempt to explain a
particular geophysical phenomenon. Nonetheless, straightforward extension of the
current work may be relevant to atmospheric data for the horizontal spectrum of
kinetic energy measured in the upper troposphere at mid-latitudes [1].

A non-dimensional form of the Boussinesq equations is given by

Dδ

Dt
u+Ro−1ẑ× u+∇δp+ γρẑ = Re−1

∇δ ·∇δu,

(1)
Dδ

Dt
ρ− γ−1(Fr δ)−2ρw = (Pr Re)−1

∇δ ·∇δρ, ∇δ · u = 0,

where horizontal (vertical) distances x, y (z) are scaled by L (H), and ẑ is the
direction of stratification as well as the rotation axis. The total density is ρT =
ρ0− bz+ ρ with b positive for stable stratification. The Boussinesq approximation
assumes ρ ≪ ρ0, |bz| with background in hydrostatic balance ρ0g = ∂p0/∂z (g is
the gravitational acceleration). All velocity components (u, v, w) are scaled by a
characteristic large-scale velocity U , pressure p by ρ0U

2 and density fluctuations ρ
by Bρ0 with B constant. The operator Dδ/Dt = ∂t+u ·∇δ, ∇δ = ∇h+ ẑ δ−1∂z ,
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∇h = x̂ ∂x + ŷ ∂y and we have adopted the shorthand notation ∂i for the partial

derivative with respect to i. Given the buoyancy frequency N = (gb/ρ0)
1/2 and

Coriolis parameter f , the non-dimensional parameters are the Rossby number
Ro = U/(fL), the Froude number Fr = U/(NH), the aspect ratio δ = H/L,
the Reynolds number Re = UL/ν, the Prandtl number ν/κ and γ = BgL/U2

with constraint γ = (δ Fr)−1 for conservation of energy. The latter constraint
selects the appropriate non-dimensional coefficient B in terms of the characteristic
(imposed) velocity U by the consistency relation B = U(gρ0/b)

−1/2.
The inviscid, non-diffusive limit of the Boussinesq equations conserves potential

vorticity q = (ω +Ro−1ẑ) ·∇δρ following fluid particles:

(2)
Dδ

Dt
q =

Dδ

Dt

(

(Ro δ)−1∂zρ− (Fr δ)−1
ω · ẑ+ ω ·∇δρ

)

= 0,

where ω is the relative vorticity ω = ∇δ×u. The constant piece of q (Ro−1Fr−1)
has been dropped since it does not contribute to the conservation law(s).

To start a numerical study of aspect ratio effects, we begin with Burger number
Bu = NH/(fL) = Ro/Fr = 1, two aspect ratios δ = 1/4, 1 and Ro = Fr = ǫ < 1.
For consistency with scaling (u, v, w) by the same large-scale velocity U , we choose
a large-scale, random force equipartitioned between the three velocity components
and the density fluctuations. The objective is to reduce the essential parameter
space to (ǫ, δ). In keeping with this goal, we use hyper-viscosity and hyper-diffusion
of order 8 and an isotropic grid such that the largest resolved wavenumbers are
the same in all directions. Periodic boundary conditions allow for pseudo-spectral
calculations with resolutions up to 2048 × 2048× 512 Fourier modes for δ = 1/4
and 640× 640× 640 for δ = 1.

The asymptotic limit Ro ∼ Fr = ǫ→ 0 results in the quasi-geopstrophic (QG)
equation for nonlinear interactions between the vortical linear eigenmodes, which
are decoupled from the wave modes [2]. QG dynamics are characterized by linear
potential vorticity qqg = (ǫ δ)−1(∂zρ − ω · ẑ) and small-scale energy spectrum
scaling as Eqg(k) ∝ k−3. For Bu = 1 and small enough ǫ, one expects numerical
simulations of the full Boussinesq system (1) to yield (i) q ≈ qqg , and (ii) small-
scale, vortical mode spectrum E0(k) scaling asE0(k) ∝ k−3. Our simulations show
the results (i) and (ii) quite clearly for ǫ = 0.002 and δ = 1, 1/4. In the regime of
small-enough ǫ where potential vorticity is dominated by its linear piece, aspect
ratio effects are manifest only in the wave component of the flow.

For δ = 1, ǫ ≪ 1, benchmark numerical simulations [3] established the scaling
E±(k) ∝ k−1 for the wave-mode energy spectrum E±(k). Since N/f = 4 for
δ = 1/4, the wave component of the flow shows more tendency for horizontal
layering than for N = f and δ = 1. The wave-mode spectrum E±(k) for δ = 1/4
is overall much steeper than k−1 for all scales smaller than the forced scales, and
appears to exhibit dual scaling. The differences in wave-mode structure for δ = 1
and δ = 1/4 result from a change of internal dynamics, and are not a result of
the forcing. Ultimately our goal is to understand flow structure and statistics as a
function of Bu, Fr, Ro and δ (here reduced to two parameters with Bu = 1 with
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Fr = Ro = ǫ). For relevance to the Nastrom-Gage spectrum of wind velocities, the
study could be expanded to include an external force chosen to mimic observations.

References

[1] G. D. Nastrom & K. S. Gage, A climatology of aircraft wavenumber spectra observed by
commercial aircraft, J. Atmos. Sci. 42 (1985), 950–960.

[2] P. F. Embid & A. J. Majda, Low Froude number limiting dynamics for stably stratified
flow with small or finite Rossby numbers, Geophys. Astrophys. Fluid Dynam. 87 (1998),

1–50.
[3] P. Bartello, Geostrophic adjustment and inverse cascades in rotating stratified turbulence,

J. Atmos. Sci. 52 (1995), 4410–4428.

Geostrophic turbulence near rapid changes in stratification

Shafer Smith

(joint work with Elsa Bernard)

Geostrophic turbulence near rigid upper or lower boundaries is controlled by the
forward cascade of buoyancy variance, exhibiting a shallow energy spectrum, sec-
ondary roll-up of filaments into small vortices, and a corresponding vorticity PDF
with fat tails. The surface quasigeostrophic (SQG) model, which assumes a semi-
infinte volume with zero quasigeostrophic potential vorticity (QGPV) and conser-
vation of buoyancy at its surface, provides the simplest setting in which these ef-
fects arise. A family of somewhat more complex models that include finite domain
depth, non-zero QGPV and forcing by baroclinic instability [1, 2] demonstrate
how these effects can arise in more realistic settings, and reveal the competition
between flow characteristics driven by interior QGPV anomalies and those driven
by surface buoyancy anomalies. In particular, baroclinically-unstable flows can
lead to a surface kinetic energy spectrum with a K−3 power law over a range of
wavenumbers greater than than the first deformation wavenumber, and a flatter
K−5/3 spectrum beyond some transition wavenumber, Kt, determined by the rel-
ative baroclinic forcing of surface and interior modes. In the idealization of the
atmospheric tropopause as a rigid surface overlying the baroclinically-unstable
troposphere, this may partially explain the observations of Nastrom and Gage [3].

The tropopause is obviously not a rigid surface, which motivates us to inves-
tigate geostrophic turbulence near a smooth jump in stratification. The goal is
to understand just how sharp a transition must be to yield SQG-like behavior,
and what its horizontal and vertical scales are. We consider a family of idealized
buoyancy frequency profiles of the form N(z) = N0 + NJ tanh(z/δ), where N0

is the average value, NJ is the magnitude of the jump across z = 0 and δ the
vertical scale of the jump (the profile approaches a step function as δ → 0). With
non-constant N , and after Fourier-transforming in the horizontal (assuming pe-
riodic lateral boundary conditions), the relationship between the QGPV and the
streamfunction is a second order eliptic equation with non-constant coefficients,
L ψK = qK, with L ≡ −K2 + ∂zf

2/N2∂z, where K = (k, l) is the horizontal
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wave-vector, K is its magnitude, f is the Coriolis paramter, and qK and ψK are
the spectral amplitudes of the QGPV and streamfunction, respectively.

Given qK(z) and assuming decay conditions for z → ±∞, the streamfunction
can be found via the integral

ψK =

∫ ∞

−∞

qK(ξ)G(z, ξ) dξ,

where L G(x, ξ) = δ(z − ξ) defines the Green’s function G(z, ξ) for the operator
L. The Green’s function is approximated using the WKB method with the small
parameter K/KH, where KH = f/N0H and H is an imposed vertical scale, which
can be taken as the height of the (neglected) boundaries. The result is

G(z, ξ) ≈ −
√

N(z)N(ξ)

2f
K−1e

± K
KH

z−ξ
H

(

cosh z/δ

cosh ξ/δ

)± K
Kδ

.

where Kδ ≡ f/(NJδ) is a deformation wavenumber associated with the thickness
δ of the transition layer. When δ is small, the QGPV will be dominated by a spike
at z = 0, due to the derivative of N−2 in the operator L; assuming the QGPV to
be dominated by this term, and a forward inertial cascade of QGPV variance, we
can use the Green’s function inversion to predict the spectrum of kinetic energy
for all K and z. The computation results in a SQG-like −5/3 spectrum from the
smallest wavenumber (greater than or near KH , due to our WKB approximation)
up to Kδ. At higher wavenumbers, K < Kδ, the spectrum reverts to a −3 shape.

The jump in stratification has two effects: it alters the Green’s function in the
region of the jump, and it produces a peak in PV near the jump. When the Green’s
function is integrated against this sharp PV distribution, contributions far from
the jump (|z| ≫ δ) are supressed, and the kinetic energy spectrum flattens. This
occurs for a range of wavenumbersKH < K < Kδ. The vertical distribution of the
flattened spectrum decays over a distance proportional to δ. Thus, SQG-effects
should be expected at jumps in N , even when this jump is rather smooth, but only
for wavenumbers K < Kδ. Numerical simulations of freely-evolving turbulence
initialized with a QGPV distribution dominated by the jump in N , and with
variance concentrated at the largest model scales, verify these predictions.
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Uncertainty propagation and quantification in numerical ocean
simulations using polynomial chaos expansions

Ashwanth Srinivasan

(joint work with W. C. Thacker, M. Iskandarani, O. M. Knio)

Polynomial Chaos Expansions, based on Weiner’s concept of homogeneous chaos
[1], have been developed in the engineering community to propagate uncertain-
ties in model inputs to uncertainties in model outputs[2, 4, 3]. The approach
relies on representing uncertain inputs as functions of random variables of known
or assumed probability density function, and expressing the model solution as a
spectral expansion in terms of suitable orthogonal basis functions associated with
the probability density of the inputs. The coefficients of the spectral expansion are
then computed by a Galerkin projection that avoids modification to the original
code, and that requires only an ensemble calculation at a carefully selected values
of the stochastic variable. Here we present a first application of this methodology
to a HYCOM simulation of the circulation in the Gulf of Mexico. In this example,
we use two stochastic dimensions to parameterize uncertainties in the boundary
conditions and expand the output as a Gauss-Hermite polynomial series truncated
to 5th order. The uncertain boundary conditions are propagated and tracked as
uncertainties in model outputs with particular emphasis on those associated with
the Loop Current. We present the mean and statistics of the solution obtained
from the spectral expansions. We also examine convergence of the expansion by
checking the impact of retaining more terms. It is suggested that the method is
a viable alternative to other methods for exploring the consequences of a small
number of important but uncertain inputs. When the output response surface
is smooth, the method offers several advantages including an efficient functional
representation of output uncertainties using a small number of coefficients and
no-apriori limits on the linearity of the model or constraints on the input/output
statistics.
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Multiscale models for cumulus cloud dynamics

Samuel N. Stechmann

(joint work with Bjorn Stevens)

Cumulus clouds involve processes on a vast range of scales – including cloud
droplets, turbulent mixing, and updrafts and downdrafts – and it is often diffi-
cult to determine how processes on different scales interact with each other. In
this article, several multi-scale asymptotic models are derived for cumulus cloud
dynamics in order to (i) provide a systematic scale analysis on each scale and (ii)
clarify the nature of interactions between different scales. In terms of scale analysis,
it is shown that shallow cumulus updrafts can be described by balanced dynam-
ics with a balance between source terms and ascent/descent; this is a cloud-scale
version of so-called weak-temperature-gradient models. In terms of multi-scale
interactions, a model is derived that connects these balanced updrafts to the fluc-
tuations within the balanced updraft envelope. These fluctuations describe parcels
and updraft pulses, and this model encompasses some of the multi-scale aspects of
entrainment. In addition to this shallow cumulus model, in order to also provide
a broad picture of general cumulus dynamics, multi-scale models are also derived
for other scales; these include models for parcels and sub-parcel turbulent mixing
and models for deep cumulus. Broadly speaking, the differences in the shallow and
deep cases convey the notion that shallow cumulus dynamics are parcel-dominated,
whereas deep cumulus dynamics are updraft-dominated; this is largely due to the
difference in the apparent magnitude of the background temperature stratification.
In addition to their use in guiding theory, the multi-scale models also provide a
framework for multi-scale numerical simulations. This work is published in [1].
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The diurnal cycle and the meridional extent of the tropics

Esteban G. Tabak

(joint work with Paul A. Milewski)

This talk proposes a mathematical theory explaining the sharp transition be-
tween tropics and extra-tropics in terms of the diurnal cycle of thermal forcing
by the sun. This transition, at a latitude of 30 degrees, coincides with the outer
edge of the Hadley cells, and is marked by a steep jump in the height of the tro-
posphere, from around fifteen kilometers in the tropics to about nine in the mid
and high latitudes. The tropics, equatorwards of 30 degrees, are characterized by
easterly surface winds -the Trades- and a strong diurnal signal in the wind, pres-
sure and temperature, often marked by regular daily storms in the rainy season.
Polewards of 30 degrees, the winds are westerly, and the weather systems have
longer spatio-temporal scales.
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This change of behavior can be explained in terms of diurnal waves, created by
thermal forcing and trapped equatorwards of 30 degrees by the Coriolis effect [1].
These waves organize the convective activity, leading to more active mixing and
vertical transport in the tropics. This can be illustrated in simple mathematical
models, presently ranging from forced linear oscillators to nonlinear conservation
laws with entraining shock waves, accounting for the entrainment into the tropo-
sphere of air from the surface boundary layer.
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Coarse-graining of deterministic dynamics via statistical estimation
and optimization

Bruce Turkington

(joint work with Petr Plecháč)

A fundamental problem confronted throughout the atmospheric and oceanic sci-
ences is that of ”coarse-graining” or ”sub-grid scale parameterization.” In many
instances the continuum equations that govern the motion of a geophysical system
under study are known and trusted, but a full numerical computation of their so-
lutions is neither feasible nor desirable. Broadly speaking, this situation is typical
of any ”turbulent” dynamical system, meaning one that excites a wide range of
scales (or modes) of motion that interact nonlinearly. For such a system, the goal
of a simulation becomes to approximate the average motion of its large scales to
within a reasonable accuracy without resolving the small-scale fluctuations that
interact with them. In this talk we address the general problem of deriving a
closed set of reduced equations for the resolved scales of motion from a princi-
ple of maximum compatibility to the complete equations governing the dynamical
system. To maintain contact with foundational concepts in nonequilibrium statis-
tical mechanics, we focus on deterministic, Hamiltonian dynamics, and we seek a
statistical closure in terms of a selected set of resolved variables.

The underlying microscopic dynamics is Hamiltonian on a phase space Γ, so that
for any observable F : Γ → R, dF/dt = {F,H}, where H denotes the Hamiltonian,
and {·, ·} is the Poisson bracket. Finitely many selected observables compose the
resolved vector A = (A1, . . . , Am) : Γ → Rm. Typically these Ak are slow modes of
the system, which provide a coarse-grained description of the state of the system.
We put no restrictions on the choice of these (independent) resolved variables, but
the quality of the resulting model reduction certainly depends on the choice of A.

Under the coarse-graining the unresolved variables are relegated to a statistical
description, which we represent by a parametric family of probability densities
on Γ associated with the resolved vector A. The simplest statistical model is
the exponential family (of maximum entropy states): ρ̃(λ) = exp[λ∗A− φ(λ)]ρeq ,
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relative to a fixed equilibrium density ρeq. The parameter vector λ ∈ Rm is dual
to the expectation, 〈A|ρ̃(λ)〉, which is the instantaneous macrostate.

Our statistical closure is defined by best-fitting these trial probability densities
to the Liouville equation. Specifically, we calculate the residual R = [∂/∂t +
{·, H}] log ρ̃(λ), for any path λ(t), t0 ≤ t ≤ t1; R represents an information loss

rate. We minimize a time-integrated, mean-squared norm,
∫ t1
t0

‖R‖2ǫ dt, over the

time horizon of prediction; a weight factor ǫ ∈ (0, 1] on the unresolved component
of R is the adjustable parameter in our closure. For each terminal time t1, the

minimizing path determines a best-estimate, λ̂(t1), at time t1.
By introducing a value function, v(λ1, t1), for the defining optimization prob-

lem, the estimated macrostate, λ̂(t1) = argmin v(λ1, t1), can be deduced from the
solution of the relevant Hamilton-Jacobi equation. Heuristically, this Hamilton-
Jacobi equation takes the place of a Fokker-Planck equation in a standard sto-
chastic model, while the value function resembles a minus-log-likelihood function.
In our approach it is not necessary to interpose a stochastic model between the
given deterministic dynamics and the closed reduced equations, since they follow
directly from the information-theoretic, best-fit principle.

In practice, it is not feasible to solve the Hamilton-Jacobi equation when m is
not very small. For this reason we derive a pair of equations for the best-fit esti-

mate λ̂(t1) and the corresponding Hessian matrix D2v(λ̂(t1), t1), which quantifies
the information content of the estimate. In the near equilibrium regime under the
usual linear response approximations, this system closes exactly; far from equilib-
rium it requires a further closure assumption, which is akin to a quasi-gaussian
approximation. The reduced equations then consist of a vector equation for the
estimated macrostate and a matrix Riccati-type equation for the Hessian. In fact,
they have a format similar to the ”state equation” and a ”variance equation” of
the Kalman-Bucy filter. But, in our statistical closure problem we are filtering an
under-resolved deterministic dynamics, not noisy observations.

The main message of this talk is that the construction of closure schemes for
turbulent dynamics can be approached systematically by means of statistical es-
timation. Our theory paper [1] gives a full exposition of this approach to model
reduction, while our companion paper [2] exhibits numerical results and compar-
isons for a standard test problem in statistical physics — the Zwanzig heat bath,
in which a heavy particle is coupled to a large number of light particles.
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Inertia-gravity-wave generation by sheared potential-vorticity
anomalies

Jacques Vanneste

(joint work with François Lott and Riwal Plougonven)

The spontaneous generation of inertia-gravity waves by slowly evolving balanced
flows has attracted attention for two main reasons: at a theoretical level, the
mechanism reflects the non-existence of an exactly invariant slow manifold for
the (inviscid) primitive equations; at a practical level, it represents a potential
source of inertia-gravity waves with non-zero phase speeds. In the last few years,
a number of numerical simulations have documented spontaneous generation by
providing examples of nearly balanced flows, baroclinically unstable flows and
vortex dipoles in particular, in which inertia-gravity waves can be detected [1, 2].
Asymptotic analysis of explicit solutions, on the other hand, suggests that the
spontaneous generation is exponentially small in the Rossby number Ro in the
limit Ro → 0 [3, 4]. This confirms that dynamical-system results obtained for
conservative systems with two time scales [5, 6] are relevant to fluid models.

One possible mode of spontaneous generation is through the coupling that oc-
curs between balanced motion and inertia-gravity waves in vertically sheared flows
U(z). This coupling can be understood by noting that a balanced motion with
horizontal scale k−1 and frequency ω, localised around some altitude z = 0 (with
U(0) = 0), has a Doppler-shifted frequency ω − kU(z) which overlaps with the
inertia-gravity-wave frequencies at altitudes such that |ω − kU(z)| ≥ f .

As a model of this mechanism, we consider the linear response to potential-
vorticity perturbations of the form

(1) q(x, y, z, t) = ei(kx+ly−ωt)δ(z)

in a linear shear flow U(z) = Λz. Specifically, we compute the form of other
fields, vertical velocity w for instance, which are associated with the potential
vorticity (1). The motivation for this computation is twofold: first, by superpo-
sition, one can deduce the response of an arbitrary linear solution q(x, y, z, t) =
q0(x − Λzt, y, z); second, if there is a horizontal boundary at z = 0, (1) can be
interpreted as the surface potential temperature θ = exp [i(kx+ ly − ωt)], so that
the computation yields the response to a potential-temperature anomaly.

The vertical velocity, regarded as a function of ζ = Λk(z − c)/N , satisfies

(2) ζ(1 − ζ2)W ′′ − 2(1− iγζ)W ′ − (J 2ζ + 2iγ)W = 0, where J =
N
√

1 + γ2

Λ

and γ = l/k. The solution can be expressed in terms of hypergeometric functions
[7]. More transparent results are obtained in the large-Richardson regime J ≫
1 (equivalent to a small-Rossby-number regime for this problem) using a WKB
approach [8]. This provides expressions for W in four regions (for ζ > 0): (i) the
quasi-geostrophic region ζ = O(J −1), where the solution decays exponentially;
(ii) the region O(1) = ζ < 1, where the exponential decay is replaced by the faster
decay exp(−J sin−1 ζ); (iii) the inertial-level region |ζ − 1| = O(J −2); and (iv)
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the wave region ζ > 1, where the solution takes the form of a propagating inertia-
gravity wave. Connection formulas relate the amplitude of the solution in each
region and give, in particular, the exponentially small amplitude

(3) kJ e−(J+γ)π/2−κc

in region (iv). This is the amplitude of what can be interpreted as the inertia-
gravity-wave signature at high altitude of the balanced motion at z = 0. The
strong dependence of (3) on γ = l/k implies that this signature is highly anisotropic
for potential-vorticity distributions which are isotropic in the z = 0 plane.

The asymptotic computation indicates that a solution that is purely decaying
away from z = 0 in the quasi-geostrophic region (i) does not satisfy the proper
radiating boundary condition for |z| ≫ 1. The analysis of the Stokes phenom-
enon that occurs at the inertial level ζ = 1 shows that the radiation condition
is satisfied provided that the solution decaying in region (i) is accompanied by
an exponentially small multiple of its growing counterpart. More precisely, the
streamfunction in region (i) takes the form

(4) ψ = A
(

e−κz + ie−2κce−Jπ cosh(γπ)eκz
)

.

From this, and considering the situation of a horizontal boundary at z = 0, one can
derive a relation between ψ|z=0 and the potential temperature θ = ψz|z=0 that
extends the surface quasi-geostrophic relation θ = −κ ψ|z=0. A generalisation of
the surface quasi-geostrophic model that accounts for the (dissipative) effect of
wave radiation through a history-dependent term follows. This makes it possible,
among other things, to estimate the growth rate of the instability of Eady (or
edge) waves studied in [7].
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Linear response theory for statistical ensembles in complex systems
with time-periodic forcing

Xiaoming Wang

(joint work with Andrew J. Majda)

New linear response formulas for unperturbed chaotic (stochastic) complex dy-
namical systems with time periodic coefficients are developed here. Such time
periodic systems arise naturally in climate change studies due to the seasonal
cycle. These response formulas are developed through the mathematical inter-
play between statistical solutions for the time-periodic dynamical systems and the
related skew-product system. This interplay is utilized to develop new system-
atic quasi-Gaussian and adjoint algorithms for calculating the climate response in
such time-periodic systems. New linear response formulas are also developed here
for general time-dependent statistical ensembles arising in ensemble prediction
including the effects of deterministic model errors, initial ensembles, and model
noise perturbations simultaneously . An information theoretic perspective is devel-
oped in calculating those model perturbations which yield the largest information
deficit for the unperturbed system both for climate response and finite ensemble
predictions. This is a joint work with Andrew J. Majda [15].
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Higher order spatial discretisation methods for non-hydrostatic
models of the atmosphere on regular grids

Andreas Will

(joint work with Jack Ogaja)

In turbulence modeling small stencils, conservation of the integrals of motion and
high order of approximation of the mathematical operators for filtering and deriva-
tives could be realised ([2]). Nowadays such methods are going to be developed
for state of the art atmospheric LAMs. In the following the behaviour in idealised
test cases of different numerical approximations of an incompressible model and
the current status of the development of a state of the art model ( COSMO) for
RCM and NWP is presented.

1. Small Amplitude Disturbance Growth in a LES model

The small amplitude disturbance growth (one mode only) of the Poiseuille flow
is a two dimensional idealised test case suitable for analysing of the phase and of
the amplitude error of a substantial part of the numerical approximation of the
model.

The Table gives the type of formulation of the nonlinear term (NLT), the order
and type of the approximation of the spatial derivatives in x,z and in y direction
for the quadratic (nonlinear) and viscous terms and independently for the pressure
term and the continuity equation (projection step) of the schemes investigated.

At a rather high (ny = 256) wall normal and low (nx = 8) wall parallel reso-
lution the 4th order scheme xz4y2p4e generally over-predicts the energy growth.
Consistently xz6y4p6e over-predicts the energy growth too. All other schemes
under-predict the energy growth. As expected all compact schemes have nearly no
phase errors though the discretizations of the projection step are rather different.
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Scheme NLT of quadratic and viscous terms ∂p/∂q and ∂uq/∂q
∂/∂x, ∂/∂z ∂/∂y for q = x and q = z

xz2y2p2e divergence 2nd expl. 2nd expl. 2nd expl.
xz4y2p4e divergence 4th expl. 2nd expl. 4th expl.
xz6y2p2e skew-sym. 6th impl. 2nd expl. 2nd expl.
xz6y2p4e skew-sym. 6th impl. 2nd expl. 4th expl.
xz6y2p6e skew-sym. 6th impl. 2nd expl. 6th expl.
xz6y4p6e skew-sym. 6th impl. 4th expl. 6th expl.

Table 1. Numerical schemes used. Here x denotes the mean flow
and y the wall normal direction. expl. denotes explicit or centr.
diff. and impl. implicit or compact scheme. See [1] for details
of the compact schemes.

Resolving the wave with 8 points the 2nd order scheme xz2y2p2e exhibits 10%
and the 4th order scheme xz4y2p4e 2% phase error.

The energy growth results are surprising. The compact scheme xz6y4p6e meets
perfectly the theoretical energy growth. Interestingly xz6y2p4e and xz6y2p2e pro-
vide rather high energy growth errors. The unstable mode became stable. A
higher order approximation of the projection step is therefore required to meet
small energy growth errors. As shown in [1] the general results are confirmed by
turbulent calculations.

2. 2D stationary mountain flow in the COSMO model

The horizontal discretisation schemes available with the 3rd order RK time
integration of the non-hydrostatic cosmo 4.11 (and WRF) model are the standard
2nd order central difference scheme with 3rd and 5th upwind and 4th and 6th
order centr.diff. discretisation approximations in the horizontal advection term.

We investigated the hydrostatic linear case (HL2DM) of the idealized test case
(ITC) ’stationary 2D flow over the mountain’ (2DM). The results show clearly that
the convergence properties of the 2nd order central difference scheme are consistent
with the theoretical order of convergence. With increasing formal order of the
advection scheme the convergence order in the 2D hydrostatic mountain flow test
decreases and reaches 1 for the 5th and 6th order schemes, nearly independently
on the variable and error norm chosen.

3. Summary and Conclusions

The higher order compact scheme xz6y4p6e described by [1] has the desired
properties, as shown by small amplitude disturbance growth. The 2nd order
scheme (xz2y2p2e) was shown to require a resolution of the wavelength Lx by
at least 64 points accepting a 1% error in amplitude and phase. Using a much
coarser resolution of ∆x = Lx/8 the higher order compact scheme xz6y4p6e re-
vealed practically perfect results. The phase error was found to be fairly indepen-
dent of the discretization of the projection step. Explicite and implicite higher
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order discretization of the projection step (required for avoiding of amplitude er-
rors) show the same energy growth. Therefore discretisation of the projection step
has not to be of the same kind as for the other terms.

The lack of higher order convergence of schemes with higher order advection
terms is consistent with the result found for the turbulence scheme, where the
mixing of high order advection and low order pressure gradient showed high order
phase error convergence but low order amplitude error convergence with absolute
errors much higher for the higher order schemes than for the standard second order
scheme. However, the significant decrease of the order of convergence of the higher
order advection schemes was surprising and indicates an incosistency.
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A simple method to improve the time-stepping in atmosphere and
ocean models

Paul D. Williams

From a functional perspective, the task of predicting future weather and climate
may be reduced to the following iterative procedure. First, given the state of the
atmosphere, ocean, and other Earth-system components at any time (the input),
use the governing equations to compute the state at a slightly later time (the
output). Then, repeat the loop as many times as required, always using the
previous output as the next input.

The above prediction framework presents three main challenges, each of which
potentially degrades the reliability of the forecast. First, Earth observations, which
always contain measurement errors, are required to serve as the initial state. Sec-
ond, the vast array of active physical processes and interactions is incompletely
known and imperfectly represented in the spatially truncated governing equations.
Third, the discrete stepping from one time level to the next is merely an approx-
imation to the exact time-continuous evolution. This talk presents a possible
avenue for progress with the third of these three challenges, which has received
scant attention compared to the extensive research efforts devoted to the first two.

A major problem with the widely used leapfrog time-stepping scheme is that it
admits spurious computational modes [5, 4, 3]. In general, a differential equation
that is first order in time has one degree of freedom, but an n-time-level numerical
approximation to it constitutes an (n− 1)th-order difference equation with n− 1
degrees of freedom. Of these n − 1 modes, one is the physical mode and the
remaining n − 2 are computational modes. The leapfrog is a three-time-level
scheme, so one computational mode arises in it, in addition to the physical mode,
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because a second-order difference equation is used to approximate a first-order
differential equation. The computational mode (or parasitic mode) is manifest as
a spurious oscillation between even and odd time steps, which is referred to as
time splitting.

The most widely used solution to time splitting is to apply a time filter during
the time-stepping procedure. [7] designed such a filter for the leapfrog scheme and
[1] showed that it selectively suppresses the computational mode but leaves the
physical mode relatively undamped at low frequencies. The filter is now referred
to as the Robert filter, the Asselin filter, or the Robert–Asselin filter. The behav-
ior of the filter has been investigated not only for simple equation sets, with no
space dependence, but also for the shallow-water equations [6] and the hydrostatic
primitive equations [2].

Despite its unquestioned success, the Robert–Asselin-filtered leapfrog scheme
suffers from two related problems. First, in addition to suppressing the compu-
tational mode, the scheme also weakly suppresses the physical mode. Therefore,
physical quantities (e.g., energy) that are conserved by the time-continuous equa-
tions are not necessarily conserved by the time-discretized equations when the fil-
ter is activated. The damping and nonconservation may be benign for sufficiently
short integrations, but possibly not for longer ones. Second, the Robert–Asselin
filter severely degrades the leapfrog scheme’s numerical accuracy, measured as the
rate at which the error tends to zero as the time step is progressively refined.

This talk proposes a simple modification to the Robert–Asselin filter, which
does conserve the three-time-level mean state [8]. When used in conjunction with
the leapfrog scheme, the modification vastly reduces the impacts on the physical
mode and increases the numerical accuracy for amplitude errors by two orders,
yielding third-order accuracy. The modified filter could easily be incorporated
into existing general circulation models of the atmosphere and ocean. In principle,
it should deliver more faithful simulations at almost no additional computational
expense.
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Zonation

William R. Young

(joint work with Kaushik Srinivasan)

Zonal jets are the result of a poorly understood process via which spontaneously
arising Reynolds stresses destroy an initial state of spatially homogeneous β-plane
turbulence. The ultimate equilibration of this instability results in a mature pat-
tern of zonal jets, co-existing with turbulence. All properties of the turbulence,
particularly the transport of scalars and potential vorticity, are substantially mod-
ified by the jets. I discussed new approaches to quantitatively analyzing the jet-
forming instability (“zonation”) and parameterizing transport of momentum in
these flows. The main hypothesis is that the instability is a transfer of energy,
non-local in wavenumber, from the forcing scale directly to the jet scale. Pre-
liminary results are supportive of this hypothesis and suggest analytic approaches
providing quantitative relations connecting momentum fluxes to mean shear i.e.,
“negative eddy viscosities”.

The problem is to parameterize the eddies flux on the right hand side of the
zonal-mean momentum balance,

(1) ūt + µū = −
(

u′v′
)

y
.

Diagnosis of turbulence simulations shows that although eddies with scale com-
parable to the zonal jets themselves contain most of the energy, these large and
energetic eddies contribute almost nothing to u′v′. Instead, small forcing-scale
eddies are the main contributors to the Reynolds stress u′v′. In other words, zonal
jets are driven by a spectrally nonlocal transfer of energy. The Taylor identity,

(2) v′ζ′ = −
(

u′v′
)

y
,

and the notion of potential-vorticity mixing, suggests a diffusive parameterization
in which a positive eddy diffusivity κe relates the eddy flux to the mean gradient
of potential vorticity:

(3) −
(

u′v′
)

y

?
= −κe (β − ūyy) .

However Thompson & Stewart (1977) pointed out that this parameterization does
not conserve momentum: integrating the relation above over y, and assuming no
momentum flux through the boundaries, results in the contradiction

(4) 0 = −κeβ
∫

dy .

At least in the weakly nonlinear limit this issue is resolved by the rigorous deriva-
tion of an amplitude equation (e.g., Manfroi & Young 1999). This description,



2094 Oberwolfach Report 34/2010

which is equivalent to the Cahn-Hilliard equation

(5) ūt + µū = −
(

νū+ ηūyy + α2ū
2 − α3ū

3
)

yy
.

is consistent with momentum conservation and all symmetries of the equations
of motion. The underlying variational structure of the Cahn-Hilliard equation
explains the observed stability of zonal jets and solutions of the Cahn-Hilliard
equation resemble observed jet profiles. These facts support the hypothesis that
the Cahn-Hilliard description applies well outside of the weakly-nonlinear limit in
which it is derived.
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Instabilities of buoyancy driven coastal currents and their nonlinear
evolution in the two-layer rotating shallow water model

Vladimir Zeitlin

(joint work with François Bouchut, Jonathan Gula)

We investigate linear and nonlinear stability of buoyancy-driven coastal currents
in the two-layer rotating shallow water model. The coastal current is modelled by
a layer of lighter fluid of variable depth and variable along-shore velocity, the two
being in geostrophic balance, extending from the straight vertical border towards
the outcropping density front where it terminates. It is superimposed over the
heavier fluid at rest extending down to the flat bottom, and out from the coast to
infinity. We accomplish an exhaustive linear stability analysis of such configuration
with the help of spectral collocation method [1]. Linear instabilities are identified
and classified according to the physical nature of the resonating waves which form
the unstable modes. The dependence of the instabilities of the depth and/or
density ratio of the layers is investigated.

In order to understand the nonlinear stage of instability, fully nonlinear di-
rect numerical simulations (DNS) using a novel high-resolution entropy-satisfying
well-balanced finite-volume scheme of [2], which copes with losses of hyperbolicity
associated to shear (Kelvin-Helmholtz type) instabilities in multi-layer systems,
were performed. The simulations were initialized with different unstable modes
identified by the linear stability analysis, following the approach used earlier to
study outcropping fronts within the one-layer shallow water model [3].

The main conclusions following from the DNS are as follows. In the case of
a barotropically stable upper-layer flow (i.e. a flow which is stable in the limit
of infinitely deep lower layer), for deep, but not excessively deep lower layers the
system is destabilized by an instability due to the resonance between a lower-layer
Rossby wave, and an upper-layer frontal wave propagating along the outcropping
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line (RF instablity). The growing RF instability leads to breaking of the Rossby
and the frontal wave in respective layers, and formation of coherent vortices which
are able to detach from the coast due to their dipolar structure in the lower layer.
Kelvin front formation at the coast, due to the breaking of non-dispersive Kelvin
waves, plays an important role in this process. For sufficiently shallow lower layers
the short-wave shear instabilities dominate the initial evolution of the flow. They
are, however, rapidly smeared out by dissipation, and do not lead to substantial
reorganization of the flow, which is then subject to the RF instability with similar,
as described above, evolution.

In the case of barotropically unstable upper-layer flow, and sufficiently deep
lower layers, the instability resulting from the resonance of the frontal and Kelvin
waves in the upper layer (KF instability), dominates. However, at the later stages
of the evolution the baroclinic RF instability steps in and excites vortex structures
in the lower layer. The whole system then undergoes baroclinic instability leading
to coherent vortices appearing in both layers and eventually detaching from the
coast. For shallower lower layers, again, the shear instabilities dominate at initial
stages, being eliminated then by dissipation. They do not much influence the
development of the upper layer KF instability, and subsequent switching of slower
RF baroclinic instability. This latter leads to the formation of coherent vortices
with pronounced baroclinic structure.
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an der Universität Rostock e.V.
Schloßstr. 6
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