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A B S T R A C T   

Electric aircraft offer the potential for emissions savings towards decarbonising air transport and reducing its 
contribution to climate change. However, the characteristics of these novel technologies pose questions about 
how they can be integrated with existing airport infrastructure. Key considerations relate to the time needed to 
recharge electric aircraft whilst on the ground without adversely affecting operational capacities, and the 
requirement for airport operators to install electric charging capabilities. The paper applies queuing theory and 
simulation modelling techniques to help identify potential battery charging regimes for electric aircraft based on 
potential forecasts of the future electric aircraft fleet. An initial prototype discrete event simulation model was 
developed to simulate impacts of short-haul electric aircraft on airport capacity to help determine future 
infrastructural requirements. Computational optimisation techniques were used to determine optimal configu-
rations of single purpose and converted dual purpose aircraft parking stands under different scenarios and 
charging regimes. The model demonstrated that a future increase in electric aircraft equating to 25% of the 
global aircraft fleet required the conversion of only 13% of existing parking stands, while maintaining airside 
capacity and operational efficiency. The findings have important implications for air transport planners and 
decision makers in the transition to zero emissions and flight.   

1. Introduction and context 

It is widely recognised that the established, deeply embedded reli-
ance on the burning of fossil fuels for air travel is unsustainable. 
Notwithstanding the recent impacts of the COVID-19 pandemic and the 
reduction in air travel demand, up to 2050 it is forecast that greenhouse 
gas emissions from international aviation will increase by a factor of 
between 2 and 4 times over 2015 levels (Fleming and de Lépinay, 2019). 
The challenges associated with combatting climate change and the 
specific role of major polluting industries like aviation in meeting 
emission reductions targets were reiterated during the recent COP26 UN 
Climate Change Conference held in Glasgow in 2021. 

Consequently, there is an increasing focus on the potential envi-
ronmental benefits of transitioning to new sustainable forms of aircraft 
propulsion technology, including electrically powered and hydrogen 

powered aircraft. Of these technologies, electrical propulsion is arguably 
the more mature, with a number of test flights of both pure-electric 
(powered solely by electrical motors using batteries) and hybrid- 
electric aircraft (powered by a combination of electricity from batte-
ries and fuel burnt in an internal combustion engine) having taken place 
in recent years. Notable recent examples include the first test flight of a 
hydrogen fuel cell powered aircraft operated by the firm ZeroAvia at 
Cranfield Airport in September 2020. In August 2021, the US company 
Ampaire successfully completed a series of test flights of its hybrid 
electric EEL aircraft on a route between the Orkney Isles and John 
O’Groats in Scotland as part of research project examining the com-
mercial viability of passenger routes served by electric aircraft. 

While electric aircraft have significant benefits over traditional sys-
tems in terms of environmental performance, their development and 
adoption has so far been limited by the vastly inferior energy density of 
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batteries relative to kerosene, and the additional weight these bring to 
the airframe. As of 2019, the most advanced Li-Ion battery cells had 
energy densities of 250 Wh/kg, equating to 1.7% of the equivalent jet 
fuel energy content. By comparison, a short-range electric aircraft de-
mands battery-pack energy densities of 750-2,000 Wh/kg, or 6-15% of 
the existing jet fuel energy content. While annual increases in the energy 
density of batteries has increased around 3-4% annually since 2000 
(Schafer et al. 2019), there is still a need for significant progress in 
battery technology before electric aircraft could compete directly with 
traditional aircraft on these terms. 

For these reasons, the short to medium term to 2030, the prospect for 
electric aircraft is focussed on their application for shorter range mission 
profiles (50-400km) in the small and regional (max 19 seats) aircraft 
market, as a well as for general aviation and pilot training. By contrast, 
the prospect of medium and longer-range electric aircraft operating in 
the next 10 to 20 years is far more limited for narrow body aircraft, and 
almost entirely out of the question for wide body aircraft (Reimers, 
2018). 

Like electric road vehicles, batteries for electric aircraft are likely to 
be integrated or ‘fixed’ within the airframe (known as Battery Charging 
Systems); requiring an aircraft to be ‘plugged in’ to a power source once 
the battery has been discharged. In comparison, for Battery Swapping 
Systems the batteries are removed from the airframe to be charged 
remotely, and then ‘dropped’ back into the airframe once fully charged. 
While Battery Swapping Systems may reduce the amount of time needed 
to recharge an aircraft, they are likely to require new specialist equip-
ment for replacing and moving batteries around the airfield and add 
complexity to existing airport operational procedures. There are also 
potential safety concerns with these systems, where sparks from exposed 
electrical contacts may pose an added fire risk (Roland Berger, 2018). 

While the key drivers for the development and adoption of electric 
aircraft focus on their environmental benefits over traditional systems 
(e. g. lower levels of emissions, reduced noise and lower energy con-
sumption), there are important unanswered questions regarding their 
potential logistical and operational impacts for airports, as well as the 
associated infrastructural requirements. Principally, these questions 
relate to the amount of time required to charge the aircraft’s batteries 
while on the ground, and the need for specialist charging infrastructure 
on the aircraft parking stand. 

As is well established in the air transport literature airline business 
models rely on high aircraft utilisation and efficient turnarounds (Lange 
et al. 2019). This is especially true in short-haul markets (<3 hours flight 
time), which is where electric aircraft are expected to operate when they 
first enter the market. This is also an important consideration for airport 
operators, especially at the busiest airports and/or those with limited 
stand capacity, where longer turnaround times can have knock-on im-
pacts for overall capacity and the number of arriving aircraft that can be 
serviced on stands within a given timeframe (Schmidt, 2017). The ef-
fects of delays and airside congestion can have important knock-on 
impacts for the logistical operation of an airport, given the need to co-
ordinate flows of passenger, baggage and cargo, as well as the various 
equipment and service vehicles needed to service an aircraft while it is 
on the ground. Hence, the ability to ‘turn around’ an electric aircraft in a 
timeframe that does not compromise either the airline or airport oper-
ator will be a key determinant of their future adoption and success. 

The time required to charge the batteries of an electric aircraft 
depend on several factors, including the current state of charge of the 
battery, ambient conditions, and the charge/discharge rate of the bat-
tery (referred to as the battery ‘C-rating’). A battery with a C-rating of 1 
can be charged in 1 hour, a rating of 2C can be charged in 20 mins, and a 
battery with a rating of 5C can be charged in 12 minutes (Buchmann, 
2017). The automotive industry is targeting fast charging as high as 10C, 
which could result in a charge to 80%-90% state of charge in just 5 
minutes (Reimers, 2018). 

While increasingly rapid charging of batteries may be technically 
possible, consistently fast charging batteries in this way will degrade the 

battery and reduces its longevity (referred to as the battery ‘cycle life’) 
much quicker than if it were charged more slowly. This could mean 
batteries would need to be replaced relatively frequently, with associ-
ated financial implications for battery purchasing, maintenance, and the 
time the aircraft would need to be out of service whilst this procedure 
took place. While slow charging is the most efficient way to charge a 
battery and leads to the slowest rate of battery degradation, a charge 
time of several hours (for example) is unlikely to be a commercially 
viable or operationally feasible proposition for either airlines or airport 
operators. 

Consequently, there is a need to better understand the balance of 
operational, logistical and commercial implications associated with 
charging electric aircraft linked to the amount time needed to recharge 
these aircraft. Additionally, as electric aircraft will require the provision 
of new specialist charging infrastructure, there is a need to determine 
the rate at which existing aircraft stands should be fitted with electrical 
charging capabilities while balancing financial and operational consid-
erations for the airport operator. 

To this end, the paper uses Discrete Event Simulation (DES) models 
formalised through queuing theory to help assess battery charging re-
gimes for electric aircraft and their impacts on airside stand capacities 
under different simulation scenarios. Specifically, the analysis sought to 
determine to what extent longer recharging (and hence, turnaround 
times) could be accommodated for electric aircraft without compro-
mising overall airport capacity, and the rate at which an airport would 
need to convert existing aircraft stands to accommodate charging 
infrastructure for electric aircraft as demand for these aircraft grows. 
While the analysis uses London’s Heathrow Airport as a basis for the 
study, the findings and recommendations are broadly applicable to other 
airports, given many are at a similar early stage in planning for the 
introduction of electric aircraft. 

The following sections of the paper are structured as follows. In 
Section 2 a succinct literature review of computation simulation 
modelling approaches for airport operations is provided. In Section 3, 
the formal modelling methodology based on the application of queuing 
theory is presented; In Section 4 a description of the prototype simula-
tion model is supplied. An analysis of the model in understanding the 
impact of different battery charging times potential infrastructural re-
quirements scenarios regarding the optimum configuration of stand 
infrastructure under various scenarios is provided in Section 5; In Sec-
tion 6 optimal stand capacities are determined for different scenarios 
and charging regimes through the application of computational opti-
misation strategies. A discussion and recommendations for policy and 
practice on the projected impact on electric aircraft on airport capacity 
management and planning is provided in Section 7. Finally, concluding 
remarks and areas for future research are provided in in Section 8. 

2. Literature review- airport simulation modelling 

Computational models have been widely used to simulate various 
aspects of airport operations. A multi-fidelity modelling approach to 
managing airline disruptions combining integer programming and 
simulation optimisation is proposed in Rhodes-Leader et al. (2018). In 
Adacher et al. (2018) the routing and scheduling of aircraft ground 
movement operations based on real data is modelled and optimised to 
minimise total routing taxiing delays and reduce pollution emission by 
optimising waiting time during which the engines are turned on. 

Agent Based Models (ABMs) have also been used widely in this 
context. These models are typically decentralised systems with ‘intelli-
gent’ decision-making software agents representing primitive behaviors 
and interactions of people, organization and other real-world entities. 
For example, Bouarfa et al. (2012) use ABMs to model airside operations 
with a view to model and optimize behaviour against multiple Key 
Process Areas, including safety, capacity, economy, and sustainability. 
In Chen el al. (2018) an ABM is used to investigate the relationship 
between terminal design and retail performance through different 
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simulated scenarios. Finally, in Noortman. (2018) ABMs are used in the 
modelling of an airport’s ground surface movement operations. 

Another commonly used modelling paradigm is Discrete Event 
Simulations (DESs), which model the operation of a system as a discrete 
sequence of events occurring over time. In DESs each event occurs at a 
given instant in time and marks a change in the state of the system 
(Robinson, 2004). Researchers have applied DES to estimate the po-
tential effects of changes in airport infrastructure, operating procedures, 
and traffic intensity upon system performance using multivariate sta-
tistical analysis. Here the influence of design capacity, airline scheduling 
practices and uncontrollable events on flight delays as well as the impact 
of selectively removing airport assets for maintenance is assessed 
(Douglas-Smith et al 2015). In Malandri (2018) a detailed DES model of 
inbound baggage handling at a large regional airport is used to identify 
bottlenecks and critical operations. The model is validated by comparing 
the simulation results with real data. Both ABMs and DESs are compared 
and applied to model passengers flows in Metzner, (2019). The simu-
lation models can be used to explore correlations between terminal 
resilience indicators and terminal configurations in order assess their 
overall efficiency. 

A third type of simulation model available in the repertoire of tools is 
System Dynamics (SD). This is an abstract modelling methodology used 
to understand the nonlinear behaviour of complex systems over time, 
based on states of objects at a given moment in time, the rates at which 
entities in the model change, and feedback of information over time. In 
Biesslich et al, (2014) SD has been used to combine airport operational 
parameters such as aircraft movements, passenger flows with economic 
features such as cash flows. There are also examples in the research 
where hybrid models have been developed that combine the advantages 
of these various paradigms for different application domains (for 
example, Brailsford et al, 2019). 

There are also some limited examples of simulation modelling being 
used in the context of infrastructure planning requirements for novel 
aircraft technologies. Notably, Salucci et al, (2019) developed an opti-
misation model based on sizing requirements for Athens International 
Airport to investigate the infrastructural needs to support hybrid-electric 
aircraft operations. The paper focussed on issues around the number and 
type of charging points, as well as related electrical consumption and the 
number of spare batteries needed to ensure smooth operations in the 
case a battery swapping system is employed. A similar study was con-
ducted by Bigoni et al (2018), examining infrastructure requirements 
needed to support small general aviation (GA) hybrid-electric aircraft 
operations at Milan’s Bresso Airport. Both these studies where later 
consolidated as part of Airport Recharging Equipment Sizing (ARES) 
which is a mathematical model that combines knowledge about the 
airport flight schedules together with the composition and specifications 
of the aircraft fleet, to determine number of batteries, chargers, and 
aircraft required for operations. The proposed optimisation algorithm 
provides battery infrastructure sizing solution with the scheduling of 
charging operations according to the predetermined flight schedules at 
an airport, while minimizing procurement and operational costs. The 
method further allows consideration of plug-in charging and battery 
swapping, either together or as alternatives (Trainelli et al, 2021). 

In Justin, et al, (2020) the authors develop algorithms based in 
scheduling theory for power optimized and power-investment optimized 
strategies for electric aircraft battery swaps and recharge. The approach 
enables the estimation of peak power demand, energy expenditures, and 
capital expenditures used for implementing the strategies and is applied 
to the operations of two commuter airlines in comparison with a 
benchmark non-optimized power-as-needed strategy. 

This paper seeks to build on this research by exploring the use of 
simulation models for modelling and investigating the impact of electric 
aircraft (incorporating both pure and hybrid-electric aircraft) at a major 
hub airport. We further use the generated simulations to determine the 
optimal numbers of stands required under different charging regimes 
using computational metaheuristic-based optimisation strategies. 

Up until the COVID-19 pandemic, Heathrow Airport was one of the 
largest airports in the World in terms of passenger numbers, handling 
around 80 million passengers annually. The airport also traditionally 
operated constantly at near 100% operational capacity under an 
imposed upper limit of 480,000 air traffic movements per year (roughly 
650 arrivals and 650 departures per day) (Heathrow Airport, 2019). By 
means of comparison, in 2019 the second largest airport in the UK, 
London Gatwick Airport, handled around 285,000 aircraft movements 
and 46.6 million passengers, compared with 478,000 movements and 
80.9 million passengers at Heathrow. Globally, in 2019 Heathrow 
ranked as the 7th busiest airport in terms of passenger numbers (Harts-
field- Jackson Atlanta International Airport in the US was the first with 
110,530,000 passengers) and 15th in terms of aircraft movements 
(Chicago O’Hare in the US with 920,000 movements was first) (Airports 
Council International, 2020). For the purposes of this study, it made 
sense to ‘stress test’ the model at an airport where capacity (and thus 
sensitivity to alterations in aircraft turnaround times) was already an 
acute issue. By comparison, this is generally less of an issue at smaller, 
less congested airports with spare capacity, where alterations can typi-
cally be accommodated more easily. In effect, if the paper can show that 
recharging of electric aircraft can be accommodated at a busy, congested 
airport like Heathrow, then it figures that other airports would also be 
able to accommodate these aircraft with little detriment to their current 
operation. Consequently, in this paper the simulation model baseline 
was adapted to represent the existing passenger serving aircraft parking 
stand capacity at Heathrow Airport (197 in total, of which 133 contact 
stands and 64 remote stands). 

In the following sections, a description of the formal and simulation 
methodologies used to develop the prototype model is provided. 

3. Airport stand modelling methodology 

The airport stand simulation problem can be formally expressed 
though queuing theory, an operational research methodology used to 
study the impacts of queuing scenarios (Yang, 2014) (Jaroslav, 2015). 
This can be applied to the servicing of arriving units (aircraft) requesting 
for services (stands). Queueing theory is used to determine the formal 
foundations of the proposed simulation model for defining interdepen-
dence between arriving aircraft, their wait for a stand, on-stand pro-
cessing time, and departure (Krpan, 2017). The methodology comprises 
of the following elements: 

3.1. Distribution of arrivals 

The distribution of arriving aircraft determining the request for 
stands is defined by the time interval between two successive arrivals of 
aircraft to the airport. In this simulator the arrival of each aircraft αv is 
based on a fixed rate λv defining the number of aircraft received by the 
simulation in each unit of time where v ϵ {kr,ec}, kr represent kerosine 
fuelled aircraft and ec represent electric aircraft respectively. The 
interarrival times tarrv between successive arrivals of each aircraft type is 
however stochastic so tarrv represents a mean interval between arrivals 
within the rate λv.

The proposed simulation problem is assumed to be an open system 
where λv is not dependent on any other state of the system. Furthermore, 
the arrival of aircraft over a particular period of time does not depend on 
the number of aircraft that previously arrived. Therefore, for our 
simulation problem the arrivals of aircraft are considered flows without 
consequences (Krpan, 2017). 

3.2. Distribution of service times 

The distribution of serving times of aircraft on a stand τv is defined by 
the length of time it takes for one aircraft to be turned around at an 
occupied stand. The stand turnaround times in the proposed simulation 
problem will be modelled as Tserv for each aircraft type. The time 
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duration for carrying out a service can be a constant or a random value 
determine from a probability distribution. Using Tserv the average 
number of aircraft served in a unit of time termed μ can be calculated 
based on equation 1: 

μni
=

1
Tserv

(1)  

where n ∈ {sn, du}, sn represent single purpose stands serving only 
kerosine fuelled aircraft and du represent retrofitted dual purpose 
serving both kerosine and electric aircraft types respectively. Here i is 
the stand index where i = 1,…,m and m is the total number of stands. 

A stand has a capacity that can be expressed by μni 
which can also be 

depicted as the stand’s intensity of service. As our model assumes 
multiple stands for serving aircraft and we can determine capacity for 
the total number of stands from equation 2. 

μ =
∑z

i=0
μsni

+
∑y

i=0
μdui

(2)  

where z and y are the numbers of single and dual purpose stands 
respectively such that z+ y = m. 

Using the parameters λv and μ the load on the airport can be calcu-
lated based on ρ which is the quotient of the intensity of the flow of 
arrivals and the intensity of serving over all the stands as derived from 
equation 3. 

ρ =
λkr+ec

μ (3) 

If ρ < 1, arriving aircraft will be serviced sooner or later, depending 
on the availability of stands. However, if ρ ≥ 1 the load on the airport 
will increase over time leading to congestion from queuing aircraft. 
Therefore ρ should not be greater than or equal to 1, which implies that 
λv should be smaller than μ. If this is not the case, the number of stands 
should be increased to satisfy the condition for maintaining system 
stability (Krpan, 2017). 

3.3. Illustrative example for calculating load ρ 

As an example, to illustrate how to calculate ρ assume a regional 
airport has a stand capacity of 20 single purpose stands where Tserkr is 45 
minutes and the rate λv of inbound aircraft is 20 per hour. The model 
assumes equal tarrv between consecutive aircraft, no variability on 
turnaround times or other stochasticity. ρ can then be derived as follows 
based on equations 1, 2 and 3: 

ρ = 0.75 =
20

(
1

45/60

)

20 

Though deriving ρ provides a mathematical basis for determining 
stand capacities, a simple formalism of it does not fully account for 
model stochasticity from variability in tarrv between arriving aircraft, 
variability in taxing times and variability in turnaround durations for 
kerosine aircraft. Additionally, ρ values are based on separately calcu-
lating the collective capacities for single and dual stands for their 
respective aircraft types with respect to λv. However, kerosine aircraft 
can access dual purpose stands leading to a reduced capacity for electric 
aircraft. Equally, if electric aircraft have occupied dual purpose stands 
for longer durations of changing times, this removes capacity of these 
stands for kerosine aircraft to use. These dynamics are harder to fully 
define requiring more data on stand occupancy behaviour of the model 
from which probability distributions can be defined affecting shared 
stand capacities. They therefore lead themselves to be modelled through 
simulation studies. However, ρ can be used to provide initial compari-
sons with respect to distribution of arrivals and capacities with other 
airports. 

3.4. Number of service elements 

In the proposed simulation problem, the number of sn and du stands 
are predefined and used to simulate the effects on congestion and the 
throughputs of aircraft define here as the number of arriving aircraft that 
have landed, been (turned around) and departed the airport within a 
given period of time. 

3.5. System capacity, serving order and discipline 

The capacity of the service system is the maximum number of aircraft 
that are waiting in line to be served and that are being serviced on 
stands. When all stands are occupied an inbound aircraft αv that arrived 
will enter a queue. For our simulation problem we defined specific 
queues qv for each aircraft type. This was done for purposes of simpli-
fying the design and implementation of the simulator as our focus was 
on determining the optimum number of single and dual-purpose stands 
for minimising queuing rather than focusing on analysing the queuing 
regimes being employed. The way in which aircraft from each queue 
access the stands is based on a First-In-First-Out (FIFO) order which 
accounts for the order of arriving aircraft. Hence when a stand 
τv becomes vacant it will be allocated to the compatible aircraft αv that 
was the first to arrive irrespective of which queue it joined. 

4. Proposed DES based airport stand simulation model 

DES is a modelling methodology widely used in logistics and supply 
chain management. DES models comprise of entities, attributes, events 
(modules), resources and queues where time is an essential component 
for describing the order in which modelled events take place. Entities 
interact to simulate the operational workflow being modelled. As the 
system evolves over time, changes of its state variables occur at separate 
points in time corresponding to the behaviour of the entities (Padilha, 
2016). These state variables can be used to capture data from simulated 
runs of the model. Queues may be used to manage the interaction of 
entities emulating real word process flows and associated delays. Shared 
resources can also be used in combination with queues and delay 
modules to represent assets which are used, periodically held, or 
consumed by entities. Constructing DSE models involve identifying and 
representing the resources, entities, logic and flow of the entities. Sto-
chasticity of processes involved in the model and the relationship be-
tween modelled variables are further characteristics of this technique 
(Padilha, 2016). 

4.1. DES airport stand model elements 

Using a DES modelling methodology, the modular workflow ele-
ments for modelling aircraft recharging/refuelling times based on the 
introduction of short-haul electric aircraft as a proportion of non-electric 
aircraft flight operations was determined. The DES modelled separate 
workflows for electric and kerosene aircraft entities where both work-
flows were dependent on the proportion of each aircraft type entering 
the model and on the shared number of aircraft parking stands. The 
workflow elements comprised of the following modules as depicted in 
Fig. 1: 

4.1.1. Entry module 
Modelled the hourly rate of inbound flight arrivals of both electric 

and kerosene aircraft. For our model the short-haul electric aircraft type 
was modelled on an existing small twin engine, 50 seat aircraft 
(Bombardier CRJ 100 series). This aircraft type was selected purely 
indicatively and for the purpose of physical sizing and operational pa-
rameters for the simulations only. In the absence of a commercially 
operational electric aircraft, it was decided that an existing aircraft with 
a comparable sizing, operational and performance profile to potential 
future electric aircraft was selected. It was not the intention to select an 
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aircraft type that would likely mirror the look or specifications of a 
future electric aircraft entering the market (for example, a CRJ-100 is a 
jet aircraft, whereas it is likely that the first electric aircraft entering the 
market will be propeller turbo-prop aircraft). 

Here the number of short-haul electric aircraft flights were modelled 
as a percentage of total hourly flight arrivals. These numbers were then 
adjusted to model different projected increases in electric aircraft in the 
market. The hourly rate of inbound flights was also adjustable to model 
airport specific flight volumes based on aircraft movements during a 
standard operating day. 

Formally the model determines the number of inbound kerosene and 
electric aircraft to generate per hour of simulation time based on their 
percentages to be modelled using equations 4 and 5 as follows: 

λkr = λv*
(

1 −
(

eAircraftPercent
100

))

(4)  

λec = λv*
(

eAircraftPercent
100

)

(5)  

where λkr and λec refer to the fixed hourly rate of kerosene and electric 
aircraft respectively, λv refers to the total fixed hourly rate of inbound 
flights as introduced in Section 3, for the given airport and 
eAircraftPercent is the projected percentage of electric aircraft. 

The time interval between each arriving aircraft is distributed based 
on an exponentially distributed interarrival times tarrv with a mean of 1/ 
λv (Cansiz, 2021). This distribution can be calculated based on equation 
6. 

f (x; λv) =

{
λve− λvx x ≥ 0

0 x < 0

}

(6)  

where f(x; λv) is the probability density function and x is a random 
variable. 

For example, if λv defines a rate of 20 aircraft arrivals per hour, the 
mean tarrv is 1/20 × 60 = 3 minutes between arriving aircraft over the 
course of 1 hour. 

4.1.2. Taxiing delays module 
Approximate aircraft taxiing times for movements from the runway 

to/from stands were also accounted for in the simulation. These were 
assumed to be in the range of 5- and 10-minutes reflecting estimates 
obtained from the airport. 

For each aircraft the simulation randomly selects taxing times 
(measured in minutes) based on a continuous probability distribution. A 
triangular Probability Density Function (PDF) with a peak (mode = 7.5), 
minimum (min = 5) and maximum (max = 10), end points were used 
due to limited sample data, defined in equation (7). 

f (x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2(x − min)
(max − min)(mode − min)

2(max − x)
(max − min)(max − mode)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

min < x ≤ mode
mode < x ≤ max (7)  

where f(x) is the probability a random variable falls into a certain range 
that may be less, greater than or between a pair of values defined by x. 
Each aircraft’s taxing delay time will be based on the simulation 
randomly selecting a value x from the distribution. 

4.1.3. Stand serving module 
Modelled a variable number of single and converted dual purpose 

aircraft stands τv as a shared resource to which arriving aircraft would be 
assigned. The serving model comprised of two elements: 

4.1.3.1. Queuing module. Modelled FIFO aircraft queues qkr and 
qec with unlimited queue lengths. The queues provide an indicator of 
congestion which can be monitored based on the adjustment of other 
model parameters, namely: number of stands (single or dual purpose), 
turnaround times for electric aircraft and kerosene aircraft, hourly rates 
of aircraft arrivals and the proportion of short-haul electric aircraft as a 
percentage of total inbound flights. 

4.1.3.2. Stands pool. Modelled a variable number of m single and con-
verted dual purpose aircraft stands as a shared resource to which aircraft 
would be assigned. The initial number of stands could be selected based 
on the known stand capacity of the airport in question (in this case, 
Heathrow). The number of dual-purpose stands could also be selected 
and altered to evaluate the impact of electric aircraft introduction on 
airside capacity (i.e., the total number of aircraft that can be serviced 
within a given timeframe) and operational efficiency (i.e. timely pro-
cessing of arriving aircraft where congestion from queuing of aircraft 
waiting for a stand is minimised). Each aircraft would remain on stand 
for a duration of time, specified by the aircraft type (i.e. kerosene or 

Fig. 1. DES workflow for both electric and kerosene aircraft showing the 
model elements. 
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electric) and take into account estimated times for passenger and 
baggage unloading, loading, cleaning refuelling or recharging in the 
case of electric aircraft. 

The stand turnaround times for kerosene aircraft would be based on 
typical durations for short and long-haul aircraft and modelled in mi-
nutes as a triangular PDF. The stand turnaround times for electric 
aircraft was a fixed time duration in minutes comprising of battery 
charging times, which could be adjusted to evaluate the effect of longer 
or shorter charging durations. For the model, it was assumed that the 
recharge time for the electric aircraft reflected the overall turnaround 
time of that aircraft (i.e. we assumed that passenger disembarkation/ 
embarkation, cleaning, and baggage unloading/loading processes could 
be conducted concurrently in the time it took to recharge the aircraft). 
Similarly, it was assumed that arriving electric aircraft would have fully 
discharged batteries that would need to be fully re-charged while on 
stand. While we recognise that in reality electric aircraft would arrive 
with varying degrees of remaining charge (much like residual fuel levels 
in traditional aircraft), this was not included in the model for brevity. 
However, this is acknowledged as a limitation of the approach. 

4.1.4. Exit module 
Modelling the release and departure of aircraft (electric and kero-

sene) once their stand servicing time was complete. As each aircraft αv 
departs aircraft type specific counters are incremented and the status of 
these counters is recorded every hour to determine the hourly 
throughput. Individual aircraft can also be timestamped upon arrival 
and departure to record entry, exit and durations for further analysis. 

4.2. Simulation modelling software 

The AnyLogic software is a simulation modelling tool that supports 

agent-based, discrete event, and system dynamics simulation method-
ologies (AnyLogic). The tool is a cross platform tool built on the Java 
programming language and combines model optimisation capability 
based on the OptQuest optimization engine by OptTek Systems (Opt-
Quest). AnyLogic was used to construct the DES stand models where 
Fig. 2 shows the DES user interface to the model with a graphical rep-
resentation of a single pier simulation. 

5. Simulation and analysis of airport stand capacities and 
charging regimes 

5.1. Simulating impact of battery charging times 

To understand the impact of different battery charging times on 
airside capacity an initial model was configured comprising of a hypo-
thetical scenario were the airport operated a dedicated pier for the sole 
use of all-electric aircraft with a finite number of stands. The DES model 
assumed a rate of 10 inbound electric only aircraft per hour with an 
initial on stand battery charging time of 30 minutes. The initial number 
of stands was assumed to be 10 and an operating baseline number of 
stands was then determined by increasing the number of stands until all 
arriving aircraft could be immediately allocated to a parking stand 
without having to wait or queue for a stand to become available. This 
situation reflects the desired outcome from an airport operations 
perspective (i.e. no aircraft has to wait for a stand to become available 
upon landing). However, in a real world environment it may be neces-
sary for aircraft to wait for a parking stand due to unplanned delays to 
other aircraft, malfunctions with equipment, shortages of equipment or 
ground crew, or other unforeseen circumstances. Hence, the baseline 
number of stands was determined to be 11. Table 1 shows the results 
after completing each simulation run in which electric aircraft charging 

Fig. 2. Simulation user interfaces showing an airport single pier model with a number of dual-purpose stands. Based on various pre-set parameters the DES model 
simulates aircraft arriving (1), taxiing to stand (2), queueing for a free stand (3), refuelling/recharging (4), then taxiing (5) to the runway for departure (6). Data (e. g. 
aircraft throughput) is then recorded and presented graphically on plots (7) as the simulation progresses. 
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times were increased by 30 minutes, up to a maximum of 180 minutes. 
The effect on total aircraft throughput is also shown, with increasing 
recharge times leading to a reduction in the number of aircraft being 
processed per hour. 

It should be noted here that the modelling and results shown in 
Table 1 do not make any assumptions about the possible capacity of the 
batteries on the aircraft, nor the ability of the recharging and grid 
infrastructure to support the charging times shown. In effect, we are 
assuming that the charging times indicated could be supported, 
regardless of the size of the battery. However, we fully acknowledge that 
this is an important consideration when planning for electric aircraft, 
but this was not considered here in light of the focus on airside capacity 
and operations. As a means for comparison, current leading commercial 
electric cars commonly have batteries in the size of around 100 kWh, 
with charging speeds commonly available at 120-150 kW. The Eviation 
Alice, a 9-seater pure electric aircraft currently in development, is re-
ported to have an 820 kWh battery (Eviation, 2021). To fully charge this 
battery in 60 mins (i.e. a rating of 1C), charging speeds of 820 kW would 
be required. If current charger technologies were used, it would take 
around 5 hours (300 minutes to charge) the aircraft. 

It was also important to understand the relationship between 
required electric charging stand capacities and different battery 
charging times for the modelled all-electric aircraft pier. The DES 
simulation model was then used to dynamically increase the number of 
stands in response to increasing charging times to minimise congestion 
from queuing aircraft. This aimed to illustrate the extent to which the 
number of stands needed to be increased to maintain operational effi-
ciency, assuming the volume of inbound aircraft was fixed at the same 
rate of 10 flights per hour. Table 2 shows the results after completing 
each simulation run in which electric aircraft charging times were 
increased up to a maximum of 180 minutes and their effect on the 
number of stands required for minimising congestion and maintaining 
throughput based on the number of inbound flights. Calculated ρ values 
for each modelled scenario are also provided for comparison. 

The simulation evidence from Tables 1 and 2 show that an increase in 
battery charging times can have a significant impact on throughput and 
required stand capacities for an all-electric aircraft pier. For example, if 
the electric aircraft took 90 minutes to recharge, 24 stands would be 
required to maintain the rate of processed aircraft. The ρ values also 

correspondingly show a steady increase in load with charging time. 
These volumes and capacities would vary if a shared pier with dual 
purpose stands serving both electric and kerosene aircraft were 
modelled, which is discussed in the next section. 

5.2. Determining stand capacity using DES model parameters representing 
a single pier 

To assess the number of single and dual-purpose stands required to 
maintain airside capacity (reduce congestion) under scenarios of 
increased introduction of electric aircraft, the simulation model made 
the following assumptions as shown in Table 3. 

The aircraft turnaround times would combine the fuelling / charging 
times with typical unloading and loading times and the initial number of 
single and dual-purpose stands was not defined. A baseline stand ca-
pacity of 20 single purpose stands for kerosene aircraft was initially 
established by reducing congestion to a minimum, based on assuming an 
initial rate of 20 inbound kerosine aircraft per hour. This can be shown 
from the green plot in Fig. 3 showing an increase, peak and decrease in 
queuing aircraft as the number of stands (shown in the blue plot) are 
increased from 8 to 20. The purple plot gives the throughput of pro-
cessed aircraft every hour over the full simulation run for 75 hours. 

The DES simulation model was then used to determine the total 
number of single purpose stands (i. e. kerosene only) that would need to 
be converted to dual purpose stands (i. e. kerosene and electric charging) 
to maintain capacity and keep airside congestions levels to a minimum. 
To do this, the proportion of electric aircraft relative to kerosene aircraft 
was separately modelled for 5%, 10%, 15%, 20% and 25% of hourly 
inbound aircraft. These figures reflected indicative scenarios for low 
(5%) to very high (25%) scenarios for future uptake of electric aircraft in 
the market up to 2040, based on industry literature regarding the uptake 
of electric aircraft (ICAO, 2019, Reimers, 2018, Roland Bergher, 2018). 
Fig. 4 below shows selected generated plots over an entire simulation 
run for a 10% increase in the proportion of electric aircraft movements 
and their effect on capacity and congestion, where the simulation was 
run for 375 hours. 

Table 4 below shows the required increase in single and dual- 
purpose stand capacities required (as both exact numbers and percent-
age increases) to meet the demand for the higher proportions of electric 
aircraft movements based on the values obtained at the end of each 
respective simulation run. Note that these capacity increases are based 
on starting with 20 single purpose stands, representing a typical airport 
pier. The number of single and dual-purpose stands can be seen from the 
blue and orange plots in Fig. 4 (a). The increase in stand capacity still 
resulted in some congestion from queuing of predominantly electric 
aircraft, which on average was reduced to 5 aircraft or less per hour as 
the simulation was run. This can be seen in the green plot for all aircraft 
in Fig. 4 (a) and more specifically in the yellow plot for e-aircraft in 
Fig. 4 (b). This could be reduced or eliminated by increasing the stand 
capacity further, although the purpose here was to try and determine the 
minimum increases in stand capacity from the baseline model. 

Table 1 
Increase in electric aircraft on stand charging time vs aircraft throughput 
(assuming a rate of 10 inbound electric only aircraft per hour and a baseline 
number of 11 electric charging stands)  

Electric aircraft charging times Hourly throughput of aircraft 

30 min (baseline) 9.85 
60 min 9.77 
90 min 7.07 
120 min 5.33 
150 min 4.30 
180 min 3.61  

Table 2 
Increase in electric aircraft on stand charging time vs number of electric 
charging stands required to minimise congestions and maintain aircraft 
throughput (assuming an hourly rate of 10 inbound electric only aircraft) with ρ 
values based on aircraft and numbers of stands  

Electric aircraft 
charging times 

Number of electric 
charging stands 

ρ values for inbound electric aircraft 
rates λec and dual-purpose stand 
intensities 

∑y
i=0μdui  

30 min (baseline) 11 (baseline) 0.45 
60 min 16 0.63 
90 min 24 0.63 
120 min 29 0.69 
150 min 32 0.78 
180 min 40 0.75  

Table 3 
DES model parameters representing a single airport pier  

DES modules Parameters 

Stand serving module: short 
haul kerosene aircraft 

Turnaround time of between 30 to 60 minutes 
(mode = 45 minutes), in line with current 
turnaround times for short-haul aircraft 

Stand serving module: short 
haul electric aircraft 

Recharging and turnaround time of 120 minutes. 
This time was chosen as a compromise between 
minimising the turnaround time and maximising 
battery cycle-life conservation 

Stands pool module Baseline stand capacity of 20 single purpose stands 
for kerosene aircraft 

Entry module 20 aircraft per hour 
Taxing delay module 5 to 10 minutes (mode = 7.5 minutes)  
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The results in Table 4 suggest that in the single pier case, there has to 
be a 50% increase in stand capacity, and where 50% of those stands have 
to be converted to dual purpose in order to meet the capacity demands 
for a 25% increase in electric aircraft movements. This is because given 
the relatively small number of stands to start with, both kerosene and 
electric aircraft compete for limited resources. Increasing the number of 
dual-purpose stands means kerosene aircraft have to share more stands 
with electric aircraft that require longer turnaround times. Conse-
quently, there needs to be an increase in the number of single purpose 
stands to maintain capacity of the remaining higher proportion of 
kerosene aircraft. This can also be seen from the red plot in Fig. 4 (b) 
which shows some congestion for queuing kerosene aircraft requiring 

the number of single purpose stands (blue plot Fig. 4 (a)) to also be 
increased by 3 stands as is shown in Table 4 for a 10% increase in electric 
aircraft. Table 4 also provides calculated ρ values for each modelled 
scenario that in part follow the required stand increases to satisfy load 
for initial increments and conversions from the baseline. However, for 
higher percentage increases in electric aircraft, ρ diverges slightly from 
the required stand increases possibly due to model variabilities 
encountered in the simulation runs. 

5.3. Determining stand capacity using DES representing airport level 
parameters 

Having demonstrated the efficacy of the model for a single pier 
operation, the model was then developed further to assess the number of 
single and dual-purpose stands required to maintain capacity (reduce 
congestion) increases in electric aircraft operation for the entire airport. 
Assuming the simulation based on Heathrow Airport, the new model 
made the following assumptions as shown in Table 5. 

The aircraft turnaround times would combine the fuelling / charging 
times with the unloading and loading times for the aircraft type. The rate 
of aircraft landing per hour was based on the average taken over a 17.5 
hour operating day at Heathrow, using figures obtained from Euro-
control: https://ext.eurocontrol.int/airport_corner_public/EGLL#traffi Fig. 3. Hourly throughput of all aircraft, number of queueing aircraft recorded 

per hour, number of single purpose stands (y-axis - number of aircraft/stands, x- 
axis - time in hours) 

Fig. 4. shows the following plots for a 10% increase in the proportion of electric aircraft movements: (a) plot showing: the hourly throughput of all aircraft, number 
of queueing aircraft recorded per hour, number of dual-purpose stands, number of single purpose stands (y-axis - number of aircraft/stands, x-axis - time in hours); (b) 
plot showing: hourly queueing for kerosene vs electric aircraft, (y-axis - number of aircraft/arrival rates, x-axis - time in hours). 

Table 4 
Single and dual-purpose stand capacity vs % increase in electric aircraft for a 
single pier of 20 stands or more with ρ values based on aircraft and numbers of 
stands  

% increase of 
electric 
aircraft 

Number of single 
purpose stands / % 
increase from 
baseline 

Number of dual- 
purpose stands / % 
of single purpose 
stands 

ρ values for inbound 
aircraft rates λv and 
total stand intensities 
μ  

0% (baseline) 20 0 0.76 
5% 20 4 (20%) 0.85 
10% 23 (+15%) 7 (30%) 0.80 
15% 25 (+25%) 10 (40%) 0.80 
20% 29 (+45%) 14 (48%) 0.74 
25% 30 (+50%) 15 (50%) 0.72  
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cforecast. 
DES Simulation models where then used to determine the optimal 

number of single purpose stands, and of those stands, the number of 
converted dual purpose stands that would be required to minimise 
congestion levels as the share of electric aircraft rose (from 5%, 10%, 
15%, 20% and 25%). Figs. 5 and 6 shows selected generated plots over 
an entire simulation run for 10%, and 25% increase in the proportion of 
electric aircraft movements where each simulation was run to 325 and 
800 hours respectively. This variation in simulation running times was 
to ascertain selected stand numbers reflected minimum congestion for 
each modelled scenario. 

Table 6 below shows the increase in dual-purpose stand capacities 
required (as both exact numbers and percentage increases) to meet the 
demand for higher proportions of electric aircraft movements based on 
the values obtained at the end of each respective simulation run. 

From the results in Table 6 an increase in the proportion of electric 
aircraft does not require provision of additional stands to maintain ca-
pacity of the remaining kerosene-based flights. This can be clearly seen 
from the red plots in Figs. 5 (b) and 6(b) which show no congestion of 
queuing kerosene aircraft for 10% and 25% increases in electric aircraft. 
However, we see a steady increase in the number of stands that need to 
be converted to dual purpose to meet traffic demands as shown from the 
orange plots in Figs. 5 (a) and 6(a). These increases still resulted in 
minor occurrences of congestion from queuing electric aircraft, which 

on average was 1 aircraft or less per hour as shown from the yellow plots 
in Figs. 5 (b), and 6 (b), and reflected overall in the green plots in Figs. 5 
(a), and 6 (a). While this delay could theoretically be eliminated entirely 
by increasing stand capacity still further, this would represent only a 
marginal gain in operational efficiency. Table 6 also provides the 
theoretical ρ values based on inbound electric aircraft rates and the 
corresponding dual stand capacities given that the baseline number of 
single stands was sufficiently large to accommodate the load of inbound 
kerosine aircraft rates. ρ values are shown to follow the necessary stand 
increases to satisfy load from increases in electric aircraft volume. 

Table 6 is especially useful for demonstrating the possible phasing 
requirements of infrastructural development with respect to forecasted 
increases in the volume of electric aircraft. Notably, it shows that even 
under optimistic scenarios of electric aircraft adoption in the market, the 
requirement for the airport to convert stands to accommodate electric 
aircraft remains modest, at 15%. 

6. Optimisation of airport stand capacities and charging regimes 

For both the airport level and single pier scenarios we further wanted 
to determine the optimum (minimum) number of single and dual- 
purpose stands required to maintain capacity (reduce congestion) over 
two different charging regimes for the maximum 25% projected increase 
of electric aircraft operations. 

Anylogic provides the additional feature of running optimisation 
experiments comprising of adjusting simulation parameters over mul-
tiple runs where optimisation algorithms are used to find the optimum 
parameters for minimising or maximising an objective function. The 
optimisation engine is based on using metaheuristic search driven 
optimisation techniques combining a single solution based Tabu search 
and a population based scatter search algorithms (Glover, 1996) 
(Duarte, 2009), solution feasibility analysis with neural networks to 
facilitate more efficient and accelerated exploration of the search space 
for viable solutions (Laguna, 2011). There are a number of other popular 
optimisation algorithms such as genetic algorithms, simulated annealing 
as well as other state-of-the-art approaches. However, the purpose here 
was to validate the observed simulations experiments carried out in 
Section 5 rather than evaluate the effectiveness of different optimisation 
algorithms. Hence, using the above mentioned integrated optimisation 

Table 5 
DES model parameters representing a single airport pier  

DES modules Parameters 

Stand serving module: short and 
long haul kerosene aircraft 

Turnaround time of between 45 to 120 minutes 
(mode = 82.5 minutes), (considering a mix of 
short haul and long-haul flights). 

Stand serving module: short haul 
electric aircraft 

Recharging and turnaround time 120 minutes 

Stands pool module Baseline stand capacity of 197 single purpose 
stands for kerosene aircraft 

Entry module 38 aircraft per hour This figure is based on 
averaging out variations (peaks and troughs) in 
daily aircraft activity 

Taxing delay module 5 to 10 minutes (mode = 7.5 minutes).  

Fig. 5. shows the following plots for a 10% increase in the proportion of electric aircraft movements: (a) plot showing: the hourly throughput of all aircraft, number 
of queueing aircraft recorded per hour, number of dual-purpose stands, number of single purpose stands (y-axis – number of aircraft/stands, x-axis – time in hours); 
(b) plot showing: hourly queueing for kerosene vs electric aircraft (y-axis – number of aircraft/arrival rates, x-axis – time in hours). 
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techniques provide in Anylogic proved sufficient for this purpose. 

6.1. Optimisation experiment setup and objective function definition 

The experiment assumed the fixed parameters and parameter ranges 
previously specified for the single pier and airport level scenario (based 
on Heathrow Airport) descried in Sections 5.2 and 5.3. These were: The 
rate of aircraft landing per hour for both kerosene and electric inbound 
flights; on stand serving times of kerosene aircraft and aircraft taxiing 
times. Two distinct charging regimes of 60 and 120 minutes were 
evaluated for stand turnaround times of electric aircraft, representing a 
greater range within which battery charging times could vary due to 
future developments in battery charging efficiency or other forms of 
energy harvesting technologies. As mentioned previously, assumptions 
were not made regarding the prospective battery size of the aircraft in 
the model. However, as an indication, an 820 kWh battery charging for 
60 minutes (a rating of 1C) would require charging speeds of 820 kW, 
while a 120 minute charge (0.5C) would require charging speeds of 410 
kW. 

The experiment varied the number of single purpose stands and of 
these the number of converted dual purpose stands to determine their 
optimum number for each charging regime. The goal of the optimisation 

algorithm was to find the right combination of single and dual-purpose 
stands that would reduce congestion to a minimum over a specific 
simulated time horizon (selected for these experiments as 72 hours 
representing a suitable timescale over which the simulation could be 
assessed). A secondary goal was to minimise the required number of 
converted dual purpose stands and also keep the number of single pur-
pose stands as close as possible to their respective baselines determined 
in Sections 5.2 and 5.3. Based on these criteria an objective function was 
defined where the algorithm would aim to minimise the objective value 
objValue as depicted in equation (8): 

objValue = ((accHourlyQueued × 2)+ (z × 3)+ (y × 4)) (8)  

where, accHourlyQueued represents accumulated number of hourly 
queuing aircraft waiting for stands, z and y represent the number of 
single and dual-purpose stands, respectively (see Section 3). The 
objective function was handcrafted through a process of trial and error 
to assign the greatest weight on reducing congestion followed by the 
number of dual and single purpose stands, respectively. The weights 
were selected to give solutions comparable or better than what was 
observed when running simulation experiments. In addition to the 
objective function a requirement was specified to check the feasibility of 
searched solutions whereby feasible ‘legal’ solutions were judged as 
ones where the total number of stands was always greater than or equal 
to the converted dual purpose stands. 

6.2. Optimisation experiment results 

Four optimisation experiments were carried out, one for each single 
pier and airport level scenario evaluating the selected charging regimes 
of 60 and 120 minutes. Each optimisation experiment ran up to a 
maximum of 500 simulation iterations where each simulation was also 
replicated 10 times to account for stochastic variability of the models 
due to certain fixed parameters being randomly selected from ranges 
described in Sections 5.2 and 5.3. Fig. 7 shows the AnyLogic Optimi-
sation experiment GUI that includes the scatter search plot of simulation 
solutions on the right where the x-axis represents simulation runs, and 
the y-axis represents current solution, best feasible solution (blue plot) 
and best infeasible solution (red plot) found for each simulation based 

Fig. 6. shows the following plots for a 25% increase in the proportion of electric aircraft movements: (a) plot showing: the hourly throughput of all aircraft, number 
of queueing aircraft recorded per hour, number of dual-purpose stands, number of single purpose stands (y-axis – number of aircraft/stands, x-axis – time in hours); 
(b) plot showing: hourly queueing for kerosene vs electric aircraft (y-axis – number of aircraft/arrival rates, x-axis – time in hours). 

Table 6 
Single and dual-purpose stand capacity vs % increase in electric aircraft for all 
stands at Heathrow with ρ values based on electric only aircraft and numbers of 
dual-purpose stands  

% increase of 
electric 
aircraft 

Number of single 
purpose stands / 
% increase from 
baseline 

Number of dual- 
purpose stands / 
% of single 
purpose stands 

ρ values for inbound 
electric aircraft rates λec 

and dual-purpose stand 
intensities 

∑y
i=0μdui  

0% 
(baseline) 

197 / 0% 0  

5% 197 / 0% 8 (4%) 0.48 
10% 197 / 0% 14 (7%) 0.54 
15% 197 / 0% 19 (10%) 0.60 
20% 197 / 0% 23 (11%) 0.66 
25% 197 / 0% 29 (15%) 0.65  
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on their objValue values. To the left of the GUI the optimal best-case 
simulation parameters including single / dual purpose stand numbers 
(boxed in red) are shown, these values were determined from the opti-
mization experiment run for Heathrow Airport based on a charging 
regime of 120 minutes for a 25% increase in electric aircraft operations. 
Table 7 shows the results for all four scenarios / charging regime-based 
optimisation experiments. 

The best-case results for the single pier scenario show a 5%, and 15% 
increase in the optimal number of single purpose and dual purpose 
stands respectively, as compared to the simulation results in Table 4, for 
a charging regime of 120 minutes. This is because the algorithm’s 
optimisation strategy was aimed and minimising or eliminating 
congestion. As such the best-case simulation solution resulted in a 
greater increase in the number of stands. For the same scenario, the best- 
case results for a charging time of 60 minutes showed a 25% decrease 
and 6% increase in the required number of single and dual purpose 
stands respectively, given the shorter turnaround times and higher 
aircraft throughputs impact on reducing queuing. 

The results for the airport level scenario based on Heathrow showed 
that for a charging regime of 120 minutes the best-case results are near 
equivalent to the simulation results shown in Table 6. Here, no increase 
from the baseline number of single purpose stands and only a 1% in-
crease in the number of dual purpose stands were required for mini-
mising congestion, when compared with the results shown in Table 6. 
For a charging regime of 60 minutes the required number of dual pur-
pose stands decreased by 5%. 

Taking the average over the results of both 60- and 120-minute 

charging regimes, for Heathrow the optimal number of single purpose 
stands required to be converted to dual purpose for accommodating a 
25% increase in electric aircraft was shown to be 13% with no need to 
increase overall stand capacity. These results would tend to support the 
projection that even under optimistic scenarios of electric aircraft 
development in the market, the requirement for airports to make 
infrastructural changes is likely to remain modest. In other words, even 
if the market uptake of electric aircraft was relatively high, this would 
likely still only equateto an airport needing to convert a small number of 
existing stands per year to accommodate electric aircraft and would not 
require overall stand capacity to be increased. 

7. Discussion 

Electric aircraft have significant benefits over traditional kerosene 
aircraft in terms of environmental performance, and it seems inevitable 
that the development and testing of electric aircraft will continue in the 
coming years, as well as other forms of sustainable propulsion. Over and 
above the technical aspects associated with the systems themselves, 
there remains considerable uncertainty around the operational and 
commercial viability of electric aircraft. The analysis in this paper seeks 
to contribute to this new area of research, seeking to develop an un-
derstanding of cooperative operational and infrastructural implications 
of electric aircraft. Certainly, a critical issue here relates to optimal 
charging times and the number of aircraft stands that need to be adapted 
for electric aircraft recharging. Interestingly, findings from the analysis 
here provides a source for conservative optimism, in so much that the 

Fig. 7. shows the AnyLogic GUI containing the scatter search plot of simulation solutions (right). Here, the x-axis represents simulation runs, and the y-axis rep-
resents current solution, best feasible solution (blue plot) and best infeasible solution (red plot) found for each simulation based on their objValue values. The optimal 
best-case single / dual purpose stand numbers (boxed in red) generated during the optimisation experiment run for London Heathrow based on a charging regime of 
120 minutes for a 25% increase in electric aircraft operations is shown to the left. 

Table 7 
Optimal single and dual-purpose stand capacities for 25% increase in electric aircraft for single pier and airport level scenarios assuming stand baselines established in 
Sections 5.2 and 5.3  

Model 
Scenario 

Electric aircraft charging regimes (mins) Average electric aircraft charging time 
(mins)  

60 120 90  
Num single purpose stands 
/ % increase from baseline 

Num dual-purpose stands 
/ % of single purpose 
stands 

Num single purpose stands 
/ % increase from baseline 

Num dual-purpose stands 
/ % of single purpose 
stands 

Avg % increase 
single purpose 
stands 

Avg % dual 
purpose stands 

Single Pier 25(+25%) 14(56%) 31 (+55%) 20(65%) +28% 60.5% 
London 

Heathrow 
197(+0%) 20(10%) 197(+0%) 31(16%) +0% 13%  
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results suggest that even a relatively high uptake of electric aircraft in 
the market could be accommodated without significantly affecting 
airport capacity or the need to rapidly convert large number of aircraft 
stands to accommodate electric aircraft, at least initially. 

Of course, one should not lose sight of, or downplay, the other 
challenges and potential barriers to the wider adoption of electric 
aircraft technology. For example, this paper does not consider the likely 
utilities requirements in terms of electricity demand, nor the challenges 
of retrofitting legacy airports with widespread electric charging capa-
bilities (for example, installation of high voltage cabling to aircraft 
stands). Nor does the analysis consider the outstanding and unresolved 
certification challenges around electric aircraft and its related infra-
structure, or public attitudes and perceptions towards this technology. 
Equally, it is worth noting that electric aircraft technology is likely to 
form only part of the solution in terms of sustainable propulsion. For 
example, considerable progress has already been made in the develop-
ment of Hydrogen powered aircraft and Sustainable Aviation Fuels 
(SAFS). These technologies will have a role to play alongside electrifi-
cation, and future work needs to address specifically how these tech-
nologies may co-exist most effectively. If ever a reminder was needed, 
the COVID-19 pandemic has highlighted the dynamic and unpredictably 
nature of aviation and the challenges of planning in uncertainty. This 
situation is likely to persist beyond the current crisis, and it will be 
important that a collaborative, flexible and evidence-based approach is 
taken to planning for future aircraft propulsion technologies. 

8. Conclusions and future work 

In conclusion, the developed DES simulation models provide some 
novel insights on projected aircraft throughputs, capacities, and aircraft 
stand requirements for the possible future introduction of short haul 
electric aircraft operations. More specifically the models can be used to:  

• Evaluate the impact of different turnaround times for kerosene and 
electric aircraft reflecting different charging regimes for electric 
aircraft. 

• Determine the requirements for new and converted stand infra-
structure to meet a market increase in uptake of electric aircraft 
while maintaining airside capacity and throughput. This in turn has 
important implications for future stand design and investment 
planning decision making.  

• Find the optimal stand infrastructure requirements for minimising 
operational impacts of electric aircraft introduction. 

The DES can also in part be formally explained through the appli-
cation of queuing theory together with details provided for all model 
parameters making it reproducible through different programming and 
simulation tools. 

For future work these simulations can be extended to include greater 
complexities with respect to representing the cooperation and interac-
tion of more assets, operational entities, actors and external factors to 
make the simulation models more realistic and able to simulate more 
complex and holistic scenarios. These models could take the form of 
hybrid models (Ozturk et al. 2019) which could be based on ABMs for 
modelling aircraft movements between, say, Heathrow Airport and 
other airports. These hybrid models would likely combine sub models 
that use DES and SD models. Indeed, an important avenue for future 
work should include the investigation of requirements at a diverse range 
of airports, given their varying operational and infrastructural 
characteristics. 

Here, a DES would model airport specific ground operations that 
include on-stand processing. In these more complex models, big data 
analytics (Iqbal, 2020; Iqbal, 2020) based on specific capacity, real 
traffic data for each destination airport and environmental factors could 
be used. This would allow the model to simulate contextually richer 
impacts of electric aircraft at both an airport specific level, as well as 

collectively across the entire network. These models could also consider 
the impact of flying time, weather and other factors on battery power 
consumption that could influence stand charging durations. For 
example, in the same way that a traditional aircraft will be fuelled ac-
cording to the requirements of the particular route flown, an electric 
aircraft may not need to be fully charged before each flight, especially if 
it is a relatively short sector. 

Equally, even busy airports experience uneven demand during a 
typical 24-hour period, with flight schedules typically concentrated into 
morning and evening ‘peak’ periods. Here it is possible that advanced 
modelling could be conducted to help account for prevailing real-world 
flight schedules at airports to help optimise the integration of electric 
aircraft in a way that minimises operational disruption. Further work 
could also include an SD or other integrated climate models to model the 
effects of weather and projected climate change on aircraft operations 
such as flying time, turbulence (Williams, 2016) (Storer, 2017) and take 
off / landing separation distances. These in turn could feedback to effect 
aircraft inflight and ground operational behaviours modelled by the 
ABM and DES respectively. 

It is worth noting here that by only focussing on questions of the 
airside capacity aspects of electric aircraft, this paper does not consider 
important electrical sizing aspects, as well as the related supporting 
charging infrastructure and power demands of electric aircraft. How-
ever, it is hoped that by focussing on the operational and planning as-
pects of electric aircraft, the findings from the research will complement 
this important avenue for future research. 

Future work could also more extensively apply computational ma-
chine learning and other forms of metaheuristic optimisation techniques 
such as evolutionary algorithms to identify optimal solutions for stand 
capacity and other complex resource scheduling and allocation issues 
for airport operations. This could include the consideration of energy 
storage infrastructure and distribution across different locations to 
provide intelligently orchestrated energy demand management across 
aircraft and airport assets. Additional approximate reasoning techniques 
such as probabilistic and fuzzy systems (Mendel, 2001) could be used to 
complement quantitative and sensor rich data with experiential 
knowledge models to handle sources of uncertainties present in 
modelling real world systems. 

The combination of bottom-up computational methodologies such as 
cooperative multi-agent systems for representing the characteristics, 
and interaction behaviours of actors and assets with top-down machine 
learning and optimisation algorithms such as deep learning neural net-
works (Maniak, 2020), reinforcement learning, and optimisation algo-
rithms can also be used to create high fidelity intelligent digital twins of 
airport operations for facilitating more effective planning and manage-
ment decisions as have been recently applied in the context of complex 
transportation networks (Li, 2019). The potential insights offered by 
such an approach presents an exciting avenue for future research in this 
area. 
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