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ABSTRACT

Errors caused by discrete time stepping may be an important component of total model error in contem-

porary atmospheric and oceanic simulations. To reduce time-stepping errors in leapfrog integrations, the

Robert–Asselin–Williams (RAW) filter was proposed by the author as a simple improvement to the widely

used Robert–Asselin (RA) filter. The present paper examines the behavior of the RAW filter in semi-implicit

integrations. First, in a linear theoretical analysis, the stability and accuracy are interrogated by deriving

analytic expressions for the amplitude errors and phase errors. Then, power-series expansions are used to

interpret the leading-order errors for small time steps and hence to identify optimal values of the filter pa-

rameters. Finally, the RAW filter is tested in a realistic nonlinear setting, by applying it to semi-implicit

integrations of the elastic pendulum equations. The results suggest that replacing the RA filter with the RAW

filter could reduce time-stepping errors in semi-implicit integrations.

1. Introduction

Contemporary atmospheric and oceanic numerical

simulations are typically unconverged as the time step

is reduced. For example, Williamson and Olson (2003)

have found that an aqua-planet atmospheric general

circulation model is sensitive to the time step of the pa-

rameterized physics. In particular, different time steps

produce different zonally averaged precipitation patterns,

such that the common double intertropical convergence

zone (ITCZ) problem appears to be fixed by a simple re-

duction of the time step. Furthermore, Pfeffer et al. (1992)

and Zhao and Zhong (2009) have found that different

time-stepping schemes in atmospheric general circulation

models produce substantially different climates. There-

fore, errors caused by discrete time stepping may be an

important component of total model error, as suggested

by Teixeira et al. (2007).

In the atmospheric and oceanic sciences, the leapfrog

time-stepping scheme remains in wider use than the

more accurate alternatives, such as the Adams–Bashforth

schemes (e.g., Durran 1991) and the Runge–Kutta schemes

(e.g., Kar 2006). The leapfrog scheme exhibits a well-

known spurious computational mode (e.g., Lilly 1965;

Young 1968; Mesinger and Arakawa 1976; Haltiner

and Williams 1980; Durran 1999; Kalnay 2003), which

may grow unphysically in nonlinear integrations. Un-

fortunately, many proposed strategies for controlling the

computational mode, including the filtered leapfrog–

trapezoidal scheme (Dietrich and Wormeck 1985)

and the weighted filtered leapfrog–trapezoidal scheme

(Roache and Dietrich 1988), incur a reduction in formal

accuracy.

The computational mode of the leapfrog scheme may

be controlled without loss of second-order accuracy, by

alternating between leapfrog steps and other second-

order steps, as in the leapfrog–trapezoidal scheme

(Kurihara 1965) and the leapfrog–Adams–Bashforth

scheme (Magazenkov 1980). Traditionally, however, the

preferred strategy has been to apply a Robert–Asselin

filter (Robert 1966; Asselin 1972) after each leapfrog

step. Although in wide use (e.g., Schlesinger et al. 1983;

Tandon 1987; Ford 1994; Caya and Laprise 1999; Griffies

et al. 2001; Bartello 2002; Cordero and Staniforth 2004;

Fraedrich et al. 2005; Hartogh et al. 2005; Williams et al.

2009), the Robert–Asselin filter is associated with some

counterintuitive behavior (e.g., Déqué and Cariolle 1986;

Robert and Lépine 1997) and a reduction to first-order

accuracy.
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Williams (2009) proposed a simple modification to the

Robert–Asselin filter, designed to preserve the second-

order accuracy in leapfrog integrations. To understand

the modification, suppose that the filter is to operate on

three time-consecutive values of a dependent variable,

denoted xn21, xn, and xn11. Typically, xn11 will have

been calculated from xn21 and xn using a leapfrog step,

and xn21 and xn may already have been filtered after

previous leapfrog steps. To shorten what follows, let the

unit of displacement be n(xn21 2 2xn 1 xn11)/2, where

n is a dimensionless filter parameter that is assumed to

be small and positive. With this definition, the original

Robert–Asselin filter displaces xn through one unit but

does not displace xn11. In contrast, the modified filter

proposed by Williams (2009) simultaneously displaces

xn through a units and xn11 through a 2 1 units, where a

is a second dimensionless filter parameter satisfying 0 #

a # 1. Hereafter, for brevity and following Amezcua

et al. (2011), the original filter will be labeled the Robert–

Asselin (RA) filter and the modified filter will be labeled

the Robert–Asselin–Williams (RAW) filter.

For the special case of a 5 1, the RAW filter is

identical to the RA filter. For the special case of a 5 ½,

the RAW filter perturbs xn and xn11 through equal and

opposite displacements, conserving the three-time-level

mean state, (xn21 1 xn 1 xn11)/3. When the latter special

case replaces the former in leapfrog integrations, the

phase accuracy remains second order but the amplitude

accuracy increases from first to third order (Williams

2009). Therefore, the RAW-filtered leapfrog scheme

with a 5 ½ exactly matches the accuracy of the Kurihara

(1965) and Magazenkov (1980) alternating schemes

(Durran 1999), but benefits from being nonalternating,

less cumbersome, more intuitive, and simpler to imple-

ment. The upgrade from RA filtering to RAW filtering in

an existing computer code is trivial (Fig. 1). The RAW

filter is currently being tested in various general circula-

tion models of the atmosphere and ocean, and the results

will be reported in due course.

Williams (2009) studied the RAW filter in explicit

leapfrog integrations. However, practical applications

of the leapfrog scheme in meteorological and oceano-

graphic models are usually accompanied by the semi-

implicit modification (Robert 1969; Kwizak and Robert

1971; Staniforth 1997). The semi-implicit discretization

method uses the explicit leapfrog scheme for the advection

terms and the implicit trapezoidal scheme for the pres-

sure gradient and divergence terms. In numerical analysis,

this technique falls into the category of implicit–explicit

(IMEX) methods. The implicitly treated terms are cru-

cial for high-frequency gravity wave oscillations, which

are often of secondary importance and, which, if treated

explicitly, would violate the Courant–Friedrichs–Lewy

(CFL) stability condition unless impractically short time

steps were taken.

Semi-implicit numerical schemes are used widely in

practical applications, because they suffer from neither

the computational expense of fully implicit schemes nor

the demanding time step requirement of fully explicit

schemes (although the latter requirement is partly allevi-

ated with time-split methods; e.g., Skamarock and Klemp

1992). Therefore, strategies for improving semi-implicit

integrations are highly sought after by modelers. Note,

however, that the third-order Adams–Bashforth scheme

is known to be an unsuitable substitute for the leapfrog

scheme in semi-implicit integrations (Durran 1991).

Motivated by the above introductory discussion, the

goal of the present paper is to study the RAW filter

in semi-implicit integrations. First, a linear theoretical

analysis of the RAW-filtered semi-implicit scheme is

presented (section 2). The stability and accuracy are in-

terrogated by deriving analytic expressions for the am-

plitude errors and phase errors (section 2a). Power-series

expansions are used to interpret the leading-order errors

for small time steps and hence to identify optimal values

of the filter parameters (section 2b). Finally, the RAW

filter is tested in a realistic nonlinear setting, by applying

it to semi-implicit integrations of the elastic pendulum

equations (section 3). The paper concludes with a sum-

mary and discussion (section 4).

2. Theoretical analysis

a. Derivation of amplitude errors and phase errors

Semi-implicit time-stepping schemes are traditionally

examined by applying them to the split-frequency os-

cillation equation for the complex variable x(t),

FIG. 1. The essential time-stepping lines of a typical leapfrog

computer code, imagined to appear inside a time-stepping loop.

The unshaded code performs an explicit leapfrog step and applies

the RA filter. The upgrade from RA filtering to RAW filtering is

achieved via the trivial insertion of the shaded code.
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dx

dt
5 iv

low
x 1 iv

high
x, (1)

where i 5
ffiffiffiffiffiffiffi
�1
p

and vlow and vhigh are given (real) an-

gular frequencies (e.g., Durran 1991, 1999). The semi-

implicit numerical approximation to (1) uses the explicit

leapfrog scheme to discretize the vlow term and the

implicit trapezoidal (Crank–Nicolson) scheme to dis-

cretize the vhigh term. With time step Dt, and using the

RAW filter to control the computational mode, the semi-

implicit numerical scheme is

x(t 1 Dt)� x(t � Dt)

2Dt
5 iv

low
x(t)

1 iv
high

x(t 1 Dt) 1 x(t � Dt)

2

� �
,

(2)

x(t) 5 x(t) 1
na

2
[x(t � Dt)� 2x(t) 1 x(t 1 Dt)], and

(3)

x(t 1 Dt) 5 x(t 1 Dt)

1
n(a� 1)

2
[x(t � Dt)� 2x(t) 1 x(t 1 Dt)].

(4)

In this three-stage method, (2) applies a semi-implicit

time step to calculate x(t 1 Dt) from x t � Dtð Þ and x tð Þ,
and (3) and (4) apply the RAW filter with parameters

n and a. In (2)–(4), x denotes an unfiltered provisional

value, x denotes a singly filtered provisional value, and

x denotes the doubly filtered definitive value.

To proceed with the analysis, the complex amplifica-

tion factor A is defined by

A 5
x(t 1 Dt)

x(t)
5

x(t 1 Dt)

x(t)
5

x(t 1 Dt)

x(t)
. (5)

Rewriting (2)–(4) with function evaluations at time t

only, using (5), yields a homogeneous matrix equation

for the vector [x(t), x(t), x(t)]. For nontrivial solutions,

the determinant of the 3 3 3 matrix of coefficients must

vanish, yielding

aA2 1 bA 1 c 5 0, (6)

where

a 5 1� iv
high

Dt, (7)

b 5�n 1 n(1� a)iv
high

Dt 1 [n(1� a)� 2]iv
low

Dt, (8)

c 5 n � 1� (1� na)iv
high

Dt 1 naiv
low

Dt. (9)

For the special case of n 5 0, which corresponds to the

unfiltered semi-implicit scheme, (6)–(9) reduce to the

quadratic equation derived by Kwizak and Robert (1971),

as expected. For the alternative special case of vhigh 5 0,

which corresponds to the RAW-filtered explicit leapfrog

scheme, (6)–(9) reduce to the quadratic equation derived

by Williams (2009), as expected. For the general case, the

quadratic equation yields two roots, A6(n, a, ivlowDt,

ivhighDt), where A1 and A2 are the complex amplifica-

tion factors for the physical and computational modes,

respectively. Explicit formulas for A1 and A2 are omitted

here, for brevity. For comparison, the complex amplifi-

cation factor for the exact solution is found from (1) to be

A
exact

(iv
low

Dt, iv
high

Dt) 5 exp[i(v
low

1 v
high

)Dt]. (10)

A hypothetical, error-free numerical scheme would

have A1 5 Aexact and would lack computational modes.

This perfect scheme would neither amplify nor dissipate

the unforced and undamped oscillations modeled by

(1), because jAexactj 5 1, and it would advance the phase

of the oscillations at a rate equal to the sum of the two

frequencies, because arg(Aexact) 5 (vlow 1 vhigh)Dt.

However, like all numerical schemes, the RAW-filtered

semi-implicit scheme has A1 6¼ Aexact. Its amplitude and

phase errors are characterized by the magnitude and ar-

gument, respectively, of A1 relative to those of Aexact.

To assess the amplitude errors, an explicit formula for

A1 is obtained by solving the quadratic equation in

(6)–(9). The variation of jA1j2 jAexactjwith vlowDt and

vhighDt will be discussed in detail in the following

paragraphs, and is plotted in Fig. 2 for a typical value of

n and three values of a. Positive values of the plotted

quantity indicate numerical amplification of the physical

mode, and negative values indicate numerical damping.

Note that the plotted quantity is typically at least an order

of magnitude smaller for a ’ ½ than for a ’ 1, across the

range of vlowDt and vhighDt shown.

The leading-order behavior on the fully explicit axis

(vhighDt 5 0) was studied by Williams (2009). For a 5 1,

corresponding to the original RA filter, strong (qua-

dratic) damping yields stability but poor accuracy. In

contrast, for a 5 ½, weak (quartic) amplification yields

good accuracy but weak instability. Neither of these out-

comes is especially desirable, although physical damping

in dissipative systems may control any weak numerical

instability. Worse still, for a 5 0 (not shown), strong

(quadratic) amplification yields both instability and poor

accuracy. However, for a U ½, competition between

quadratic damping and quartic amplification yields both

stability and good accuracy, over a tunable finite range

of frequencies that widens with increasing a. Conse-

quently, for fully explicit simulations of unforced and
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undamped oscillations, a U ½ was recommended by

Williams (2009).

The behavior on the fully implicit axis (vlowDt 5 0) is

qualitatively different. For all values of a $ ½, damping

of various strengths is obtained at all points on the axis,

and amplification is never obtained. Therefore, arbi-

trarily long time steps may be taken without risking

numerical instability of the implicitly treated mode.

(Poor accuracy for the implicitly treated mode with long

time steps is expected and unconcerning.) Unconditional

linear stability is the desirable characteristic of implicit

schemes, and it is preserved by the RAW filter.

The behavior in the semi-implicit plane (vhighDt . 0,

vlowDt . 0) is arguably of greater practical interest than

the behavior on either of the axes. For all values of a, the

vlowDt coordinate of the neutral stability curve increases

as vhighDt increases, and so the finite stable range of ex-

plicitly treated frequencies widens. For example, referr-

ing to Fig. 2b, the fully explicit case of (vlowDt, vhighDt) 5

(0.5, 0) is unstable but the semi-implicit case of (vlowDt,

vhighDt) 5 (0.5, 0.5) is stable. Therefore, the inclusion of

the implicitly treated mode appears to stabilize the nu-

merical scheme.

The behavior in the top-left triangle of the semi-

implicit plane (vhighDt $ vlowDt) is of special practical

interest. For all values of a $ ½, damping of various

strengths is obtained at all points in the triangle, and

amplification is never obtained. Therefore, if the fre-

quency of the implicitly treated mode equals or exceeds

the frequency of the explicitly treated mode, arbitrarily

long time steps may be taken without risking numerical

instability. The strength of the damping depends sensi-

tively upon a, with a 5 ½ generally being much less

dissipative than a 5 1. Indeed, for the case vhighDt 5

vlowDt, the amplitude of the oscillations is preserved

exactly with a 5 ½.

To assess the phase errors, the variation of arg(A1) 2

arg(Aexact) with vlowDt and vhighDt is plotted in Fig. 3.

Positive values of the plotted quantity indicate numeri-

cal phase advancement of the physical mode, and neg-

ative values indicate numerical phase recession. The

structure and magnitude of the plotted quantity appear

indistinguishable for all values of a, indicating that

phase errors, unlike amplitude errors, are relatively in-

sensitive to a. The curve of zero phase error appears

to be approximately vhighDt 5 0.5vlowDt. The region

between the curve of zero phase error and the fully

implicit axis exhibits numerical phase recession, and

the region between the curve of zero phase error and

the fully explicit axis exhibits numerical phase advance-

ment. The curves of zero amplitude error in Fig. 2 and

the curves of zero phase error in Fig. 3 do not generally

coincide.

FIG. 2. Magnitude of the amplification factor for the physical

mode of the RAW-filtered semi-implicit numerical scheme (jA1j)
relative to that for the exact solution (jAexactj 5 1). The scheme is

applied to the split-frequency complex oscillation equation in (1),

with the vlow term treated explicitly and the vhigh term treated

implicitly. The values of the RAW filter parameters are (a) a 5 ½,

(b) a 5 0.53, and (c) a 5 1, each with n 5 0.01. White contours

denote the curves of neutral stability (jA1j 2 1 5 0). Note the use

of different color maps: the plotted quantity is typically at least an

order of magnitude smaller in (a) and (b) than in (c).
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Finally, to determine whether the computational mode

is suppressed, the variation of jA2j 2 1 with vlowDt and

vhighDt is plotted in Fig. 4. Positive values of the plotted

quantity would indicate amplification of the computational

mode, and negative values would indicate damping. For

all values of a, damping is obtained at all points in the

plane, and amplification is never obtained. Therefore, the

unconditional linear stability of the computational mode

is preserved by the RAW filter, as desired.

FIG. 3. Argument of the amplification factor for the physical

mode of the RAW-filtered semi-implicit numerical scheme (argA1)

relative to that for the exact solution (argAexact). The scheme is

applied to the split-frequency complex oscillation equation in (1),

with the vlow term treated explicitly and the vhigh term treated im-

plicitly. The values of the RAW filter parameters are (a) a 5 ½,

(b) a 5 0.53, and (c) a 5 1, each with n 5 0.01. White contours

denote the curves of zero phase error (argA1 2 argAexact 5 0).

FIG. 4. Magnitude of the amplification factor for the computa-

tional mode of the RAW-filtered semi-implicit numerical scheme

(jA2j) relative to unity. The scheme is applied to the split-frequency

complex oscillation equation in (1), with the vlow term treated ex-

plicitly and the vhigh term treated implicitly. The values of the RAW

filter parameters are (a) a 5 ½, (b) a 5 0.53, and (c) a 5 1, each with

n 5 0.01.
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b. Leading-order behavior for small time steps

As Dt decreases continuously to zero, transects of con-

stant vhigh/vlow are traversed near the origin of the (vlowDt,

vhighDt) plane. To better understand the stability and ac-

curacy of the physical mode in this limit, the leading-order

behavior along these transects will now be derived. First,

vhigh 5 rvlow is substituted into the expressions (7)–(9) for

the coefficients of the quadratic equation in (6). Then,

series-expansion solutions are sought for the magnitude

and argument of A1(n, a, r, ivlowDt) in powers of vlowDt,

treating n, a, and r as constants. The solutions are ob-

tained using the symbolic manipulation capability of the

Mathematica software (Wolfram Research 2008).

For the magnitude of A1, the power series obtained is

jA
1
j5 1 1

1

4
n(1� 2a)(1 1 r)2(v

low
Dt)2

1
1

16
n[3� 4a� r(5� 8a)](1 1 r)3(v

low
Dt)4

1O(v
low

Dt)6, (11)

or, expressed equivalently as a power series in vhighDt,

A
1

�� ��5 1 1
1

4
n(1� 2a)

(1 1 r)2

r2
(v

high
Dt)2

1
1

16
n[3� 4a� r(5� 8a)]

(1 1 r)3

r4
(v

high
Dt)4

1O(v
high

Dt)6. (12)

The lowest-order terms in the power series are identical

to jAexactj 5 1, as expected. In the coefficients of the

quadratic and quartic terms, contributions O(n2) and

higher have been neglected, because n � 1 in practical

applications. In this limit, the coefficients of the qua-

dratic and quartic terms are each directly proportional

to n but depend nontrivially upon r and a. Therefore, the

binary stability and the order of amplitude accuracy are

each influenced only by r and a and not by n (although

the growth rate of any instability and the absolute am-

plitude error are each directly proportional to n). The

signs of the quadratic and quartic terms vary in the (r, a)

plane as shown in Fig. 5. The lines a 5 ½ and a 5 (3 2

5r)/(4 2 8r), along which the quadratic and quartic terms,

respectively, are zero, intersect at the point (r, a) 5 (1, ½)

and partition the plane into five regions with distinct

stability and accuracy characteristics.

The stability characteristics will be considered first. In

the region where the quadratic and quartic terms are

each positive, the numerical scheme is unstable for the

smallest time steps (at which the quadratic term domi-

nates) and remains unstable for larger time steps (at

which the quartic term dominates). In the region where

the quadratic term is positive and the quartic term is

negative, the scheme is unstable for the smallest time

steps (at which the quadratic term dominates) but may

be stabilized by the quartic term for a range of larger

time steps (if the sextic term remains small). In the re-

gion where the quadratic term is negative and the quartic

term is positive, the scheme is stable for the smallest time

steps (at which the quadratic term dominates) but may

be destabilized by the quartic term for a range of larger

time steps (if the sextic term remains small). None of this

stability behavior is especially desirable. In contrast, in

the two regions where the quadratic and quartic terms

are each negative, the scheme is stable for the smallest

time steps (at which the quadratic term dominates) and

remains stable for larger time steps (at which the quartic

term dominates). Therefore, these two regions offer the

best stability behavior.

The accuracy characteristics will be considered next.

In most of the (r, a) plane, the leading-order amplitude

errors for a single time step and for a given time inter-

val vary with Dt quadratically and linearly, respectively,

yielding first-order amplitude accuracy. The exception is

the line a 5 ½, along most of which the leading-order

amplitude errors vary quartically and cubically, yield-

ing third-order amplitude accuracy. The further excep-

tion is the point (r, a) 5 (1, ½), at which the leading-order

FIG. 5. Behavior in the (r, a) plane of the signs of the quadratic

and quartic terms in the power series for jA1j, given by (11) and

(12) for n � 1. The lines a 5 ½ and a 5 (3 2 5r)/(4 2 8r), along

which the quadratic and quartic terms, respectively, are zero, par-

tition the plane into five regions, which are shaded differently. No

shading denotes a negative quadratic term and a negative quartic

term, light shading denotes a negative quadratic term and a positive

quartic term, medium shading denotes a positive quadratic term

and a negative quartic term, and heavy shading denotes a positive

quadratic term and a positive quartic term. The r axis is linear in r

between r 5 0 and r 5 1 and linear in 1/r between r 5 1 and r 5 ‘.

The line r 5 0 corresponds to fully explicit integrations and the line

r 5 ‘ corresponds to fully implicit integrations. The line a 5 1

corresponds to the original RA filter.
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amplitude errors vary at worst sextically and quintically,

yielding at least fifth-order amplitude accuracy. In fact, the

amplitude errors are exactly zero at this point (Fig. 2a).

The above leading-order amplitude behavior was pre-

dicted from the truncated power-series expansions in (11)

and (12). Nevertheless, it is a faithful representation of

the unapproximated behavior, which is plotted in Fig. 6

using the full analytic solution to the quadratic equation

in (6)–(9). Optimal values of a are determined by a ten-

sion between the needs for accuracy and stability. For

fully explicit integrations (vhighDt 5 0) of unforced and

undamped oscillations, the RAW filter with a 5 3/4 is

perhaps the best compromise, because it offers better

accuracy than the original RA filter (with a 5 1) and

almost the same stability criterion. For fully implicit in-

tegrations (vlowDt 5 0) and typical semi-implicit inte-

grations (vlow � vhigh), the RAW filter with a 5 ½ is

perhaps the best compromise, because it offers better

accuracy than the original RA filter (with a 5 1) and

retains the unconditional stability. There is no case for

which the optimal value is a 5 1.

Finally, for the argument of A1, the power series ob-

tained is

arg (A
1

) 5 (1 1 r)(v
low

Dt)

1
1

6
(1� 2r)(1 1 r)2(v

low
Dt)3

1O(v
low

Dt)5,

(13)

or, expressed equivalently as a power series in vhighDt,

arg (A
1

) 5
(1 1 r)

r
(v

high
Dt)

1
1

6

(1� 2r)(1 1 r)2

r3
(v

high
Dt)3

1O(v
high

Dt)5.

(14)

The lowest-order terms in the power series are identical

to arg(Aexact) 5 (vlow 1 vhigh)Dt, as expected. In the

coefficients of the cubic terms, contributions O(n) and

higher have been neglected. In this limit, the coefficients

of the cubic terms are dependent upon r but indepen-

dent of n and a, because all the dependency upon a

enters through terms O(n) and higher. Therefore, the

leading-order phase behavior is influenced only by r

and not by n or a. It follows that the phase behavior

is insensitive to the RA and RAW filters. Numerical

phase advancement is obtained for r , ½, and numerical

phase recession for r . ½. For r 6¼ ½, the leading-order

phase errors for a single time step and for a given time

interval vary with Dt cubically and quadratically, re-

spectively, yielding second-order phase accuracy. For r

5 ½, the leading-order phase errors vary quintically and

quartically, yielding fourth-order phase accuracy.

3. Numerical test integrations

The RAW-filtered semi-implicit scheme will now be

tested in a realistic nonlinear setting, by applying it

to numerical integrations of the ordinary differential

equations for an elastic pendulum confined to a vertical

FIG. 6. Magnitude of the amplification factor for the physical mode (jA1j) relative to that for the exact solution

(jAexactj5 1), for (a) fully explicit integrations and (b) fully implicit integrations. In the RAW filter, n 5 0.01 and a

takes various critical values suggested by inspection of Fig. 5 along (a) r 5 0 and (b) r 5 ‘. The case a 5 1

corresponds to the original RA filter.
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plane. Unlike the corresponding rigid pendulum, which

exhibits only a rotational mode about the point of sus-

pension, the elastic pendulum also exhibits a relatively

fast vibrational mode, to which the relatively slow ro-

tational mode is nonlinearly coupled. The elastic pen-

dulum is known informally as the swinging spring, and

its dynamics have been investigated extensively (e.g.,

Lynch 2002), motivated partly by an analogy with inter-

actions in rotating fluids between slow balanced modes

and fast inertia–gravity modes.

The elastic pendulum is shown schematically in Fig. 7.

In the configuration to be studied here, a massless spring

of unstretched length l0 5 1 m and force constant k 5

100 N m21 is loaded with a point mass of m 5 0.1 kg in

a gravitational field of acceleration g 5 10 m s22. The

spring may be stretched along its axis but not bent. The

equilibrium length of the loaded spring is l 5 l0 1 mg/k 5

1.01 m and the linear angular frequencies of the slow

and fast modes are vlow 5
ffiffiffiffiffiffi
g/l

p
’ 3.1 rad s21 and vhigh 5ffiffiffiffiffiffiffiffiffi

k/m
p

’ 31.6 rad s21, respectively.

The dynamics are studied using cylindrical polar co-

ordinates, with the origin at the point of suspension and

the zero of azimuth aligned with the gravitational field.

Writing the radial coordinate of the point mass as l[1 1

h(t)] and the azimuthal coordinate as u(t), the state of

the system is completely specified by the values of h(t)

and u(t) and the values of their time derivatives, nh(t)

and nu(t), respectively. The equilibrium position is h 5

0 and u 5 0. In the simulations to be studied here, the

point mass is released from rest with h 5 0.01 and u 5 1.0

rad at time t 5 0, and its evolution is tracked from t 5

0 to t 5 10 s.

The nonlinear equations of motion for [h(t), nh(t),

u(t), nu(t)] are

_h 5 y
h
, (15)

_y
h

5�v2
low(1� cosu)� v2

highh 1 (1 1 h)y2
u, (16)

_u 5 y
u
, and (17)

_y
u

5
�v2

low sinu� 2y
h
y

u

1 1 h
. (18)

If (15)–(18) were linearized about the equilibrium po-

sition, then the slow and fast modes would decouple and

u(t) and h(t) would each execute independent simple

harmonic motion with angular frequencies vlow and

vhigh, respectively. The two underlined terms in (15) and

(16) are crucial for the fast mode. Therefore, in the semi-

implicit discretization used for the present integrations,

the underlined terms are treated implicitly using the

trapezoidal (Crank–Nicolson) scheme and all other terms

are treated explicitly using the leapfrog scheme. Semi-

implicit discretized equations for more complicated sys-

tems are generally solved by iteration, but here they can

be rearranged to obtain explicit analytic expressions for

the future state. Once the future state is thereby calcu-

lated, the RAW filter is applied to all four state variables.

The present numerical experiments use a time step

of Dt 5 0.1 s, giving vlowDt ’ 0.3 and vhighDt ’ 3. The

experiments are found to be unstable with this time step

when all the terms in (15)–(18) are treated explicitly, as

expected because of the large value of vhighDt. Two

semi-implicit integrations will be studied, with a 5 1 and

a 5 ½, and each with n 5 0.2. A single two-time-level

forward step is used to initiate the three-time-level semi-

implicit scheme. The two experiments will be compared

to a reference numerical solution obtained using the

semi-implicit scheme with Dt 5 1026 s, n 5 0.2, and a 5

½. The reference solution is found to be insensitive to all

of these numerical choices, and so is taken to be a well-

converged approximation to the exact solution for the

purposes of the following comparison.

The results are shown in Fig. 8. Compared to the ref-

erence solution, the evolution of u(t) is captured reason-

ably well in the simulation with a 5 ½, but large amplitude

and phase errors occur after a few periods of the slow

oscillation in the simulation with a 5 1. In particular, the

oscillations are damped by the RA filter (with a 5 1) but

are undamped by the RAW filter (with a 5 ½), consis-

tent with Williams (2009). The evolution of h(t) is wildly

FIG. 7. Schematic diagram of the elastic pendulum, or swing-

ing spring, showing the equilibrium position (dotted) and a non-

equilibrium position defined by the values of h and u (solid).
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inaccurate for both cases of a, because the time step is

too long to resolve the fast oscillations, but the implicit

discretization of the underlined terms in (15) and (16)

keeps the integrations stable. Similar (but less pro-

nounced) results are found for smaller values of n.

The elastic pendulum under consideration is physi-

cally unforced and undamped. Therefore, the time-

continuous equations, (15)–(18), exactly conserve the

total energy,

E 5
1

2
ml2[y2

h 1 (1 1 h)2
y2

u]�mgl(1 1 h) cosu

1
1

2
kl2(h 1 mg/kl)2

1 mgl � 1

2
k(l � l

0
)2. (19)

The first term in (19) is the kinetic energy, the second

term is the gravitational potential energy, the third term

is the elastic potential energy, and the two constant

terms arbitrarily define the resting equilibrium energy

to be zero. From the form of (19), energy accuracy is

expected to be improved when amplitude accuracy is

improved. The evolution of E(t) in the numerical sim-

ulations is also shown in Fig. 8. Initially, E ’ 0.47 J. The

reference solution conserves E to within 10211 J over

the integration period. In the two experimental simula-

tions, the energy conservation is captured well with a 5

½, but most of the energy is lost to numerical dissipation

by the end of the integration period with a 5 1.

Of particular interest are the magnitudes of the nu-

merical errors after a given integration interval, and the

rates at which they converge to zero as the time step is

progressively refined. Such data, for the variable u at

time t 5 10 s, are displayed in Fig. 9. The errors for a 5

0.4 and a 5 0.6 are approximately equal in magnitude

and opposite in sign, and the same for a 5 0.3 and a 5

0.7, and so on, but the errors for a 5 ½ are typically

orders of magnitude smaller. The leading-order errors

scale quadratically with the time step for a 5 ½, but

FIG. 8. Numerical integrations of the nonlinear elastic pendulum equations in (15)–(18),

showing the angular and radial motion of the point mass and the total energy of the system. At

time t 5 0, the mass is released from rest with u 5 1.0 rad and h 5 0.01, and hence with E ’

0.47 J. The RAW-filtered semi-implicit numerical scheme is used, with Dt 5 0.1 s, n 5 0.2, and

(in two separate integrations) a 5 1 and a 5 ½. The integrations are compared to a reference

solution obtained with Dt 5 1026 s.

FIG. 9. Errors diagnosed from numerical integrations of the

nonlinear elastic pendulum equations in (15)–(18). For each in-

tegration, at time t 5 0 the mass is released from rest with u 5 1.0 rad

and h 5 0.01, and the RAW-filtered semi-implicit numerical scheme

with n 5 0.2 is used. This figure is produced from 110 such in-

tegrations, one for each combination of 10 different values of Dt

and 11 different values of a. The error in u is defined to be the

difference at time t 5 10 s between the value obtained using time

step Dt and a reference value obtained using time step 1027 s. For

guidance, straight lines of slopes 1 and 2 are also drawn.

2004 M O N T H L Y W E A T H E R R E V I E W VOLUME 139



linearly for all other a 6¼ ½, consistent with the analysis

of section 2b. The same error scalings are found for the

other variables (h, nu, nh, and E) and at other times.

4. Summary and discussion

Evidence suggests that discrete time stepping may be

an important component of total model error in con-

temporary atmospheric and oceanic numerical simula-

tions. Thus motivated, the Robert–Asselin–Williams

(RAW) filter was proposed by Williams (2009) as a sim-

ple improvement to the Robert–Asselin (RA) filter,

which is widely used to control the computational mode

associated with the leapfrog time-stepping scheme. The

present paper has applied the RAW filter to semi-implicit

integrations, in which the explicit leapfrog scheme is used

to discretize the low-frequency terms and the implicit

trapezoidal (Crank–Nicolson) scheme is used to dis-

cretize the high-frequency terms.

Section 2 presented a linear theoretical analysis of the

RAW-filtered semi-implicit scheme applied to the split-

frequency complex oscillation equation. The stability

and accuracy were interrogated in section 2a by deriving

the complex amplification factors for the physical and

computational modes, multiplication by which advances

the numerical solution through one time step. The uncon-

ditional linear stability of the physical mode in the fully

implicit limit was found to be preserved by the RAW

filter. The unconditional linear stability of the compu-

tational mode was also found to be preserved by the

RAW filter.

The stability and accuracy of the physical mode were

further interrogated in section 2b by deriving power-

series expansions for the amplitude errors and phase

errors. The expansions were used to interpret the leading-

order errors for small time steps and hence to identify

optimal regions of the space spanned by the frequency

ratio (r 5 vhigh/vlow) and the filter parameters (a and n)

in the limit n � 1. For fully explicit integrations of un-

forced and undamped oscillations, the RAW filter with

a 5 3/4 was found to be perhaps the best compromise

between the needs for accuracy and stability, because it

was found to offer better accuracy than the RA filter and

almost the same stability criterion. For fully implicit

integrations and typical semi-implicit integrations, the

RAW filter with a 5 ½ was found to be perhaps the best

compromise, because it was found to offer better accu-

racy than the RA filter and to retain the unconditional

stability.

Finally, section 3 tested the RAW-filtered semi-implicit

scheme in a realistic nonlinear setting, by applying it to

numerical integrations of the elastic pendulum equations.

The implicit trapezoidal (Crank–Nicolson) scheme was

used to discretize the terms that are crucial for the fast

vibrational mode, and the explicit leapfrog scheme was

used to discretize the nonlinear terms and the terms that

are crucial for the slow rotational mode. As expected, the

simulated fast oscillations were found to be wildly in-

accurate compared to a reference solution, because the

time step was too long to resolve them. The simulated

slow oscillations were found to be damped for a 5 1

(corresponding to the original RA filter) but to be un-

damped for a 5 ½. Consequently, the total energy of the

system, which is conserved exactly by the time-continuous

equations, was found to be conserved for a 5 ½ much

better than for a 5 1.

The present paper has demonstrated that the RAW-

filtered leapfrog scheme is an improvement to the

RA-filtered leapfrog scheme. Of course, neither of these

filtered leapfrog schemes is able to match the accuracy

of third-order schemes (e.g., Runge–Kutta and Adams–

Bashforth). What the RAW-filtered leapfrog scheme

does offer, however, is suitability for semi-implicit inte-

grations (unlike the third-order Adams–Bashforth scheme;

Durran 1991) and arguably a higher numerical accuracy

per unit of coding effort (because the implementation is

trivial; Fig. 1).

The present paper gains practical verification from

Amezcua et al. (2011), who have implemented the

RAW filter in the Simplified Parameterizations, Primitive-

Equation Dynamics (SPEEDY) atmospheric general cir-

culation model (Molteni 2003). By default, SPEEDY uses

a semi-implicit time-stepping scheme with the RA filter.

The upgrade from RA filter (with n 5 0.1) to RAW filter

(with n 5 0.1 and a 5 0.53) was reported to have required

the insertion of a single new line of computer code, which

did not noticeably affect the integration speed. In a series

of tests, no significant changes were found to the model’s

monthly climatology, which meant that the parameterized

physics required no retuning. In further tests, the RAW

filter was found to significantly improve the skill of short-

and medium-range weather forecasts. The improvements

increased with lead time and were especially evident in the

medium range. For example, for tropical surface pressure

predictions, 5-day forecasts made using the RAW filter

were found to have approximately the same skill as 4-day

forecasts made using the RA filter.

In addition to improving atmosphere models, the

RAW filter could also bring substantial benefits to ocean

models, by correcting several known problems with the

RA filter. For example, in an isopycnal-coordinate sim-

ulation of the steady-state global ocean circulation at

28 horizontal resolution, the RA filter has been found to

generate numerical diapycnal volume fluxes that are as

large as the physical diapycnal volume fluxes (P. J. van

Leeuwen 2010, personal communication). It remains to
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be seen whether the RAW filter could fix this behavior.

Also, in leapfrog ocean models with time-varying vertical

coordinates, the RA filter is known to violate tracer

conservation. Leclair and Madec (2009) attempt to fix the

nonconservation by reformulating the forcing and filter-

ing terms. Possibly, an even more superior scheme will

result from combining the reformulation of Leclair and

Madec (2009) with the RAW filter. The exploration of

these possibilities is left for future work.
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