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Abstract Many modern outer radiation belt models simulate the long‐time behavior of high‐energy
electrons by solving a three‐dimensional Fokker‐Planck equation for the drift‐ and bounce‐averaged
electron phase space density that includes radial, pitch‐angle, and energy diffusion. Radial diffusion is an
important process, often characterized by a deterministic diffusion coefficient. One widely used
parameterization is based on the median of statistical ultralow frequency (ULF) wave power for a particular
geomagnetic index Kp. We perform idealized numerical ensemble experiments on radial diffusion,
introducing temporal and spatial variability to the diffusion coefficient through stochastic parameterization,
constrained by statistical properties of its underlying observations. Our results demonstrate the sensitivity
of radial diffusion over a long time period to the full distribution of the radial diffusion coefficient,
highlighting that information is lost when only usingmedian ULFwave power. When temporal variability is
included, ensembles exhibit greater diffusion with more rapidly varying diffusion coefficients, larger
variance of the diffusion coefficients and for distributions with heavier tails. When we introduce spatial
variability, the variance in the set of all ensemble solutions increases with larger spatial scales of variability.
Our results demonstrate that the variability of diffusion affects the temporal evolution of phase space
density in the outer radiation belt. We discuss the need to identify important temporal and length scales to
constrain variability in diffusion models. We suggest that the application of stochastic parameterization
techniques in the diffusion equation may allow the inclusion of natural variability and uncertainty in
modeling of wave‐particle interactions in the inner magnetosphere.

Plain Language Summary The Van Allen outer radiation belt is a region in near‐Earth space
containing mostly high‐energy electrons trapped by the Earth's geomagnetic field. It is a region populated
by satellites that are vulnerable to damage from the high‐energy environment. Many modern radiation
belt models simulate the behavior of the high‐energy electrons with a diffusion model, which describes how
electrons spread out from areas of higher concentration to areas of lower concentration. An important
process in these models is radial diffusion, driven by ultralow frequency (ULF) waves, where electrons are
drawn from the outer boundary and accelerated toward Earth, or pushed away from the outer radiation
belt and lost to interplanetary space. Radial diffusion is generally characterized by a parameter that provides
a single output from the specified inputs and does not allow for any variability in the physical process. In
this study we present a series of numerical experiments on radial diffusion, which allow for natural
variability in both time and space and see howmodeling of radial diffusion is impacted. Our results find that
better understanding of temporal and spatial variations of ULF wave interactions with electrons, and
being able to characterize these variations to a good level of accuracy, is vital to produce a robust description
of radial diffusion over long timescales in the outer radiation belt.

1. Introduction

The Van Allen outer radiation belt is a typically quiescent torus‐shaped region in near‐Earth space between
13,000 and 40,000 km radial distance consisting mainly of electrons between 100s of keV and multiple MeV
trapped by the Earth's geomagnetic field. Protons are also present and modeled in the radiation belts
(Vacaresse et al., 1999), but here we focus on the high‐energy electron population. The behavior of electrons
in the outer radiation belt is affected by multiple processes, some of which are immediate responses to solar
wind forcing, whereas some are more indirect energy pathways involving energy stored in the substorm
cycle. Numerical modeling is a powerful tool to provide deep understanding of the behavior of the outer
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radiation belt, allowing us to quantify the effects of different processes (e.g., Glauert et al., 2014; Reeves et al.,
2012; Shprits et al., 2008).

From a more practical standpoint, the ability to model these physical processes is becoming increasingly
important as Earth becomes more dependent on space‐based technologies. As of 31 March 2020 there were
135 satellites operating in medium Earth orbit (MEO; 2,000–35,786 km) and 554 in geostationary orbit
(GEO; 35,786 km), therefore operating in the heart of the belt (https://www.ucsusa.org). Outer radiation belt
electrons can be hazardous to these spacecraft, but there are insufficient in situ measurements available to
monitor the radiation environment directly. There remains a pressing need to develop accurate models of
the outer radiation belt for operational purposes in addition to promoting further physical understanding.

One effective method to study the dynamics of the outer belt electrons is to model the evolution of electron
phase space density (PSD) f(M, J,Φ; t) by a Fokker‐Planck equation as a function of the three adiabatic invar-
iants and time (Schulz & Lanzerotti, 1974). HereM, J, and Φ are the first, second, and third adiabatic invar-
iants, respectively. It is helpful to consider Φ in terms of the adiabatic reference parameter L*, defined by

L* = 2πBER2
E=Φ (Roederer, 1970). Since a first‐principles model of wave‐particle interactions in the outer

radiation belt is intractable across its large volume and long timescales, all the physics within the outer radia-
tion belt can be effectively described by diffusive processes. Each type of diffusion—pitch angle, energy, and
radial—by each wave mode is described in the Fokker‐Planck equation by a diffusion coefficient Dij. A
myriad of different wave‐particle interactions is important for the radiation belts. For example, very low fre-
quency (VLF) whistler mode chorus mediate energy diffusion (Thorne et al., 2013), whereas VLF whistler
mode hiss (Lyons & Thorne, 1973; Meredith et al., 2007) and ULF electromagnetic ion cyclotron (EMIC)
waves (Kersten et al., 2014) predominantly diffuse in pitch‐angle and therefore contribute to loss. ULF
wave‐driven radial diffusion at Pc‐5 frequencies is considered to be an important and effective mechanism
to transport and accelerate relativistic electrons in the outer radiation belt (Elkington et al., 2003;Mann et al.,
2013; Ozeke et al., 2017, 2018; Shprits et al., 2008).

In this paper we focus on radial diffusion as a result of ULF waves, which in the diffusion framework can be
modeled as a straightforward one‐dimensional problem. All of the physics is contained in the radial diffu-
sion coefficient DLL, which is proportional to ULF wave power. A wealth of data exists both on the ground
and in space to calculate ULF wave power and construct DLL (Dimitrakoudis et al., 2015; Li et al., 2017; Liu
et al., 2016; Ozeke et al., 2012, 2014; Ukhorskiy et al., 2009). Empirical models formulate analytic expres-
sions for DLL from ULF wave power data over long timescales, aiming to capture the spatiotemporal evolu-
tion of DLL in such a way that although rapid changes cannot be accurately captured, the long timescale
behavior of the outer radiation belt may be adequately described (e.g., Ozeke et al., 2018). In this paper,
we wish to highlight the numerical consequences of using different methods for modeling the temporal
and spatial variability of DLL with more realistic values that represent the underlying probability distribu-
tion of ULF wave power.

Many theoretical approximations exist for the radial diffusion coefficient DLL based on a variety of assump-
tions and approximations (Ali et al., 2016; Birmingham, 1969; Cornwall, 1968; Elkington et al., 2003;
Fälthammar, 1966, 1968; Fei et al., 2006; Lejosne et al., 2013; Liu et al., 2016; Schulz & Lanzerotti, 1974).
All of these approximations are constrained by some statistical parameterization of ULF wave power
obtained from many years of space or ground‐based observations. The most widely used DLL parameteriza-
tions in radiation belt models parameterize by the geomagnetic index Kp (Brautigam & Albert, 2000; Ozeke
et al., 2012, 2014). These parameterizations are deterministic with a single output for each value of Kp.

Typical approaches in radiation belt modeling follow a classical parameterization approachwhereby average
or median DLL values are used. These values only change when the fit parameters change, and therefore,
there is a chance that the full range of variability of DLL is not captured in this classical approach. In numer-
ical weather prediction and climate modeling, classical parameterizations have proven to be insufficient.
Instead, stochastic parameterizations are used to capture the whole distribution of behavior in underlying
physical processes to yield improved results. Note that previous attempts to capture more realistic variability
in ULF‐mediated radial diffusion have used observations to recreate event‐specificmodels of diffusion (Perry
et al., 2005; Riley &Wolf, 1992; Tu et al., 2012). These types of study, although potentially more accurate, are
limited to test cases with available data in space and time. We propose that in cases where direct data is
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lacking, it is still possible to capture the full range of behavior in the problem using stochastic
parameterizations (e.g., Watt et al., 2017), and we demonstrate a simple implementation of this technique
in this paper.

Here we present a series of idealized numerical experiments of radial diffusion over a hypothetical period of
constant geomagnetic activity. These experiments offer a proof of concept intended to explore the spatiotem-
poral impacts of including stochastic variability in comparison with the (Ozeke et al., 2014) ULF radial dif-
fusion coefficients in the radial diffusion equation and highlight current deterministic model limitations.
Any significant discrepancies between the deterministic and stochastic models should motivate further
research questions to better understand the physical processes underlying ULF wave‐driven radial diffusion
to include in our models for improved accuracy. The remainder of this paper is structured as follows.
Sections 2–4 describe the radial diffusion problem, implementation of stochastic parameterization, and
setup and description of the idealized experiments, respectively. Section 3 presents the results from the
numerical experiments. Section 4 discusses the impact of the results in the wider context of the outer radia-
tion belt. Section 5 describes conclusions and remarks from this paper.

2. Modeling the Radial Diffusion Equation

We focus on the radial diffusion equation as a simplified approximate model of electron behavior in the
outer radiation belt. Although the one‐dimensional description of radial diffusion has successfully repro-
duced electron behavior during some events (e.g., Ozeke et al., 2018; Shprits et al., 2005), the diffusion frame-
work itself is not always accurate. Previous studies have calculated radial diffusion coefficients directly in
“event‐specific” analysis (e.g., Ukhorskiy et al., 2009) and demonstrate that diffusion‐based models can have
difficulty accurately rendering event‐specific dynamics (Ukhorskiy et al., 2009). Here, we intend these
numerical experiments as a straightforward demonstration of the concept of stochastic parameterization.
Radial diffusion is also a valid and important part of more complicated outer radiation belt models, where
it is joined by diffusion processes in velocity space due to other wave modes. Over the long timescales studied
in diffusion models, we observe that empirical models for DLL, in whichever theoretical framework they are
constructed, naturally have some uncertainty. Investigating the consequences of that uncertainty is our aim
in this work.

In this demonstration we simplify the behavior of high‐energy electrons in the outer radiation belt and focus
on radial diffusion across Roederer L* (Roederer, 1970), hereon denoted L. Here, the first and second adia-
batic invariants,M and J, are conserved. The evolution of the distribution function of trapped particles f(M, J,
Φ; t) can be related to the distribution function at time t+ Δt (without sources or sinks)

f ðM; J; Φ; t þ ΔtÞ ¼
Z

Φ
f ðΦ − ϕ; tÞΠðΦ − ϕ; ϕ; tÞdϕ; (1)

where Π(Φ− ϕ, ϕ, t) is the probability that a particle with an invariant shell coordinate Φ− ϕ at time t will
end up with coordinate Φ at time t+Δt. By Taylor expanding f, Π to first order in t on the left and second
order in Φ in the integral, we obtain the one‐dimensional Fokker‐Planck equation

∂f ðM; J; ΦÞ
∂t

¼ −
∂
∂Φ

ðDΦf Þþ1
2

∂2

∂Φ2 ðDΦΦf Þ: (2)

Here DΦ and DΦΦ are the first‐ and second‐order Fokker‐Planck diffusion coefficients, respectively. If we
assume the following relation for DΦ, the average change of Φ per unit time for one particle on the shell
Φ during that time interval

DΦ ¼ 1
2

∂DΦΦ

∂Φ

� �
(3)

and convert Φ into L, the evolution of the PSD of electrons may be modeled by a simplified radial diffusion
equation in terms of L
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∂f ðM; J; ΦÞ
∂t

¼ L2
∂
∂L

DLL

L2
∂f ðM; J; ΦÞ

∂L

� �
: (4)

For radial diffusion to be effective, a radial gradient in the PSD is required, which we assume here. A preci-
pitation loss term is often also added to Equation 4, which is ignored here in the idealized case. Radial diffu-
sion is considered across L = 2.5–6. Dirichlet and Neumann boundaries are imposed on the inner and outer
boundaries, respectively:

f L ¼ 2:5ðtÞ ¼ f L ¼ 2:5ð0Þ ∀t; (5)

∇f L ¼ 6ðtÞ ¼ 0 ∀t: (6)

In reality the gradient across the outer boundary will not be 0, and many radiation belt models either deter-
mine the outer boundary from electron flux data observed by spacecraft (e.g., Drozdov et al., 2017; Glauert
et al., 2018; Shin & Lee, 2013) or use plasmasheet characteristics (Christon et al., 1988, 1991) and magnetic
activity dependencies (Bourdarie & Maget, 2012) for analytic fits (Maget et al., 2015).

In Equation 4, DLL represents the ULF wave radial diffusion coefficient. Constructed through a coordinate
transformof theflux invariant diffusion coefficient,DΦΦ,DLL is formally defined by (Roederer&Zhang, 2014)

DLL ¼ < ðΔLÞ2 >
τd

∝ R−8
s L10ðΔRs=RsÞ2; (7)

where Rs, ΔRs/Rs, and τd are the dipole‐distortion parameter, its relative fluctuation, and the drift period,
respectively. Here, <> denotes the drift‐average operator. In a realistic setting, Rs would be represented by
a parameter that globally describes magnetospheric activity, such as Kp or ULF wave power. Application
of different frameworks to describe large‐scale fluctuations of electric and magnetic fields (e.g., Brautigam
&Albert, 2000; Brautigam et al., 2005; Lejosne et al., 2013; Ozeke et al., 2012, 2014) employ different assump-
tions, butmany ultimately require some estimate of the power spectral density of ULF fluctuations in electric
and/or magnetic fields. We note that from Equation 7 and from theoretical estimates ofDLL, there are inher-
ent minimum temporal scales on which DLL is constructed: by definition DLL is constructed for timescales
longer than the drift period of the electrons, longer than a few periods of the ULF wave fluctuations, and
of the same order or longer than the solar wind driving processes that induce the ULF fluctuations. In many
cases, ULF power spectral density is estimated from observations over a period of at least an hour (see Ozeke
et al., 2014), and so we employ this as the smallest timescale of variability in our study.

We consider as a deterministic reference model the empirical L and Kp parameterized DLL presented by
Ozeke et al. (2012, 2014). This model is a simplification of the theoretical analysis presented by Fei et al.
(2006) and assumes that median ULF wave power is representative of expected ULF wave power. The most
notable feature of this model is that the uncertainty in the statistical representation of ULF power spectral
density has been quantified, allowing us to perform this demonstration using observationally derived con-
straints. Other models exist, which are similarly parameterized by Kp activity, with some following the same
theoretical framework as Fei et al. (2006) (e.g., Brautigam et al., 2005) and others pursuing other frameworks
(e.g., Lejosne et al., 2013), but all do not explicitly state and characterize the uncertainty in their models as in
Ozeke et al. (2012, 2014). We note that the accuracy of the theoretical framework used to estimate DLL is
beyond the scope of this paper and direct the interested reader toward Lejosne (2019) for a thorough review
of such frameworks. We reiterate that since the (Ozeke et al., 2014) empirical DLL model contains explicit
estimates of uncertainty, that makes it appropriate for use in our demonstration.

Since the azimuthal electric field radial diffusion coefficient, DE
LL , typically dominates, in these idealized

experiments we omit the compressional magnetic component and base our stochastic parameterization

around the model for DLL ¼ DE
LL, expressed per day by

DE
L L ¼ 2:16 × 10−8L6100:217L þ 0:461Kp : (8)

We describe in the following section how we implement our estimates ofDE
L LðtÞ, by perturbing Equation 8 in

such a way as to recover a better representation of the underlying distribution ofDE
L L across a period of time.
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We solve the radial diffusion equation using a modified Crank‐Nicolson second‐order finite difference
scheme presented by Welling et al. (2011), which is semi‐implicit and unconditionally stable:

f n þ 1
j − f nj

Δt
¼ L2j

2

Dj þ 1
2
nþ 1

2ð f nj þ 1 − f nj Þ−Dj − 1
2
nþ 1

2ð f nj − f nj − 1Þ
ðΔLÞ2

þ
Dj þ 1

2
nþ 1

2ð f n þ 1
j þ 1 − f n þ 1

j Þ−Dj − 1
2
nþ 1

2ð f n þ 1
j − f n þ 1

j − 1 Þ
ðΔLÞ2

2
66666666664

3
77777777775
; (9)

where Lj ¼ 2:5þ jΔL; tn ¼ nΔt; f nj ¼ f ðLj; tnÞ; Djnþ 1
2
¼ DLLðLj; tn þ 1

2
Þ and DLL ¼ DLL

L2
for modeling sim-

plicity. The chosen grid and time steps for our numerical experiments are 0.1L and 1 s, respectively, fol-
lowing extensive model verification of the numerical scheme to determine a suitable trade off between
numerical error and computational cost for the experiments (see the supporting information).

3. Stochastic Parameterization

We suggest that the most physically intuitive method to implement stochastic parameterization is to focus
efforts on the representation of the diffusion coefficient, since it is the variable that contains all the informa-
tion about the wave‐particle interaction. The diffusion coefficient parameterization has been shown to result
in a large amount of variability, especially during storm times (Murphy et al., 2016). In this work, we choose
a straightforward method to model DLL(L,t) that involves constructing a noisy temporal or spatial series that
retains the key known properties of the distribution of DLL. More sophisticated techniques, such as autore-
gressive moving average (ARMA) models, can be used to create spatiotemporal series of the diffusion coeffi-
cients with the appropriate autocorrelative properties. However, these rely on important characteristic scales
of spatial and temporal variability that are not yet known.

We do, however, have access to some information constraining the expected distribution ofDLL. Bentley et al.
(2018) found that the probability distribution of ground‐based ULF wave power appears log‐normal (LN).
We infer from this that DLL is also likely to be approximately LN; indeed, Ozeke et al. (2014) confirm that
the distribution of DLL in space is not Gaussian and is log‐symmetric, since the interquartile range (IQR)
is reported between one third and three times the median. Hence, it is appropriate to construct a noisy time
series for DLL by multiplying the median DLL by a random LN noise factor ϵ, resulting in a time series that,
when aggregated over a long period of time, reproduces the required LN distribution. If we constructed a
noisy temporal or spatial series by adding Gaussian noise to the median DLL, the resulting distribution of
DLL cannot be LN since it has the potential to include negative values of diffusion, which would also be dif-
ficult to interpret in this context.

To investigate the consequences of variability, we consider ensembles of numerical experiments. In each
case we compute the solutions of the radial diffusion equation using Equation 9, where DLL(t) is separately
constructed each time using the methods described below. Our recreations of DLL(t) do not alter the under-
lying Fokker‐Planck diffusion theory but produce realizations of DLL that better recover the underlying dis-
tribution of ULF power spectral density. Future work will seek to identify the most appropriate methods to
model both the diffusion coefficient and its variability, but the straightforward methods we adopt here serve
to illustrate the behavior of the radial diffusion equation when stochastic parameterization is adopted using
known constraints.

4. Numerical Experiments

We consider radial diffusion under a constant state of low geomagnetic activity, with Kp fixed for 2 days.
Although Kp is not typically constant over 2 days, we keep it fixed in these experiments in order to isolate
the effects of the natural temporal and spatial variability that is concealed within the Kp parameterization.
Any temporal changes to DLL occur on timescales of hours in our experiments.
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In each numerical experiment we run an ensemble with 250 ensemble members, providing a span of possi-
ble realizations of 48 hr DLL time series resulting from the inclusion of a stochastic variability. Convergence
testing of our numerical experiments (see the supporting information) demonstrates that 250 ensemble
members is sufficient to realize the behavior of the experiment.

In all experiments we choose Kp= 3, corresponding to “unsettled” geomagnetic activity. Unsettled geomag-
netic activity allows us to explore stochastic variabilities during periods where the radial diffusion coeffi-
cients are large enough to see changes after 48 hr. We also wish to avoid the illogical situation of having a
very high level of geomagnetic activity while enforcing a constant outer boundary. For the demonstrations
approximated in this paper, a compromise of Kp= 3 was felt to be appropriate. The initial PSD is chosen to
provide a peak inside the computational domain as expected in the outer radiation belt, and a zero gradient
at the outer boundary, for ease of computation in these illustrative experiments

f ðM; J; Φ; t ¼ 0Þ ¼ Aexp −
ðL − μÞ2

2σ2

 !
þ 1
2
AB ½erf ðγðL − μÞÞþ1�; (10)

where we have chosen A= 9 × 104, μ= 4, σ= 0.38, B= 0.05, and γ= 5 and erf is the error function. Such a
profile is reasonable when compared to satellite observations (e.g., see Figures 1 and 2 in Boyd et al., 2018).

If one wanted to do the equivalent in L space (with a transformed diffusion equation), it suffices to use
(Roederer & Zhang, 2014)

Figure 1. Example ensemble member DLL time series shown for a range of temporal variability scales. In each case, the
constant (Ozeke et al., 2014) deterministic DLL is multiplied by a log‐normal variability at the relevant hour of variability,
constrained by the empirical model and ULF wave power observations, and persists until to the next hour of
variability where the process is repeated. Examples are shown for variability temporal scales of 1, 3, 6, 12,
and 24 hr, along with the constant DLL with no variability. DLL shown here has units s−1 in line with
the 1 s time step used in our numerical scheme.
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f ðM; J; L; t ¼ 0Þ ¼ f ðM; J; Φ; t ¼ 0Þ × 2πBER
3
EL

−2: (11)

The initial PSD profile and proposed boundary conditions result in the expected radial diffusion process
drawing PSD from central L toward both boundaries.

4.1. Experiment 1: Temporal Variability of DLL

Our first experiment focuses on the temporal variation ofDLL across a range of timescales. We employ a sim-
ple method, where the DLL in Equation 8 is multiplied by a random factor ϵ, which changes every Δt. The
same factor ϵ is applied at each value of L in the model. The choice of distribution of ϵ is guided by the sta-
tistical analysis presented by Ozeke et al. (2014), who found that the IQR of observed wave power implies
that DLL lies between a third of and three times the model value 50% of the time. We use this information
to control the variance of the noise. Combined with recent studies that suggest that ULFwave power spectral
densities appear LN (Bentley et al., 2018), we construct a log‐normally distributed variability with the follow-
ing parameters:

ϵ ∼ LogNormal ðμN ; σ2NÞ; (12)

whereðμN ; σNÞ ¼ ð0; 2logð3Þ
1:34896

Þare the parameters of the normally distributed logðϵÞ. Note that for a normally

distributed random variable, the IQR is approximately 1.34869multiplied by the standard deviation.We con-
sider variability Δt= 1, 3, 6, 12, and 24 hr, and example ensemble members for each of these cases are shown
in Figure 1. They are effectively artificial representations of what might be observed in situ.

Figure 2. Example ensemble member DLL time series shown for a range of spatial variability scales. In each case, every 3
hr the constant (Ozeke et al., 2014) deterministic DLL is multiplied by log‐normal variabilities on a variety of local spatial
variability scales, constrained by the empirical model and ULF wave power observations, and persists for 3 hr where
the process is then repeated. Examples are shown for variability spatial scales of 1L, 0.5L, and 0.1L, along with the
global variability case and constant DLL with no variability. DLL shown here have units s−1 in line with the 1 s
time step used in our numerical scheme.
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4.2. Experiment 2: Spatial Variability of DLL

In Experiment 1, DLL was constructed with perfect correlation across all L, with the same ϵ applied to all L‐
shells. This is one extreme of L spatial correlation, with the (Ozeke et al., 2014) DLL scaling as a smooth,
monotonically increasing profile. We hereon refer to this approach as global variability. However, we must
consider that although the statistical profile of DLL(L) is smooth, individual cases of DLL(L,t) may be less
smooth. In this experiment, we investigate how radial diffusion responds to a realized DLL, which may vary
on local spatial scales, and not necessarily be a smooth monotonically increasing function of L.

We now consider the log‐normally distributed variability applied every 3 hr, comparing the global variability
with local spatial correlation scales. We consider cases where DLL varies independently on spatial scales
of 1L,0.5L, and 0.1L. Example ensemble members for each of these cases are shown in Figure 2. The final
case denotes the other extreme where measures of DLL(L,t) are independent at all grid points, that is, that
independent ϵ is applied at each grid point in L to create an ensemble of DLL both spatially and temporally.
We have retained temporal variability in this experiment to maintain our goal of creating DLL time series
that represent realistic values. Ground magnetometer ULF wave power measurements, and consequently
DLL, do not typically remain constant over 2 days (e.g., Olifer et al., 2019). Results from differing spatial
variability scales can therefore be interpreted in conjunction with the 3‐hourly temporal variability.

In a more physical realization, we would expect spatial correlations across L to be less crude and abrupt, and
are likely to exhibit smoother variations with appropriate length scales. However, for the purpose of this
demonstration, we have chosen the simplest way to apply spatial variability in the model to motivate the
importance of understanding the spatial structure of radial diffusion across L.

4.3. Experiment 3: Width of the DLL Probability Distribution

The empirical (Ozeke et al., 2014) DLL parameterization is based on the median of statistical ULF wave

power, and uncertainty in the parameterization has the multiplicative IQR
1
3
DLL; 3DLL

� �
mentioned pre-

viously. We compare the IQR suggested by Ozeke et al. (2014) with larger and smaller IQRs, namely,
1
2
DLL; 2DLL

� �
,

1
6
DLL; 6DLL

� �
, and

1
10

DL L; 10DL L

� �
. Larger variances may be necessary if the variability

ofDLL is not simply due to the variability in observed ground‐based ULF power spectral density. Smaller var-
iances have been considered to see the effect of an “improved” parameterization (i.e., one where the para-
meters are chosen in a way that minimizes the variance). In each of these cases, ensemble DLL time series
are formulated by applying variability globally across L every 3 hr, with the distribution of the variability LN.

4.4. Experiment 4: Shape of the DLL Probability Distribution

Each experiment (1–3) utilized a log‐normally distributed variability, chosen based on statistical studies of
ULFwave power spectral densities parameterized by solar wind variables (Bentley et al., 2018). The IQR pre-
sented by Ozeke et al. (2014) describes the uncertainty in the deterministic parameterization, but we do not
know how the DLLs are distributed in a Kp‐based model. Adopting the values and log‐symmetric nature of
the (Ozeke et al., 2014) IQR in order to preserve statistical averages (a zero mean and median in the loga-
rithm), a range of log‐symmetric distributions for the variability are tested. We consider log‐uniform (LU),
LN, log‐Laplace (LL) and log‐Cauchy (LC) distributions, which provides a set of distributions ranging from
bounded to heavy tailed (for further information about each of these distributions, please see the supporting
information). Since the heavy tailed distributions can easily produce variabilities resulting in a DLL which is
unrealistically many orders of magnitude larger than the deterministic solution, for this experiment we
bound the variability by 3 orders of magnitude (i.e., the variability can increase/decrease DLL up to a
maximum/minimum of 3 orders of magnitude compared to the reference value). The respective probability
density functions (PDFs) of the variability distributions are as follows:

f LUðxÞ ¼
I ½ea; eb�ðxÞ
xðb − aÞ ; (13)

f LNðxÞ ¼
1

xσN
ffiffiffiffiffiffi
2π

p exp −
ðln xÞ2
2σ2N

 !
; (14)
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f LLðxÞ ¼
1

2σLx
exp −

jln xj
σL

� �
; (15)

f LCðxÞ ¼
1
xπ

σC
ðln xÞ2 þ σ2C

" #
(16)

for x> 0, where I[,] is the characteristic function. Here the quantities a, b, σN, σL, and σC are the para-
meters of the underlying uniform, normal, Laplace, and Cauchy distributions, respectively. The para-
meters were calculated from their corresponding cumulative density functions in order to preserve the
IQR specified by Ozeke et al. (2014) (see the supporting information).

5. Results

The figures showcasing results for each experiment generally follow the same format. The initial PSD and
resulting PSD from the constant deterministic DLL are shown. By the log‐symmetric nature of the DLL prob-
ability distributions in each experiment, the constant deterministic DLL is precisely the median diffusion
coefficient from the ensemble and a natural reference for comparison. The mean diffusion coefficient is
deliberated in section 6. There is no convention regarding which statistical measure is most appropriate in
ensemble modeling (Knutti et al., 2010), and we have therefore shown two natural measures, the ensemble
mean and median. By ensemble mean (median) PSDs, we imply the PSD profile resulting from taking the
mean (median) across all ensemble members at each L, and not representing a specific member of the
ensemble. The kernel density estimates (KDEs) of the ensembles are also shown. Kernel density estimation
is a mathematical process of finding an estimate PDF of a random variable, inferring attributes of a popula-
tion based on a finite data set. In the case of our ensembles, the contribution of each ensemble member value
in L‐PSD space is smoothed out into a region of space surrounding it. Aggregating each of these smoothed
points provides an image of the overall ensemble structure and density function. Ensemble modes, another
useful measure of the ensemble result, can be estimated from this density function (Kourentzes et al., 2014).
In our figures KDEs shown are relative to each column, meaning that if a single L column were extracted,
the result would be a PDF estimate of the PSD at that particular L. KDEs are therefore useful in an ensemble
setting since they allow us to see where ensemble member solutions cluster in the phase space. In our esti-
mates the KDEs are calculated over 100 bins.

Figure 3. Ensemble results for the final PSD at the end of Experiment 1 for a range of temporal variability scales (1, 3, 6,
12, and 24 hr, respectively). The median (dashed), mean (dash‐dot) ensemble profiles are shown, as well as the initial
PSD profile (dotted) and the deterministic solution with constant deterministic DLL (solid). Ensemble kernel density
estimates of the resulting electron PSD are also shown.
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5.1. Experiment 1—Temporal Scales

Results of the ensembles for the variety of temporal variability scales are shown in Figure 3. For ensemble
medians, inclusion of a LN variability results in more diffusion than the constant deterministic DLL at all
variability temporal scales less than 24 hr, with the magnitude of diffusion increasing as the temporal scale
decreases. The ensemble median for a temporal variability of 24 hr is identical to the deterministic solution,
suggesting that on long timescales, a deterministic parameterization of DLL is sensible for a DLL with daily
variation. Results for the ensemble mean are similar, except we observe more diffusion than the constant
DLL at all temporal scales. This is unsurprising since the (Ozeke et al., 2014) DLL is based on the median
of log‐symmetric distributions, where means are larger than medians. Therefore, the ensembleDLL time ser-
ies at all temporal scales will have a mean larger than both the deterministic approximation and ensemble
median, resulting in more diffusion. An interesting result lies in the comparison of ensemble medians and
means. On the most rapid temporal DLL variability of 1 hr, results from the ensemble mean and median
are identical. As the temporal variability becomes less rapid, both exhibit less diffusion, but the profiles sepa-
rate with the ensemble median displaying increasingly less diffusion than the mean as it approaches the
deterministic solution at daily variability.

Over all temporal variability scales, the occurrence of possible states in the set of all ensemble solutions
spans similar regions. For the rapid 1 hr variability, the set of all solutions is more diffusive than the deter-
ministic case. The deterministic solution becomes increasingly closer to the denser region of ensemble solu-
tions with larger temporal scales, falling exactly in the region of highest probability for daily variation. We
see that increasing the frequency of DLL variability tends to a single mode solution in density, which is more
diffusive than that produced by the deterministic model. Inclusion of the variability expressed by Ozeke et al.
(2014) in their 3‐hourly deterministic model produces a span of solutions, which vary greatly from the deter-
ministic case at all L, most of which are more diffusive. The use of the median‐based deterministic parame-
terization may therefore not be robust. When we allow the stochastic DLL to vary daily, however, the
deterministic solution fell exactly in the regions of highest probability, emphasizing again that the determi-
nistic approximation is more suitable for a daily varying DLL. When including variability, the deterministic
parameterization frequently produces lower estimates of radial diffusion, so understanding the temporal
variability of ULF wave power spectral density is important to know the extent of potential underestimation.

5.2. Experiment 2—Spatial Scales

Ensemble results for Experiment 2 are shown in Figure 4. We find that on average all spatial scales of varia-
bility result in similar levels of diffusion, but all exhibit more diffusion than the deterministic solution. In
each case the ensemble means and medians are almost identical. Most importantly, we observe variance

Figure 4. Ensemble results for the final PSD at the end of Experiment 2 for a range of spatial variability scales (global, 1L,
0.5L, and 0.1L, respectively). The description of lines and KDEs are as in Figure 3.
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reduction in the set of ensemble solutions as independence of DLL measurements occurs on increasingly
smaller spatial scales, with the distributions tending toward a single mode solution of diffusion similar to
those exhibited by the ensemble median and mean. A smaller variance implies possibility of a stronger
parameterization with reduced uncertainty. It is important to investigate instantaneous observations of
ULF wave power across multiple latitudes to better understand spatial correlations and coherence across
L*, since regions of independent power measurements could allow for better parameterizations of DLL.

5.3. Experiment 3—Variance

Figure 5 shows the ensemble results for Experiment 3, with each variance expressed in terms of the variabil-
ity IQR. It is evident that radial diffusion is very sensitive to the width of the variability distribution. Just dou-
bling the multiplicative scaling of the IQR suggested by Ozeke et al. (2014) results in significantly more
diffusion in both ensemble averages, reducing the peak in PSD by around 20,000. The shape of the distribu-
tion for the set of all ensemble solutions also drastically changes, with a large density of solutions tending to
the asymptotic result controlled by the boundary conditions. Although a wider variability distribution
equally allows for both significantly larger and smaller vales of DLL, the radial diffusion equation is clearly
heavily sensitive to the larger values that drive radial diffusion to significant levels beyond the deterministic
approximation.

As seen in the other experiments, introduction of any variability regardless of its width results in more diffu-
sion than the deterministic solution, when considering ensemble averages. However, if the uncertainty in
the deterministic model were to have a slightly smaller multiplicative IQR of ±2 the (Ozeke et al., 2014)
DLL, the variance of all ensemble solutions decreases significantly. With this smaller variance, the ensemble
mean and median PSDs are closer to the deterministic model, which also falls within the set of ensemble
solutions. This suggests that parameterization of ULF radial diffusion coefficients should prioritize variance
reduction in order to be better representative of the underlying physical process, which draws upon the effi-
ciency of binning by geomagnetic index Kp, from which most of the uncertainty arises (Ozeke et al., 2014).

5.4. Experiment 4—Underlying Distribution

Ensemble results for Experiment 4 are shown in Figure 6. Differences between the heavy and nonheavy
tailed distributions are apparent in the ensemble medians. Although studies suggest that ground‐based
ULF power spectral density is LN when parameterized by solar wind variables (Bentley et al., 2018), the dis-
tribution of uncertainty in the Kp‐based (Ozeke et al., 2014) model is not disclosed. If the distribution were to
be heavy tailed or LU (which may be considered to have the heaviest tail as all values in the uniformly dis-
tributed component have equal chance of being sampled), we see more than double the median diffusion
than for a log‐normally distributed variability. For scenarios where the expected ULF wave power is not a

Figure 5. Ensemble results for the final PSD at the end of Experiment 3 for a range of log‐normal variability IQRs (±2,
±3, ±6, and ±10 of the deterministic DLL, respectively). The description of lines and KDEs are as in Figure 3.
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statistical average, the assumed LN variability can exhibit as much diffusion as some of the heavy tailed
variabilities, but this is more unlikely as shown in the KDEs. In any case, with the inclusion of variability
in DLL for all probability distributions, we see significantly more diffusion than the deterministic solution,
with notable variance in ensemble solutions for all variability distributions. The heavier tailed variabilities
have denser regions approaching that of the asymptotic solution, and the shape of the KDEs across
L‐shells is quite distorted contrary to the smoothness seen for a LN DLL. Since there are multiple
components of interest in the ensemble results, studies investigating the true underlying probability
distribution of ULF wave power are vital to quantifying the shortfall and uncertainty introduced by a
deterministic empirical DLL based upon statistical averages.

6. Discussion

In the outer radiation belt, radial diffusion has the ability to both accelerate electrons to relativistic energies
and produce fast losses, where the efficiency of the acceleration increases with increasing ULF wave activity
(Elkington et al., 2003; Shprits et al., 2008). Many models use an empirical deterministic radial diffusion
coefficient dependent on L andKp, whichmay sacrifice accuracy (Brautigam&Albert, 2000; Brautigam et al.,
2005; Ozeke et al., 2012, 2014). In this paper we present idealized numerical experiments, which investigate
the impact of including variability in the radial diffusion equation. Our experiments reintroduce the varia-
bility into a parameterizedmodel, whereDLL has been binned by Kp.We use the observationally constrained
variability in the model to model a variable DLL that reproduces a realistic distribution of values and com-
pare against the constant parameterized value. We employ constant boundary conditions and only study
one value of the controlling parameter Kp. In this way, we isolate only the variability of DLL due to its para-
meterization by Kp.

In all experiments we found that the mean and median of the ensembles exhibit increased diffusion above
that for the deterministic approximation. One way to interpret these results is that when the likelihood of
strong radial diffusion is large over a particular period (either because the variance in the parameterization
is large or because the underlying distribution has a heavy tail), then the diffusion exceeds what one would
expect from using a constant diffusion coefficient. It is important to bear in mind that the times where diffu-
sion is weak will not counteract the times when diffusion is strong because there is no means of reversing the
diffusion; hence, the periods when diffusion is much stronger than the median will dominate the temporal
evolution of the experiment. When the diffusion varies more rapidly, then each member of the ensemble is
more likely to contain a period of strong diffusion over the fixed 48‐hr experiment length, thus contributing
to a stronger diffusion in the mean/median of the ensemble. The ensembles are also sensitive to the size of

Figure 6. Ensemble results for the final PSD at the end of Experiment 4 for a range of variability probability distributions
(Log‐Normal, Log‐Laplace, Log‐Uniform, and Log‐cauchy, respectively). The description of lines and KDEs are
as in Figure 3.
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the variance (see Experiment 3), again suggesting that it is the likelihood of ensemble members containing
periods of very strong diffusion that dominates the ensemble results.

The collected range of numerical experiments suggests that over extended time periods, infrequent instances
of very efficient ULF wave‐particle interactions make important contributions to radial diffusion and should
be included in models in some way. We also note that by using an ensemble framework, the uncertainty in
the PSD is explicitly quantified, providing the means to provide a range of confidence in the model for more
accurate radiation belt modeling. The quantification of uncertainty in DLL is also important for future data
assimilation methods.

Experiment 1 indicates that the amount of diffusion depends upon how rapidly the diffusion coefficient var-
ies. Hence, it is important to understand the timescales of variability. ULFwave power can vary on a range of
timescales, which would ideally be accounted for in the radial diffusion coefficient. For example, ULF wave
power can increase and persist on the order of tens of minutes during an auroral activation due to substorms
(Rae et al., 2011), while decaying on hourly timescales during strong poloidal wave events (Liu et al., 2011).
Parameterization of DLL with Kp may therefore not be optimal, since it may not vary quickly enough.

We found that variation of DLL with the added inclusion of local spatial variabilities on a range of length
scales resulted in more diffusion that the deterministic solution (see Experiment 2). However, when consid-
ering the ensemble averages, all levels of spatial coherence across L* performed similarly. Since applying
variability to subglobal spatial scales still allows for an enhanced DLL at several L, this result is somewhat
counterintuitive to those found in the other experiments. While it was found that instances of weaker diffu-
sion cannot counteract the temporal evolution imposed by instances of stronger diffusion, counteractions can
occur across spatial scales, creating a net diffusion that seems to follow that observed by a globally applied
variability.More interestingly, we found that the variance of the possible states in the set of all ensemble solu-
tions decreases significantly with variability applied to increasingly smaller subglobal spatial scales. It is
important to understand and quantify these spatial scales. Rae et al. (2019) showed the evolution of
ground‐based ULF wave power during geomagnetic storms. ULF wave power can exhibit spatial coherence
across ranges of L but does not rise and fall everywhere simultaneously due to the complicated evolution of
cold plasma density andmagnetic field strength in the inner magnetosphere. They also present evidence that
the temporal variability of ULFwave powermay varywith L. It may also be that spatial coherence varies with
time and geomagnetic activity. The spatial variability (in the radial direction) of drift‐averaged diffusion due
to ULF waves throughout the outer radiation belt promises a rich vein of future work.

Sensitivity of radial diffusion to the variance of the full probabilistic distribution of DLL was explored in
Experiment 3. For small variances, the diffusion results approach those of the deterministic model, as
expected. But as the variance is increased, the diffusion results rapidly diverge. These results suggest that
it is worth seeking alternative parameterizations that focus on variance reduction in the construction of
the diffusion model. Another way to reduce the variance in the parameterization may be to focus on the cal-

culation of DLL itself. For example,DE
LL in the Ozeke et al. (2014) model was constructed via a mapping tech-

nique that utilized several assumptions: constant (low) wave number m= 1, constant width of the wave
activity in latitude, and constant ionospheric conductance parameters (Ozeke et al., 2009). These quantities
are typically not constant and contribute to the uncertainty in the deterministic model and should be
included in the stochastic parameterization. The theoretical background from which DLL is based may also
produce uncertainties. Several analytical diffusion rates based on magnetic and electric field assumptions
exist, with L dependence ranging from L6–L11 and frequency dependence on a range of wave modes (e.g.,
Birmingham, 1969; Cornwall, 1968; Elkington et al., 2003; Fälthammar, 1966, 1968; Fei et al., 2006;
Schulz & Lanzerotti, 1974). If enough of the underlying variability in the deterministic model is known,
the better the variability in the stochastic models can be characterized or accounted for. It should be men-
tioned however that natural variability might exist, which cannot be parameterized by any means.
Deducing levels of natural variability in ULF wave‐driven radial diffusion is necessary in understanding
information always lost by a deterministic model. If these levels are substantial, our results suggest that a
stochastic approach to modeling radial diffusion may be more robust.

The response of radial diffusion to higher likelihoods of an enhanced DLL, which dominates temporal evolu-
tions, was explored in Experiment 4. It is evident that significantly more radial diffusion occurs for heavier
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tailed variabilities, indicating that the amount of diffusion is controlled by
the relative importance of the large values ofDLL in the distribution. A glo-
bal upper bound for possible ULF wave power is justified since it is coun-
terintuitive for ULF waves to have infinitely large power in a finite‐sized
magnetosphere. The shape of the distribution is therefore important. It
may also be that the shape of the distribution of DLL is not constant.
During quiet times when the outer radiation belt is relatively quiescent,
the variability might be better represented heavily skewed to the left with
a single small upper bound on ULF wave power. In a storm‐time model
where ULF wave activity is enhanced during the main and recovery phase
(Murphy et al., 2011; Murphy et al., 2015; Rae et al., 2011), a right skewed
ULF wave power distribution that favors larger ULF wave powers might
be more suitable. Further research into tail values of the distribution of
ULF wave power is important to constrain the physical upper bound of
power variability to include in stochastic models.

In each of our experiments, ensemble averages and KDEs were compared
to a (Ozeke et al., 2014) constant deterministic solution, which is based on
themedian of statistical ULFwave power. However, it may be more fair to
compare the evolution of our numerical ensembles with an experiment

where DLL is kept constant, but at the mean value of the distribution, especially since the ethos of construct-
ing a diffusion coefficient is to consider the average behavior of the waves. Figure 7 indicates the results of a
number of numerical experiments with constant DLL (mean, solid pink; upper quartile, dashed pink; and
lower quartile, dash‐dot pink) compared with the ensemble result using a LN distribution with Δt= 1 hr.
We observe that the mean‐based DLL only causes slightly more diffusion than the median based and is also
significantly less diffusive than the ensemble averages. While inclusion of the LQ‐ and UQ‐based DLL does
result in a broad span of possible PSD solutions, the UQ produces diffusion only as strong as the ensemble
averages, falling short of the regions of highest density seen in the ensemble solutions. It is apparent that
having a deterministic representation of DLL fails to represent the underlying distribution of radial diffusion
solutions found from the stochastic DLL time series, which better represent the true underlying distribution
of ULF wave power. Our ensemble modeling highlights where efforts should be placed to get a better
description of DLL, so that we can aim for a parameterization with a quantified uncertainty that truly repre-
sents the underlying distribution of possible solutions of the radial diffusion equation.

Diffusion due to other types of wave‐particle interactions is important in the outer radiation belt, and similar
modeling strategies may be required. Diffusion in pitch angle and energy due to higher‐frequency waves is
also highly variable (Watt et al., 2019), potentially with different time and length scales depending on loca-
tion in the magnetosphere. It will be necessary to repeat similar numerical experiments to determine the sto-
chastic parameters necessary to use in stochastic parameterizations of pitch angle and energy diffusion and
then design observational analyses that can best constrain those parameters.

7. Conclusions

Our idealized experiments highlight the spatiotemporal impacts of including stochastic parameterizations in
the ULF wave‐driven radial diffusion. We have shown that diffusion is increased above the deterministic
model when the diffusion coefficients vary more rapidly, when the spatial correlation of the diffusion across
L‐shells ranges from fully coherent to completely independent, and when the variance of the distribution is
increased, or a more heavy‐tailed distribution is used. We have demonstrated that future research should
focus on the temporal evolution of ULF wave power, the spatial correlations of diffusion across L‐shells,
and the underlying distribution and variance of the radial diffusion coefficients. The successful implementa-
tion of a stochastic radial diffusion model requires variability parameters that are derived appropriately; that
is, spatial and temporal scales of the variability may themselves vary in time and space. Our research moti-
vates further investigation of stochastic methods for use in radiation belt diffusion models as a method to
include the variability of wave‐particle interactions in the inner magnetosphere.

Figure 7. PSD resulting from the radial diffusion equation after 2 days with
constant Kp = 3, shown for a constant deterministic DLL based on the mean
(solid pink), LQ (dash‐dot pink) and UQ (dash pink) of ULF wave power.
These plots are laid over the first subplot in Figure 3.
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Data Availability Statement

Experiment results presented are freely available online (at https://doi.org/10.17864/1947.248).

References
Ali, A. F., Malaspina, D. M., Elkington, S. R., Jaynes, A. N., Chan, A. A., Wygant, J., & Kletzing, C. A. (2016). Electric and magnetic radial

diffusion coefficients using the Van Allen probes data. Journal of Geophysical Research: Space Physics, 121, 9586–9607. https://doi.org/
10.1002/2016JA023002

Bentley, S. N., Watt, C. E. J., Owens, M. J., & Rae, I. J. (2018). ULF wave activity in the magnetosphere: Resolving solar windinterdepen-
dencies to identify driving mechanisms. Journal of Geophysical Research: Space Physics, 123, 2745–2771. https://doi.org/10.1002/
2017JA024740

Birmingham, T. J. (1969). Convection electric fields and the diffusion of trappedmagnetospheric radiation. Journal of Geophysical Research,
74(9), 2169–2181. https://doi.org/10.1029/JA074i009p02169

Bourdarie, S. A., & Maget, V. F. (2012). Electron radiation belt data assimilation with an ensemble Kalman filter relying on the Salammbo
code. Annales Geophysicae, 30(6), 929–943. https://doi.org/10.5194/angeo-30-929-2012

Boyd, A. J., Turner, D. L., Reeves, G. D., Spence, H. E., Baker, D. N., & Blake, J. B. (2018). What causes radiation belt enhancements: A
survey of the Van Allen Probes era. Geophysical Research Letters, 45, 5253–5259. https://doi.org/10.1029/2018GL077699

Brautigam, D. H., & Albert, J. M. (2000). Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic
storm. Journal of Geophysical Research, 105(A1), 291–309. https://doi.org/10.1029/1999JA900344

Brautigam, D. H., Ginet, G. P., Albert, J. M., Wygant, J. R., Rowland, D. E., Ling, A., & Bass, J. (2005). CRRES electric field power spectra
and radial diffusion coefficients. Journal of Geophysical Research, 110, A02214. https://doi.org/10.1029/2004JA010612

Christon, S. P., Mitchell, D. G., Williams, D. J., Frank, L. A., Huang, C. Y., & Eastman, T. E. (1988). Energy spectra of plasma sheet ions and
electrons from ∼50 eV/e to ∼1 MeV during plasma temperature transitions. Journal of Geophysical Research: Space Physics, 93(A4),
2562–2572. https://doi.org/10.1029/JA093iA04p02562

Christon, S. P., Williams, D. J., Mitchell, D. G., Huang, C. Y., & Frank, L. A. (1991). Spectral characteristics of plasma sheet ion and electron
populations during disturbed geomagnetic conditions. Journal of Geophysical Research, 96(A1), 1–22. https://doi.org/10.1029/
90JA01633

Cornwall, J. M. (1968). Diffusion processes influenced by conjugate‐point wave phenomena. Radio Science, 3(7), 740–744. https://doi.org/
10.1002/rds196837740

Dimitrakoudis, S., Mann, I. R., Balasis, G., Papadimitriou, C., Anastasiadis, A., & Daglis, I. A. (2015). Accurately specifying storm‐time ULF
wave radial diffusion in the radiation belts. Geophysical Research Letters, 42, 5711–5718. https://doi.org/10.1002/2015GL064707

Drozdov, A. Y., Shprits, Y. Y., Aseev, N. A., Kellerman, A. C., & Reeves, G. D. (2017). Dependence of radiation belt simulations to assumed
radial diffusion rates tested for two empirical models of radial transport. Space Weather, 15(1), 150–162. https://doi.org/10.1002/
2016SW001426

Elkington, S. R., Hudson, M. K., & Chan, A. A. (2003). Resonant acceleration and diffusion of outer zone electrons in an asymmetric
geomagnetic field. Journal of Geophysical Research, 108(A3), 1116. https://doi.org/10.1029/2001JA009202

Fälthammar, C.‐G. (1966). On the transport of trapped particles in the outer magnetosphere. Journal of Geophysical Research, 71(5),
1487–1491. https://doi.org/10.1029/JZ071i005p01487

Fälthammar, C.‐G. (1968). Radial diffusion by violation of the third adiabatic invariant. In B. M. McCormac (Ed.), Earth's particles and
fields; proceedings of the NATO Advanced Study Institute held at Freising, Germany, July 31‐August 11, 1967 (p. 157). New York: Reinhold
Book Corporation.

Fei, Y., Chan, A. A., Elkington, S. R., & Wiltberger, M. J. (2006). Radial diffusion and MHD particle simulations of relativisticelectron
transport by ULF waves in the September 1998 storm. Journal of Geophysical Research, 111, A12209. https://doi.org/10.1029/2005
JA011211

Glauert, S. A., Horne, R. B., & Meredith, N. P. (2014). Simulating the Earth's radiation belts: Internal acceleration and continuous losses to
the magnetopause. Journal of Geophysical Research: Space Physics, 119, 7444–7463. https://doi.org/10.1002/2014JA020092

Glauert, S. A., Horne, R. B., & Meredith, N. P. (2018). A 30‐year simulation of the outer electron radiation belt. Space Weather, 16,
1498–1522. https://doi.org/10.1029/2018SW001981

Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., & Grew, R. S. (2014). Electron losses from the radiation belts caused by
EMIC waves. Journal of Geophysical Research: Space Physics, 119, 8820–8837. https://doi.org/10.1002/2014JA020366

Knutti, R., Furrer, R., Tebaldi, C., & Meehl, G. A. (2010). Challenges in combining projections from multiple climate models. Retrieved
from http://www-pcmdi.llnl.gov/ipcc/. https://doi.org/10.1175/2009JCLI3361.1

Kourentzes, N., Barrow, D., & Crone, S. (2014). Neural network ensemble operators for time series forecasting. Expert Systems with
Applications, 41, 4235–4244. https://doi.org/10.1016/j.eswa.2013.12.011

Lejosne, S. (2019). Analytic expressions for radial diffusion. Journal of Geophysical Research: Space Physics, 124, 4278–4294. https://doi.org/
10.1029/2019JA026786

Lejosne, S., Boscher, D., Maget, V., & Rolland, G. (2013). Deriving electromagnetic radial diffusion coefficients of radiation belt equatorial
particles for different levels of magnetic activity based on magnetic field measurements at geostationary orbit. Journal of Geophysical
Research: Space Physics, 118, 3147–3156. https://doi.org/10.1002/jgra.50361

Li, Z., Hudson, M., Patel, M., Wiltberger, M., Boyd, A., & Turner, D. (2017). ULF wave analysis and radial diffusion calculation using a
global MHD model for the 17 March 2013 and 2015 storms. Journal of Geophysical Research: Space Physics, 122, 7353–7363. https://doi.
org/10.1002/2016JA023846

Liu, W., Sarris, T. E., Li, X., Zong, Q.‐G., Ergun, R., Angelopoulos, V., & Glassmeier, K. H. (2011). Spatial structure and temporal evolution
of a dayside poloidal ULF wave event. Geophysical Research Letters, 38, L19104. https://doi.org/10.1029/2011GL049476

Liu, W., Tu, W., Li, X., Sarris, T., Khotyaintsev, Y., Fu, H., et al. (2016). On the calculation of electric diffusion coefficient of radiation belt
electrons with in situ electric field measurements by THEMIS. Geophysical Research Letters, 43, 1023–1030. https://doi.org/10.1002/
2015GL067398

Lyons, L. R., & Thorne, R. M. (1973). Equilibrium structure of radiation belt electrons. Journal of Geophysical Research, 78(13), 2142–2149.
https://doi.org/10.1029/JA078i013p02142

10.1029/2019JA027254Journal of Geophysical Research: Space Physics

THOMPSON ET AL. 15 of 16

Acknowledgments
R. L. T. was supported by the
Engineering and Physical Sciences
Research Council (EPSRC) Grant
EP/L016613/1. C. E. J. W. is supported
by Natural Environment Research
Council (NERC) Grant NE/P017274/1
and Science and Technology Facilities
Council (STFC) Grant ST/R000921/1.

https://doi.org/10.17864/1947.248
https://doi.org/10.1002/2016JA023002
https://doi.org/10.1002/2016JA023002
https://doi.org/10.1002/2017JA024740
https://doi.org/10.1002/2017JA024740
https://doi.org/10.1029/JA074i009p02169
https://doi.org/10.5194/angeo-30-929-2012
https://doi.org/10.1029/2018GL077699
https://doi.org/10.1029/1999JA900344
https://doi.org/10.1029/2004JA010612
https://doi.org/10.1029/JA093iA04p02562
https://doi.org/10.1029/90JA01633
https://doi.org/10.1029/90JA01633
https://doi.org/10.1002/rds196837740
https://doi.org/10.1002/rds196837740
https://doi.org/10.1002/2015GL064707
https://doi.org/10.1002/2016SW001426
https://doi.org/10.1002/2016SW001426
https://doi.org/10.1029/2001JA009202
https://doi.org/10.1029/JZ071i005p01487
https://doi.org/10.1029/2005
http://JA011211
https://doi.org/10.1002/2014JA020092
https://doi.org/10.1029/2018SW001981
https://doi.org/10.1002/2014JA020366
http://www-pcmdi.llnl.gov/ipcc/
https://doi.org/10.1175/2009JCLI3361.1
https://doi.org/10.1016/j.eswa.2013.12.011
https://doi.org/10.1029/2019JA026786
https://doi.org/10.1029/2019JA026786
https://doi.org/10.1002/jgra.50361
https://doi.org/10.1002/2016JA023846
https://doi.org/10.1002/2016JA023846
https://doi.org/10.1029/2011GL049476
https://doi.org/10.1002/2015GL067398
https://doi.org/10.1002/2015GL067398
https://doi.org/10.1029/JA078i013p02142


Maget, V., Sicard‐Piet, A., Bourdarie, S., Lazaro, D., Turner, D. L., Daglis, I. A., & Sandberg, I. (2015). Improved outer boundary conditions
for outer radiation belt data assimilation using THEMIS‐SST data and the Salammbo‐EnKF code. Journal of Geophysical Research: Space
Physics, 120, 5608–5622. https://doi.org/10.1002/2015JA021001

Mann, I. R., Lee, E. A., Claudepierre, S. G., Fennell, J. F., Degeling, A., Rae, I. J., et al. (2013). Discovery of the action of a geophysical
synchrotron in the Earths Van Allen radiation belts. Nature Communications, 4, 2795. https://doi.org/10.1038/ncomms3795

Meredith, N. P., Horne, R. B., Glauert, S. A., & Anderson, R. R. (2007). Slot region electron loss timescales due to plasmaspheric hiss and
lightning‐generated whistlers. Journal of Geophysical Research, 112, A08214. https://doi.org/10.1029/2007JA012413

Murphy, K. R., Mann, I. R., Rae, I. J., Sibeck, D. G., & Watt, C. E. J. (2016). Accurately characterizing the importance of wave‐particle
interactions in radiation belt dynamics: The pitfalls of statistical wave representations. Journal of Geophysical Research: Space Physics,
121, 7895–7899. https://doi.org/10.1002/2016JA022618

Murphy, K. R., Mann, I. R., & Sibeck, D. G. (2015). On the dependence of storm time ULF wave power on magnetopause location: Impacts
for ULF wave radial diffusion. Geophysical Research Letters, 42, 9676–9684. https://doi.org/10.1002/2015GL066592

Murphy, K. R., Rae, I. J., Mann, I. R., & Milling, D. K. (2011). On the nature of ULF wave power during nightside auroral activations and
substorms: 1. Spatial distribution. Journal of Geophysical Research, 116, A00I21. https://doi.org/10.1029/2010JA015757

Olifer, L., Mann, I. R., Ozeke, L. G., Rae, I. J., & Morley, S. K. (2019). On the relative strength of electric and magnetic ULF wave radial
diffusion during the March 2015 geomagnetic storm. Journal of Geophysical Research: Space Physics, 124, 2569–2587. https://doi.org/
10.1029/2018JA026348

Ozeke, L. G., Mann, I. R., Murphy, K. R., Degeling, A.W., Claudepierre, S. G., & Spence, H. E. (2018). Explaining the apparent impenetrable
barrier to ultra‐relativistic electrons in the outer Van Allen belt. Nature Communications, 9(1), 1844. https://doi.org/10.1038/s41467-018
-04162-3

Ozeke, L. G., Mann, I. R., Murphy, K. R., Jonathan Rae, I., & Milling, D. K. (2014). Analytic expressions for ULF wave radiation belt radial
diffusion coefficients. Journal of Geophysical Research: Space Physics, 119, 1587–1605. https://doi.org/10.1002/2013JA019204

Ozeke, L. G., Mann, I. R., Murphy, K. R., Rae, I. J., Milling, D. K., Elkington, S. R., et al. (2012). ULF wave derived radiation belt radial
diffusion coefficients. Journal of Geophysical Research, 117, A04222. https://doi.org/10.1029/2011JA017463

Ozeke, L. G., Mann, I. R., Murphy, K. R., Sibeck, D. G., & Baker, D. N. (2017). Ultra‐relativistic radiation belt extinction and ULF wave
radial diffusion: Modeling the September 2014 extended dropout event. Geophysical Research Letters, 44, 2624–2633. https://doi.org/
10.1002/2017GL072811

Ozeke, L. G., Mann, I. R., & Rae, I. J. (2009). Mapping guided Alfvén wave magnetic field amplitudes observed on the ground to equatorial
electric field amplitudes in space. Journal of Geophysical Research, 114, A01214. https://doi.org/10.1029/2008JA013041

Perry, K. L., Hudson, M. K., & Elkington, S. R. (2005). Incorporating spectral characteristics of Pc5 waves into three‐dimensionalradiation
belt modeling and the diffusion of relativistic electrons. Journal of Geophysical Research, 110, A03215. https://doi.org/10.1029/
2004JA010760

Rae, I. J., Murphy, K. R., Watt, C. E. J., & Mann, I. R. (2011). On the nature of ULF wave power during nightside auroral activations and
substorms: 2. Temporal evolution. Journal of Geophysical Research, 116, A00I22. https://doi.org/10.1029/2010JA015762

Rae, I. J., Murphy, K. R., Watt, C. E. J., Sandhu, J. K., Georgiou, M., Degeling, A. W., et al. (2019). How do ultra‐low frequency waves access
the inner magnetosphere during geomagnetic storms? Geophysical Research Letters, 46, 10,699–10,709. https://doi.org/10.1029/
2019GL082395

Reeves, G. D., Chen, Y., Cunningham, G. S., Friedel, R. W. H., Henderson, M. G., Jordanova, V. K., et al. (2012). Dynamic radiation
environment assimilation model: DREAM. Space Weather, 10, S03006. https://doi.org/10.1029/2011SW000729

Riley, P., & Wolf, R. A. (1992). Comparison of diffusion and particle drift descriptions of radial transport in the Earth's inner magneto-
sphere. Journal of Geophysical Research, 97(A11), 16,865–16,876. https://doi.org/10.1029/92JA01538

Roederer, J. G. (1970). Dynamics of geomagnetically trapped radiation / J.G. Roederer. Berlin: Springer‐Verlag.
Roederer, J. G., & Zhang, H. (2014). Dynamics of magnetically trapped particles (Vol. 403). Berlin, Heidelberg: Springer. https://doi.org/

10.1007/978-3-642-41530-2
Schulz, M., & Lanzerotti, L. (1974). Particle diffusion in the radiation belts / [by] M. Schulz [and] L. J. Lanzerotti. Springer‐Verlag Berlin.
Shin, D.‐K., & Lee, D.‐Y. (2013). Determining radial boundary conditions of outer radiation belt electrons using THEMIS observations.

Journal of Geophysical Research: Space Physics, 118, 2888–2896. https://doi.org/10.1002/jgra.50334
Shprits, Y. Y., Elkington, S. R., Meredith, N. P., & Subbotin, D. A. (2008). Review of modeling of losses and sources of relativistic electrons in

the outer radiation belt I: Radial transport. Journal of Atmospheric and Solar‐Terrestrial Physics, 70(14), 1679–1693. https://doi.org/
10.1016/j.jastp.2008.06.008

Shprits, Y. Y., Thorne, R. M., Reeves, G. D., & Friedel, R. (2005). Annales Geophysicae Radial diffusion modeling with empirical lifetimes:
comparison with CRRES observations. (Vol. 23; Tech. Rep.)

Thorne, R. M., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al. (2013). Rapid local acceleration of relativistic radiation‐belt electrons by
magnetospheric chorus. Nature, 504, 411. https://doi.org/10.1038/nature12889

Tu, W., Elkington, S. R., Li, X., Liu, W., & Bonnell, J. (2012). Quantifying radial diffusion coefficients of radiation belt electrons based on
global MHD simulation and spacecraft measurements. Journal of Geophysical Research, 117, A10210. https://doi.org/10.1029/
2012JA017901

Ukhorskiy, A. Y., Sitnov, M. I., Takahashi, K., & Anderson, B. J. (2009). Radial transport of radiation belt electrons due to stormtime Pc5
waves. Annales Geophysicae, 27(5), 2173–2181. https://doi.org/10.5194/angeo-27-2173-2009

Vacaresse, A., Boscher, D., Bourdarie, S., Blanc, M., & Sauvaud, J. A. (1999). Modeling the high‐energy proton belt. Journal of Geophysical
Research, 104(A12), 28,601–28,613. https://doi.org/10.1029/1999JA900411

Watt, C. E. J., Allison, H. J., Meredith, N. P., Thompson, R. L., Bentley, S. N., Rae, I. J., et al. (2019). Variability of quasilinear diffusion
coefficients for plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 124, 8488–8506. https://doi.org/10.1029/2018JA
026401

Watt, C. E. J., Rae, I. J., Murphy, K. R., Anekallu, C., Bentley, S. N., & Forsyth, C. (2017). The parameterization of wave‐particle interactions
in the Outer Radiation Belt. Journal of Geophysical Research: Space Physics, 122, 9545–9551. https://doi.org/10.1002/2017JA024339

Welling, D., Koller, J., & Camporeale, E. (2011). Verification of SpacePy's radial diffusion radiation belt model. Geoscientific Model
Development, 5, 277–287. https://doi.org/10.5194/gmdd-4-2165-2011

10.1029/2019JA027254Journal of Geophysical Research: Space Physics

THOMPSON ET AL. 16 of 16

https://doi.org/10.1002/2015JA021001
https://doi.org/10.1038/ncomms3795
https://doi.org/10.1029/2007JA012413
https://doi.org/10.1002/2016JA022618
https://doi.org/10.1002/2015GL066592
https://doi.org/10.1029/2010JA015757
https://doi.org/10.1029/2018JA026348
https://doi.org/10.1029/2018JA026348
https://doi.org/10.1038/s41467-018
http://-04162-3
https://doi.org/10.1002/2013JA019204
https://doi.org/10.1029/2011JA017463
https://doi.org/10.1002/2017GL072811
https://doi.org/10.1002/2017GL072811
https://doi.org/10.1029/2008JA013041
https://doi.org/10.1029/2004JA010760
https://doi.org/10.1029/2004JA010760
https://doi.org/10.1029/2010JA015762
https://doi.org/10.1029/2019GL082395
https://doi.org/10.1029/2019GL082395
https://doi.org/10.1029/2011SW000729
https://doi.org/10.1029/92JA01538
https://doi.org/10.1007/978-3-642-41530-2
https://doi.org/10.1007/978-3-642-41530-2
https://doi.org/10.1002/jgra.50334
https://doi.org/10.1016/j.jastp.2008.06.008
https://doi.org/10.1016/j.jastp.2008.06.008
https://doi.org/10.1038/nature12889
https://doi.org/10.1029/2012JA017901
https://doi.org/10.1029/2012JA017901
https://doi.org/10.5194/angeo-27-2173-2009
https://doi.org/10.1029/1999JA900411
https://doi.org/10.1029/2018JA
http://026401
https://doi.org/10.1002/2017JA024339
https://doi.org/10.5194/gmdd-4-2165-2011


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


