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The societal need for reliable climate predictions
and a proper assessment of their uncertainties is
pressing. Uncertainties arise not only from initial
conditions and forcing scenarios, but also from model
formulation. Here, we identify and document three
broad classes of problems, each representing what
we regard to be an outstanding challenge in the
area of mathematics applied to the climate system.
First, there is the problem of the development and
evaluation of simple physically based models of the
global climate. Second, there is the problem of the
development and evaluation of the components of
complex models such as general circulation models.
Third, there is the problem of the development
and evaluation of appropriate statistical frameworks.
We discuss these problems in turn, emphasizing
the recent progress made by the papers presented
in this Theme Issue. Many pressing challenges
in climate science require closer collaboration between
climate scientists, mathematicians and statisticians.
We hope the papers contained in this Theme Issue
will act as inspiration for such collaborations and for
setting future research directions.
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1. Introduction
The societal need for reliable climate predictions and a proper assessment of their uncertainties is
pressing. However, the climate system is complex with a multitude of spatial and temporal scales.
Although the governing equations of the underlying fluid dynamics are known essentially exactly
in the continuum limit, an accurate resolution of their solutions down to the smallest energized
scales is well beyond the capacity of any computers that are available now or foreseeable in the
future. In addition, many climate-critical processes such as convection and clouds are represented
only approximately in climate simulations, and perhaps always will be. Such processes may not
be amenable to a representation by physically based deterministic equations and may in fact be
inherently stochastic. For all these reasons, uncertainties in climate predictions arise not only from
uncertainties in initial conditions and forcing scenarios (including future emissions of volcanic
aerosols and greenhouse gases), but also from inherent uncertainties in model formulation.

The ability to make predictions of the climate system as a whole is hindered because of a
lack of accepted physical principles that control the overall behaviour, such as the global-mean
temperature. Without such principles, it is impossible to estimate the error of a prediction made
with an inevitably imperfect model over a long evolution time. Nevertheless, reliable climate
predictions are needed urgently, not least because they influence the risk assessments used by
policy makers. Therefore, it is essential that climate predictions sample all the possible sources
of uncertainty and encompass all the possible outcomes, as discussed by Collins et al. [1]. Recent
Theme Issues of this journal relevant to this topic include those compiled by Collins [2], Palmer &
Williams [3], Thompson [4], Nikiforakis [5], Palmer & Hardaker [6] and Thompson & Sieber [7].

From the perspective of an applied mathematician, there are two approaches to studying the
climate system. The first approach uses simple, conceptual models with only a few degrees of
freedom. These models are designed to capture the observed relationships between components
relevant to a particular phenomenon, such as time series of key integrated variables like global
surface air temperature and global atmospheric composition, without attempting to represent
the full three-dimensional evolution. The simplicity of these models makes it easier to focus on
relationships between selected processes and to explore parameter dependencies. The simplicity
often makes simple models amenable to analytic progress. However, the simplicity also limits the
usefulness of simple models as tools for quantitative prediction.

The second approach is to use general circulation models (GCMs), which contain a wide
range of physical processes represented through millions of degrees of freedom. These models
are designed to capture the full spatial and temporal evolution of the atmosphere–ocean–land
system. Also in this category are Earth-system models and Earth-system models of intermediate
complexity, which include comprehensive, interactive representations of the cryosphere and the
global carbon cycle. Similarly, large-eddy simulations (LESs) of the atmospheric flow are designed
to represent interactions spanning several time and space scales. The complexity of these models
makes them useful as tools for quantitative prediction, but heavy supercomputing infrastructure
is required and analytic progress is impossible.

Simple and complex models have different strengths and weaknesses. A major weakness
of simple models, particularly those based largely on statistical relationships, is the problem
of establishing a rigorous physical basis for them, given that many important processes are
neglected. Recent advances in statistics allow such models to be fitted to observed data in a more
dynamical framework, making due allowances for their limitations. However, that this can be
done carries no guarantee that simple models will respond correctly to perturbations. Consistency
with observed data must be regarded as a necessary but not sufficient condition for demonstrating
skill. The quantitative ability of simple models to capture future forced changes to the climate is
unproven by historic data-fitting exercises. It is essential to build up a physical understanding of
the reasons for changes, so that the simple models can be evaluated.

A major difficulty faced by all models, particularly GCMs, is the huge range of length and time
scales for key elements of the climate system. This disparity makes direct numerical simulation
very difficult. For example, the time scales for changes to the deep ocean circulation and major
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ice sheets are centuries, whereas the time scale for the evolution of weather systems in the
atmosphere is only hours. In addition, finite computing resources mean that the fastest and
smallest scales cannot be simulated explicitly with global coverage.

Because of the transfer of information between resolved and unresolved scales in GCMs, the
equations for the resolved scales cannot be closed exactly. The role of unresolved scales in climate
simulation has been reviewed by Williams [8]. Parametrization schemes have been developed
to close the equations approximately, but the parameters in them are often poorly constrained
by theory and observations. While the effects of different schemes and parameter options are
relatively straightforward to explore in simpler models, the computational expense of GCMs
means that such investigation is limited in full climate simulations. The tactic of parameter
variation within GCMs is commonly adopted to represent in part the associated uncertainty,
and mathematical methods help to inform the selection strategy. In a similar vein, stochastic
terms are widely used to represent unresolved processes in GCMs, with development aided by
simpler models. Both approaches have been adopted in operational forecast systems, and a recent
example is given by Arribas et al. [9].

It is important to note that, although simple and complex models have different strengths
and weaknesses, neither of these model types is free from fundamental limitations. It is essential
to pursue both approaches simultaneously, as a consistency check and to obtain the maximum
amount of information. Indeed, the comparison between predictions from simple and complex
models often advances our understanding.

Motivated by the importance of this topic, the Institute of Mathematics and its Applications
held a Conference on the Mathematics of the Climate System at the University of Reading,
UK, over the period 13–15 September 2011. Many, but not all, of the papers published in
this Theme Issue are based on work presented at the conference. The scientific organizing
committee for the meeting consisted of the editors of this Theme Issue, together with Colin
Cotter (Imperial College London), Christopher Ferro (University of Exeter) and David Stainforth
(London School of Economics and Political Science). A brief meeting report was provided by
Williams et al. [10].

This introductory paper to the Theme Issue aims to survey what its authors regard as the three
broad outstanding challenges in the field (§2). The article then describes the recent progress that
has been made in tackling each of the three challenges, by reference to papers published in the
Theme Issue (§3). Finally, the article suggests some future research directions (§4).

2. Outstanding challenges
In this section, we would like to identify and document three broad classes of problems. Each of
the problems represents what we regard as an outstanding challenge in the area of mathematics
applied to the climate system. Any such list will necessarily be subjective and open to criticism,
but we hope it will serve as a useful starting point for discussions.

First, there is the problem of the development and evaluation of simple physically based
models of the global climate. This problem requires physical understanding, and ensuring that
the models reflect it. Open questions pertinent to this problem include the following. Should
simple models be deterministic or stochastic? Is it important whether or not simple models satisfy
conservation laws? How should simple models be evaluated when confronted with observational
data? Are the multiple equilibrium states that are often exhibited by simple models real or merely
artefacts of the simplification?

Second, there is the problem of the development and evaluation of the components of
complex models such as GCMs and of the interactions between them. Again, this problem
requires physical understanding, and ensuring that the models and their components reflect it.
Open questions pertinent to this problem include the following. How should the equations for
the resolved scales be closed? Are stochastic closure schemes better than deterministic closure
schemes? Which aspects are crucial for obtaining the correct large-scale flow and variability? How
should the different components be coupled?
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A related problem is the generation of appropriate initial conditions, which are needed when
GCMs are used to analyse and predict weather and climate features on scales of hours to seasons
and beyond. Indeed, natural variability on decadal scales—not properly regarded as climate
change—is a particular problem for climate prediction. The interaction between oceans and the
atmosphere is important, but disparate time scales make the coupled problem of initialization and
data assimilation particularly difficult. Some recent efforts are summarized by Balmaseda et al.
[11]. Investigations with innovative mathematical methods and a hierarchy of models are needed.

Third, there is the problem of the development and evaluation of appropriate statistical
frameworks. These frameworks are needed to create credible and reliable probability
distributions of real-world observables from ensembles of climate predictions. The ensembles
here could be multi-model ensembles, multi-parameter ensembles, ensembles forced by different
greenhouse gas scenarios, or initial-condition ensembles. Such frameworks are required in order
to make valid inference from ensemble climate projections with imperfect models. Open questions
pertinent to this problem include the following. How should the different ensemble members be
weighted? What level of detail is needed from climate models if they are to be useful tools for
impact studies?

3. Recent progress
In this section, we deal with each of the above three problems in turn, emphasizing the
contribution made by the papers in this Theme Issue.

(a) Development and evaluation of simple models
Four papers deal with the development and evaluation of simple models. A necessary (but not
sufficient) aspect of the evaluation of simple models is to test their predictions by comparison
with observed data. Kwasniok [12] does this by matching palaeo-climate records with different
stochastic dynamical systems, representing different dynamical mechanisms and modelling
approaches. The particular focus is on simulating the observed glacial climate transitions.
A stochastic model with a relaxation operator is formulated, and the system parameters and noise
levels are estimated from ice-core data. This formulation is compared with the more traditional
model of noise-driven motion in a bi-stable potential. Statistical properties determined by long
integrations of the models provide further useful points of comparison.

A crucial aspect of improving simple models may be to make them stochastic. Therefore, a
particular focus is on testing stochastic parametrizations compared with traditional, deterministic
parametrizations. Arnold et al. [13] do this using the Lorenz [14] model. Integrations of the full
model are taken as truth. Stochastic parametrizations are developed that allow the behaviour
of the full model to be approximated by a truncated version of the same model. In particular,
the skill of ensemble forecasts in representing the model uncertainty is assessed, and stochastic
parametrizations are found to perform better than deterministic parametrizations.

The stability properties of simple models, unlike complex models, may be investigated
analytically. Sudakov & Vakulenko [15] do this by extending a classical radiative-balance model
to include representation of the radiative effects of greenhouse gas emissions. It is found via an
asymptotic approach that the emissions can generate instabilities in the model climate system. In
particular, for sufficiently high emissions, a tipping point is reached at which the system develops
multiple equilibria.

Dynamical systems theory offers many tools for advanced analysis of simple models.
One such tool is the unstable periodic orbit expansion procedure. Gritsun [16] applies this
procedure to the barotropic vorticity equation on the sphere, which is a simple representation
of atmospheric fluid flow. The probability measure generated by this chaotic dynamical
system is approximated as a weighted sum over unstable periodic orbits. It is shown that
the circulation regimes of the barotropic vorticity equation can be explained in terms of the
diagnosed orbits.
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(b) Development and evaluation of complex models
Four papers deal with the development and evaluation of complex models. Extreme weather
events, including strong winds, are known to cause substantial societal and economic damage.
Franzke [17] examines extreme winds in archived operational analysis data obtained from a
GCM with observations assimilated. He finds that strong wind events over Europe are related
to a particular large-scale atmospheric circulation pattern in the North Atlantic. Furthermore, a
statistical analysis of the extreme wind speeds shows that they are not independent, but occur
in bunches with marked clustering. A good GCM should also display this clustering when run
without data assimilation. Therefore, the findings of this paper could be used as a benchmark to
evaluate the extreme weather performance of GCMs.

An important aspect of climate dynamics is the influence of the stratosphere on the
troposphere. The processes for this influence are not yet well understood, as discussed in the
review paper by Gerber et al. [18]. Cullen & Ngan [19] study the influence of the stratosphere
on the troposphere by showing that, in archived operational analyses obtained from a GCM
with observations assimilated, the ratio between the horizontal and vertical scales of anomalous
circulations agrees with dynamical theory. This result yields a mechanism through which
stratospheric fluctuations may affect tropospheric variability, by influencing the vertical extent
of tropospheric developments.

A challenge for improving GCMs is to understand the coupling between the sub-grid
parametrizations and the resolved dynamics. It is arguable that such coupling has received
much less research effort relative to the separate development of the dynamical core and
parametrizations. Beare & Cullen [20] investigate this for the case of the atmospheric boundary-
layer parametrization. They formulate a diagnostic equation for the circulation forced by
the boundary layer. The diagnostic equation results from a comprehensive formulation of the
momentum and thermodynamic balances and offers new insights into the interplay between the
dynamics and the parametrization.

A crucial topic is the development of improved formulations of GCMs, and particularly an
improved representation of unresolved processes, such as deep convection and clouds. Dorrestijn
et al. [21] construct a sub-grid model of deep convection using data derived from LESs. Transitions
between different cloud states are modelled with Markov chains, and the variability and spatial
distributions of cloud types are found to become more accurate when local spatial coupling is
introduced to the Markov chains.

(c) Development and evaluation of statistical frameworks
Four papers deal with the development and evaluation of statistical frameworks. A crucial aspect
is the use of stochastic data assimilation methods to create ensembles that can credibly predict
probabilities. Because observational errors can be diagnosed fairly well, and the updating process
used in standard data assimilation methods is reasonably well founded, the characteristics of the
ensemble forecast are largely determined by model uncertainty. In applying this technique to real
models, it is important that the data assimilation technique matches the observations with typical
trajectories of the climate model, rather than using unphysical transients. Cotter [22] shows how
this can be achieved in a simple system by defining a projection onto the slow manifold in terms
of an explicit map.

Rougier [23] discusses the same ideas in the more general context of inherently stochastic
models with uncertain static parameters. It is noted that, in the environmental sciences, initial-
condition sensitivity and attracting sets pose a major research challenge, which is increased by
the existence of stochasticity and parametric uncertainty. The task of performing data assimilation
with uncertain static parameters is labelled ‘intractable and unsolved’. However, the paper
concludes by warning against what appears to be a counsel of despair. Although off-the-shelf
methods cannot be expected to work when there are complicating factors like stochasticity, we
may be able to find success by applying physical insights to tune the data assimilation method.
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Of all the available methods for processing the results, it is important to understand which
methods give the most useful predictions. Chandler [24] presents and analyses a statistical
framework for combining projections of future climate from different climate simulators.
Information from individual simulators is automatically weighted, alongside that from historical
observations and from prior knowledge. The framework demonstrates that some subjective
judgements are inevitable when interpreting multiple climate change projections. By clarifying
precisely what these judgements are, it provides increased transparency in the ensuing analyses.

Observational data should, in principle, provide guidance on trends in local climate at the
specific thresholds relevant to particular impact or policy endeavours. After noting that global
temperature rises are largely irrelevant for local impact assessments, Chapman et al. [25] show
how this guidance can be achieved for local climate trends. The level of detail needed from climate
models, if they are to be used as tools to assess climate change impact, is quantified.

4. Future research directions
While much has been achieved with simple models with regard to elucidating mechanisms and
simulating features of the observed climate, in many cases, it is not yet clear to what extent
simple models have predictive value. The next steps include establishing such value, if at all
possible. This can only be achieved through further progress in identifying the physical principles
that control the overall behaviour of the climate system, assuming such principles exist. The
simple models are already playing a useful role in showing how particular physical assumptions
can translate into solutions that match aspects of the observed climate record. However, for
predictive applications, it is essential that simple models can also be shown to respond correctly
to perturbations.

The studies in this Theme Issue of the behaviour of complex models are a small selection of
work being undertaken across the whole range of GCM components. The detail provided by
GCMs is required to make quantitative predictions of use to policy makers. However, there are
gaps that need to be filled before we can be confident that GCMs are well founded and that the
uncertainties are well represented. The need to resolve a huge range of scales means that there
is a serious problem in validating the predictions of the overall behaviour of the climate system.
This is where simple models can be helpful.

In simple models, the exercise of fitting the models to observational data is building up
considerable expertise and represents an exciting opportunity to inform stochastic schemes
for representing small-scale processes in GCMs. Representing sub-grid-scale fluctuations by
stochastic parametrizations (and improving deterministic physics parametrizations) in the GCM
of the European Centre for Medium-range Weather Forecasts has been shown by Berner et al. [26]
to decrease the systematic bias of the Northern Hemispheric circulation, reduce the precipitation
bias in the tropics, and improve the characteristics of convectively coupled waves and tropical
variability. In other recent examples, Plant [27] has studied the time-dependent and stochastic
modelling of atmospheric convective systems as a collection of distinct plumes, and Williams
[28] has studied the climatic impacts of stochastic fluctuations in air–sea fluxes. In complex
models, the use of data assimilation methods in developing ensembles that can properly quantify
uncertainties is a rapidly developing area that can make major contributions to the advice given
to the climate community.

A major future need is the identification of the physical principles that control the overall
behaviour of the climate system and that would make reliable prediction possible. For example,
while we know that an energy budget can be constructed for each part of the Earth system, in that
the energy change is explained by changes in the exchanges of energy with other components,
it is not known what controls the average radiative equilibrium temperature of the Earth as
viewed from space. It may be that there are no such principles, in which case, there are extra
uncertainties. Mathematics can only apply the principles, not invent them. However, mathematics
can at least be used to evaluate the consequences of physical theories and match them
with reality.
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Many pressing challenges in climate science require closer collaboration between climate
scientists on the one hand, and mathematicians and statisticians on the other hand. The flow
of information between these two parties should be two way. For example, climate science
needs to embrace advanced statistical and stochastic modelling, in order to continue to advance
beyond the deterministic paradigm embodied in traditional climate models. At the same time,
the mathematical and statistical sciences need to embrace the exciting challenges being driven by
new developments in climate science, such as the construction of emulators capable of simulating
complex GCMs, and the estimation of future climate and its uncertainties from ensembles of
such models.

It is fitting that this Theme Issue appears in the same year that has been designated as a special
year for the Mathematics of Planet Earth (http://mpe2013.org). Dozens of international scientific
societies, universities, research institutes and foundations have come together to organize a year-
long series of programmes, summer schools, workshops, public lectures and exhibitions devoted
to this topic. The initiative enjoys the patronage of UNESCO and is endorsed by the International
Mathematical Union and the International Council of Industrial and Applied Mathematics.
Although this Theme Issue is not formally affiliated with Mathematics of Planet Earth 2013, we
hope that the papers contained in it will act as inspiration for the discussions and for setting future
research directions.

P.D.W. and M.J.P.C. were visiting the Isaac Newton Institute for Mathematical Sciences, Cambridge, UK when
this paper was written. The organizers of the Newton Institute programme on Multiscale Numerics for the
Atmosphere and Ocean are gratefully acknowledged. We also thank our Commissioning Editor, Suzanne
Abbott, for her help and advice at all stages during the compilation of this Theme Issue.

References
1. Collins M, Chandler RE, Cox PM, Huthnance JM, Rougier J, Stephenson DB. 2012 Quantifying

future climate change. Nat. Clim. Change 2, 403–409. (doi:10.1038/nclimate1414)
2. Collins M. 2007 Ensembles and probabilities: a new era in the prediction of climate change.

Phil. Trans. R. Soc. A 365, 1957–1970. (doi:10.1098/rsta.2007.2068)
3. Palmer TN, Williams PD. 2008 Introduction. Stochastic physics and climate modelling. Phil.

Trans. R. Soc. A 366, 2419–2425. (doi:10.1098/rsta.2008.0059)
4. Thompson JMT. 2008 Introduction. Progress in Earth science and climate studies. Phil. Trans.

R. Soc. A 366, 4503–4508. (doi:10.1098/rsta.2008.0215)
5. Nikiforakis N. 2009 Mesh generation and mesh adaptation for large-scale Earth-system

modelling. Phil. Trans. R. Soc. A 367, 4473–4481. (doi:10.1098/rsta.2009.0197)
6. Palmer TN, Hardaker PJ. 2011 Introduction: handling uncertainty in science. Phil. Trans. R.

Soc. A 369, 4681–4684. (doi:10.1098/rsta.2011.0280)
7. Thompson JMT, Sieber J. 2012 Climate predictions: the influence of nonlinearity and

randomness. Phil. Trans. R. Soc. A 370, 1007–1011. (doi:10.1098/rsta.2011.0423)
8. Williams PD. 2005 Modelling climate change: the role of unresolved processes. Phil. Trans. R.

Soc. A 363, 2931–2946. (doi:10.1098/rsta.2005.1676)
9. Arribas A et al. 2011 The GloSea4 ensemble prediction system for seasonal forecasting. Mon.

Weather Rev. 139, 1891–1910. (doi:10.1175/2010MWR3615.1)
10. Williams PD, Cullen MJP, Huthnance JM. 2011 How mathematical models can aid

understanding of climate. EOS Trans. Am. Geophys. Union 92, 482. (doi:10.1029/2011EO510010)
11. Balmaseda MA et al. 2009 Ocean initialization for seasonal forecasts. Oceanography 22, 154–159.

(doi:10.5670/oceanog.2009.73)
12. Kwasniok F. 2013 Analysis and modelling of glacial climate transitions using simple

dynamical systems. Phil. Trans. R. Soc. A 371, 20110472. (doi:10.1098/rsta.2011.0472)
13. Arnold HM, Moroz IM, Palmer TN. 2013 Stochastic parametrizations and model uncertainty

in the Lorenz ‘96 system. Phil. Trans. R. Soc. A 371, 20110479. (doi:10.1098/rsta.2011.0479)
14. Lorenz EN. 1996 Predictability—a problem partly solved. In Proc. Seminar on Predictability, pp.

1–18. Reading, UK: European Centre for Medium-Range Weather Forecasts.
15. Sudakov I, Vakulenko S. 2013 Bifurcations of the climate system and greenhouse gas

emissions. Phil. Trans. R. Soc. A 371, 20110473. (doi:10.1098/rsta.2011.0473)

 on April 16, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://mpe2013.org
http://dx.doi.org/doi:10.1038/nclimate1414
http://dx.doi.org/doi:10.1098/rsta.2007.2068
http://dx.doi.org/doi:10.1098/rsta.2008.0059
http://dx.doi.org/doi:10.1098/rsta.2008.0215
http://dx.doi.org/doi:10.1098/rsta.2009.0197
http://dx.doi.org/doi:10.1098/rsta.2011.0280
http://dx.doi.org/doi:10.1098/rsta.2011.0423
http://dx.doi.org/doi:10.1098/rsta.2005.1676
http://dx.doi.org/doi:10.1175/2010MWR3615.1
http://dx.doi.org/doi:10.1029/2011EO510010
http://dx.doi.org/doi:10.5670/oceanog.2009.73
http://dx.doi.org/doi:10.1098/rsta.2011.0472
http://dx.doi.org/doi:10.1098/rsta.2011.0479
http://dx.doi.org/doi:10.1098/rsta.2011.0473
http://rsta.royalsocietypublishing.org/


8

rsta.royalsocietypublishing.org
PhilTransRSocA371:20120518

......................................................

16. Gritsun A. 2013 Statistical characteristics, circulation regimes and unstable periodic orbits
of a barotropic atmospheric model. Phil. Trans. R. Soc. A 371, 20120336. (doi:10.1098/
rsta.2012.0336)

17. Franzke CLE. 2013 Persistent regimes and extreme events of the North Atlantic atmospheric
circulation. Phil. Trans. R. Soc. A 371, 20110471. (doi:10.1098/rsta.2011.0471)

18. Gerber EP et al. 2012 Assessing and understanding the impact of stratospheric dynamics
and variability on the Earth system. Bull. Am. Meteorol. Soc. 93, 845–859. (doi:10.1175/BAMS-
D-11-00145.1)

19. Cullen MJP, Ngan K. 2013 On the relationship between stratospheric structure and
tropospheric blocking patterns. Phil. Trans. R. Soc. A 371, 20120180. (doi:10.1098/rsta.2012.
0180)

20. Beare RJ, Cullen MJP. 2013 Diagnosis of boundary-layer circulations. Phil. Trans. R. Soc. A 371,
20110474. (doi:10.1098/rsta.2011.0474)

21. Dorrestijn J, Crommelin DT, Biello JA, Böing SJ. 2013 A data-driven multi-cloud model
for stochastic parametrization of deep convection. Phil. Trans. R. Soc. A 371, 20120374.
(doi:10.1098/rsta.2012.0374)

22. Cotter C. 2013 Data assimilation on the exponentially accurate slow manifold. Phil. Trans. R.
Soc. A 371, 20120300. (doi:10.1098/rsta.2012.0300)

23. Rougier J. 2013 ‘Intractable and unsolved’: some thoughts on statistical data assimilation with
uncertain static parameters. Phil. Trans. R. Soc. A 371, 20120297. (doi:10.1098/rsta.2012.0297)

24. Chandler RE. 2013 Exploiting strength, discounting weakness: combining information from
multiple climate simulators. Phil. Trans. R. Soc. A 371, 20120388. (doi:10.1098/rsta.2012.0388)

25. Chapman SC, Stainforth DA, Watkins NW. 2013 On estimating local long-term climate trends.
Phil. Trans. R. Soc. A 371, 20120287. (doi:10.1098/rsta.2012.0287)

26. Berner J, Jung T, Palmer TN. 2012 Systematic model error: the impact of increased horizontal
resolution versus improved stochastic and deterministic parameterizations. J. Clim. 25, 4946–
4962. (doi:10.1175/JCLI-D-11-00297.1)

27. Plant RS. 2012 A new modelling framework for statistical cumulus dynamics. Phil. Trans. R.
Soc. A 370, 1041–1060. (doi:10.1098/rsta.2011.0377)

28. Williams PD. 2012 Climatic impacts of stochastic fluctuations in air–sea fluxes. Geophys. Res.
Lett. 39, L10705. (doi:10.1029/2012GL051813)

 on April 16, 2013rsta.royalsocietypublishing.orgDownloaded from 

http://dx.doi.org/doi:10.1098/rsta.2012.0336
http://dx.doi.org/doi:10.1098/rsta.2012.0336
http://dx.doi.org/doi:10.1098/rsta.2011.0471
http://dx.doi.org/doi:10.1175/BAMS-D-11-00145.1
http://dx.doi.org/doi:10.1175/BAMS-D-11-00145.1
http://dx.doi.org/doi:10.1098/rsta.2012.0180
http://dx.doi.org/doi:10.1098/rsta.2012.0180
http://dx.doi.org/doi:10.1098/rsta.2011.0474
http://dx.doi.org/doi:10.1098/rsta.2012.0374
http://dx.doi.org/doi:10.1098/rsta.2012.0300
http://dx.doi.org/doi:10.1098/rsta.2012.0297
http://dx.doi.org/doi:10.1098/rsta.2012.0388
http://dx.doi.org/doi:10.1098/rsta.2012.0287
http://dx.doi.org/doi:10.1175/JCLI-D-11-00297.1
http://dx.doi.org/doi:10.1098/rsta.2011.0377
http://dx.doi.org/doi:10.1029/2012GL051813
http://rsta.royalsocietypublishing.org/

	Introduction
	Outstanding challenges
	Recent progress
	Development and evaluation of simple models
	Development and evaluation of complex models
	Development and evaluation of statistical frameworks

	Future research directions
	References

