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ABSTRACT

The Robert–Asselin time filter is widely used in numerical models of weather and climate. It successfully

suppresses the spurious computational mode associated with the leapfrog time-stepping scheme. Unfortu-

nately, it also weakly suppresses the physical mode and severely degrades the numerical accuracy. These two

concomitant problems are shown to occur because the filter does not conserve the mean state, averaged over

the three time slices on which it operates. The author proposes a simple modification to the Robert–Asselin

filter, which does conserve the three-time-level mean state. When used in conjunction with the leapfrog

scheme, the modification vastly reduces the impacts on the physical mode and increases the numerical

accuracy for amplitude errors by two orders, yielding third-order accuracy. The modified filter could easily be

incorporated into existing general circulation models of the atmosphere and ocean. In principle, it should

deliver more faithful simulations at almost no additional computational expense. Alternatively, it may permit

the use of longer time steps with no loss of accuracy, reducing the computational expense of a given simulation.

1. Introduction

From a functional perspective, the task of predicting

future weather and climate may be reduced to the fol-

lowing iterative procedure. First, given the state of the

atmosphere, ocean, and other Earth-system components

at any time (the input), use the governing equations to

compute the state at a slightly later time (the output).

Then, repeat the loop as many times as required, always

using the previous output as the next input.

The above prediction framework presents three main

challenges, each of which potentially degrades the reli-

ability of the forecast. First, Earth observations, which

always contain measurement errors, are required to

serve as the initial state. Second, the vast array of active

physical processes and interactions is incompletely

known and imperfectly represented in the spatially

truncated governing equations. Third, the discrete

stepping from one time level to the next is merely an

approximation to the exact time-continuous evolution.

This paper presents a possible avenue for progress with

the third of these three challenges, which has received

scant attention compared to the extensive research ef-

forts devoted to the first two.

Pfeffer et al. (1992) have assessed the sensitivity of

an atmospheric general circulation model to the time

stepping, for fixed spatial discretization and physical

parameterizations. They find that two different meth-

ods of time discretization—the leapfrog and Matsuno

schemes—result in significant quantitative differences

in the simulated climate. For example, the leapfrog

scheme gives much more precipitation over the western

tropical Pacific Ocean and less precipitation over the

western North Atlantic Ocean. Therefore, time step-

ping appears to be an important contributor to model

error.

Many different time-stepping methods have been pro-

posed, including the leapfrog scheme (or centered

difference scheme), the Matsuno scheme (e.g., Pfeffer

et al. 1992), the Adams–Bashforth family of schemes

(e.g., Durran 1991) and the Runge–Kutta family of

schemes (e.g., Kar 2006). The leapfrog scheme has

emerged as the method of choice in weather and climate

models, despite related disciplines choosing differently

(e.g., Runge–Kutta schemes are widely used in com-

putational fluid dynamics but hardly ever used in nu-

merical weather prediction) and despite evidence that
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other methods may be superior (e.g., the third-order

Adams–Bashforth scheme is more accurate; Durran

1991). The leapfrog scheme is used so widely in weather

and climate models probably because it is easy to im-

plement, computationally inexpensive, and has low run-

time storage requirements. Indeed, today’s widespread

use of the leapfrog scheme in general circulation models

is perhaps merely a legacy of computer memory having

been such a severe constraint when the models were first

developed.

A major problem with the leapfrog scheme is that it

admits spurious computational modes (e.g., Mesinger

and Arakawa 1976; Haltiner and Williams 1980; Durran

1999). In general, a differential equation that is first order

in time has one degree of freedom, but an n-time-level

numerical approximation to it constitutes an (n 2 1)th-

order difference equation with n 2 1 degrees of freedom.

Of these n 2 1 modes, one is the physical mode and the

remaining n 2 2 are computational modes. The leapfrog

is a three-time-level scheme, so one computational mode

arises in it, in addition to the physical mode, because a

second-order difference equation is used to approximate

a first-order differential equation. The computational

mode (or parasitic mode) is manifest as a spurious oscil-

lation between even and odd time steps, which is referred

to as time splitting.

One possible solution to time splitting is to periodi-

cally reinitialize the leapfrog scheme by applying a

single step of a two-time-level scheme, which does not

admit any computational modes. For example, Pfeffer

et al. (1992) apply a single Matsuno step after every 11

leapfrog steps. This approach does not remove the

computational mode, but merely resets its amplitude to

zero periodically so that it never becomes large enough

to be problematic.

The far more widely used solution to time splitting is

to apply a time filter during the time-stepping procedure.

Robert (1966) designed such a filter for the leapfrog

scheme and Asselin (1972) showed that it selectively

suppresses the computational mode but leaves the

physical mode relatively undamped at low frequencies.

The filter is now referred to as the Robert filter, the

Asselin filter, or the Robert–Asselin filter. The behavior

of the filter has been investigated not only for simple

equation sets, with no space dependence, but also for

the shallow-water equations (Schlesinger et al. 1983)

and the hydrostatic primitive equations (Cordero and

Staniforth 2004).

As testament to the filter’s success, Asselin (1972)1

has been cited over 450 times according to one citation

database, mostly in journals of meteorology and the

atmospheric sciences (around 300 citations) but also in

journals of oceanography (around 100 citations) and

fluid mechanics (around 50 citations). Examples include

the use of the filter in models of regional climate (e.g.,

Caya and Laprise 1999), palaeoclimate (e.g., Fraedrich

et al. 2005), ocean circulation (e.g., Griffies et al. 2001),

geophysical fluid dynamics (e.g., Ford 1994; Bartello

2002), rotating laboratory fluids (e.g., Williams et al.

2009), and the atmosphere of Mars (e.g., Hartogh et al.

2005). André Robert’s contributions to numerical

modeling, including the time filter, have been reviewed

by Staniforth (1997) following a memorial symposium

held at the University of Québec in 1994.

Currently, the Robert–Asselin filter is used in

d operational numerical weather prediction models,

including the Mesoscale Model (MSM) of the Japan

Meteorological Agency (JMA), the global model of

the Australian Bureau of Meteorology (BOM) and

Research Centre (BMRC), the global model (GME)

and regional model (COSMO-EU) of Deutscher

Wetterdienst (DWD), and the Royal Netherlands

Meteorological Institute (KNMI) model;
d atmospheric general circulation models for climate

simulation, including the ECHAM5 model of the

Max-Planck-Institut für Meteorologie (MPI-M) and

the Community Atmosphere Model (CAM) of the

National Center for Atmospheric Research (NCAR);
d ocean general circulation models, including Océan

Parallélisé (OPA), the Nucleus for European Mod-

eling of the Ocean (NEMO), the oceans of Met Office

Hadley Centre climate models [i.e., the Hadley Cen-

tre Coupled Climate Model version 3 (HadCM3),

the Hadley Centre Global Environmental Model

(HadGEM), the High Resolution Global Environ-

mental Model (HiGEM), and the Fast Met Office

U.K. Universities Simulator (FAMOUS)], the Hybrid

Coordinate Ocean Model (HYCOM), and (as an

option) the Geophysical Fluid Dynamics Laboratory

(GFDL) Modular Ocean Model (MOM); and
d models of the fluids in rotating annulus laboratory

experiments, including the Quasi-Geostrophic Model

for Investigating Rotating fluids Experiments

(QUAGMIRE) and the Met Office/Oxford Rotating

Annulus Laboratory Simulation (MORALS).

Despite its unquestioned success, the Robert–Asselin-

filtered leapfrog scheme suffers from two related prob-

lems. First, in addition to suppressing the computational

mode, the scheme also weakly suppresses the physical

mode. Therefore, physical quantities (e.g., energy) that

are conserved by the time-continuous equations are not

necessarily conserved by the time-discretized equations1 Robert (1966) predates the standard citation databases.
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when the filter is activated. The damping and noncon-

servation may be benign for sufficiently short integra-

tions, but possibly not for longer ones.

Second, the Robert–Asselin filter severely degrades

the leapfrog scheme’s numerical accuracy, measured as

the rate at which the error tends to zero as the time step

is progressively refined. Specifically, a numerical scheme

is defined to be nth-order accurate if, after a given time

interval, the difference between the numerical solution

of the time-discretized equations with time step Dt, and

the exact solution of the time-continuous equations,

scales as (Dt)n as Dt / 0. Higher-order schemes are

generally preferred to lower-order schemes, because

they may permit the use of longer time steps with no loss

of accuracy, reducing the computational expense of a

given simulation. The Robert–Asselin-filtered leapfrog

scheme is only first-order accurate for amplitude errors

(although higher-order contributions may dominate for

very small values of the filter parameter).

Because the Robert–Asselin filter is used so widely,

simple-to-implement modifications that deliver more

faithful simulations are very attractive. The author

proposes such a modification in this paper. When used

in conjunction with the leapfrog scheme, the modifica-

tion vastly reduces the impacts on the physical mode

and increases the numerical accuracy for amplitude

errors by two orders, yielding third-order accuracy.

Section 2 motivates the modified filter from a geometrical

perspective. Section 3 derives analytically the amplifi-

cation factor and numerical accuracy for the modified

filtered leapfrog scheme, and compares them with the

corresponding results for the standard Robert–Asselin-

filtered leapfrog scheme. Section 4 concludes the paper

with a summary and discussion.

2. The Robert–Asselin filter and
proposed modification

The standard Robert–Asselin filter, and the modified

filter proposed in this paper, are illustrated graphically

in Fig. 1. Suppose that the values of a dependent vari-

able, x, are given at three successive and equally spaced

times, tn21, tn, and tn11. Then, from a geometrical per-

spective, the standard filter (Fig. 1a) operates by moving

the inner point, with coordinates [tn, xn], a fraction n

toward the midpoint, [tn, (xn21 1 xn11)/2], of the two

outer points. Therefore, the displacement of the inner

point under the influence of the filter is

d 5 (n/2)(x
n�1
� 2x

n
1 x

n11
). (1)

The filter parameter, n, is usually chosen to be O(0.01–

0.2).

Two relevant properties of the three points are their

mean,

M
n
5

x
n�1

1x
n
1x

n 1 1

3
, (2)

and curvature,

C
n
;x

n�1
�2x

n
1x

n11
. (3)

By displacing xn through the amount d, the standard

Robert–Asselin filter reduces the magnitude of the

FIG. 1. Graphical comparison of the operation of (a) the standard Robert–Asselin filter and (b) the modified

family of filters proposed in this paper. Points at three consecutive time levels are shown (marked with times signs)

and a straight line is drawn between the two outer points (dashed). The standard filter moves the inner

point through a displacement d, defined by (1). The modified filter moves the inner and right outer points through

displacements ad and (a 2 1)d, respectively, where 0 # a # 1. For the configuration of three points shown,

d . 0.
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curvature of the three points, |Cn|. When used in con-

junction with the leapfrog scheme, this feature of the

filter strongly suppresses the computational mode, as

desired. But, crucially, the application of the filter does

not conserve the three-time-level mean, Mn. The theo-

retical analysis of section 3 will show that, when used

in conjunction with the leapfrog scheme, it is this fea-

ture of the filter that severely degrades the numerical

accuracy.

In an attempt to include the possibility of conserving

the three-time-level mean, the modified filter proposed

in this paper (Fig. 1b) acts on the right outer point as

well as the inner point. Specifically, for any a satisfying

0 # a # 1, the modified filter displaces xn through the

amount ad and xn11 through the amount (a 2 1)d,

where d is given by (1). All members of this family of

modified filters reduce the magnitude of the curvature

of the three points, jCnj, with a controlling the relative

contributions to the reduction from the displacements

of the inner and right outer points. The special case

a 5 1 yields the standard Robert–Asselin filter dis-

cussed above, which displaces the inner point only. The

special case a 5 0 displaces the right outer point only.

The special case a 5 1/2 will be of particular interest in

this paper, because it displaces the inner and right outer

points equally and oppositely, conserving the three-

time-level mean, Mn.

Before embarking upon the theoretical analysis, we

briefly demonstrate the improvement that may be

achieved by the proposed modification, when used in

conjunction with the leapfrog scheme. We numerically

integrate the equations of simple harmonic motion,

dX

dt
5 � vY and (4)

dY

dt
5 1vX, (5)

by alternately applying a leapfrog step and the modified

filter with either (in two separate integrations) a 5 1

(i.e., the standard Robert–Asselin filter) or a 5 1/2. The

numerical solutions so obtained are compared with each

other, and with the exact solution, in Fig. 2, at the pa-

rameter values given in the caption. Amplitude errors

are clearly much smaller with the modified filter than with

the standard filter. One consequence is that X2 1 Y2,

which is conserved by the continuous equations and

corresponds to the energy of the oscillation, decreases

by 89% using the standard filter, but is approximately

conserved using the modified filter, between the be-

ginning and end of the integration shown in the figure.

3. Theoretical analysis

Amplitude and phase errors of time-stepping schemes

are traditionally examined by analyzing solutions to the

oscillation equation (e.g., Durran 1999), which, for the

complex variable F(t), is

dF

dt
5 ivF, (6)

where i 5
ffiffiffiffiffiffiffi
�1
p

and v is a given (real) angular fre-

quency. Equation (6) is related to (4) and (5) by F 5

X 1 iY. Using the modified filter proposed in section 2

to control the computational mode, the leapfrog scheme

for (6), with time step Dt, is

F(t 1 Dt) 5 F(t � Dt) 1 2ivDtF(t), (7)

FIG. 2. Two numerical solutions to (4) and (5) with v 5 1 rad s21, both obtained using the leapfrog

scheme with Dt 5 0.2 s. The computational mode is controlled using either the standard Robert–Asselin

filter (with a 5 1 and n 5 0.2) or the modified filter proposed in this paper (with a 5 1/2 and n 5 0.2). A

single two-time-level forward step is used to initiate the leapfrog scheme. The initial condition is X 5 1,

Y 5 0, for which the exact solution (also plotted) is X 5 cosvt and Y 5 sinvt.

AUGUST 2009 W I L L I A M S 2541



F(t) 5 F(t) 1
na

2
[F(t � Dt)� 2F(t) 1 F(t 1 Dt)], (8)

and

F(t 1 Dt) 5 F(t 1 Dt)� n(1� a)

2
[F(t � Dt)� 2F(t)

1 F(t 1 Dt)]. (9)

In this three-stage method, (7) implements the basic

leapfrog scheme and (8) and (9) implement the modi-

fied filter, with 0 # a # 1. Here F denotes a provisional

value, obtained by applying (7) during the current time

step; F denotes another (singly filtered) provisional

value, obtained by applying (9) during the current time

step; and F denotes the definitive (doubly filtered) value,

obtained by applying (8) during the next time step. The

occurrence of filtered values on the right sides of (7)–(9)

makes the scheme recursive: F is overwritten with F as

soon as it is calculated, and so is F with F.

It follows from (8) and (9) that the unfiltered, singly

filtered, and doubly filtered values share a common

complex amplification factor A, defined by

A 5
F(t 1 Dt)

F(t)
5

F(t 1 Dt)

F(t)
5

F(t 1 Dt)

F(t)
. (10)

Rewriting (7)–(9) with function evaluations at time

t only, using (10), yields three equations in the three

unknowns: A, F(t)/F(t), and F(t)/F(t). Solving for A

gives

A2� n 1 2 1� n(1� a)

2

� �
ivDt

� �
A1 n � 11 naivDt 5 0,

(11)

from which the numerical amplification factor is found

to be

Assuming 1 2 n/2 . 0, and taking the output of the

square root operator to be the branch with nonnegative

real part, then the positive sign (A1) corresponds to the

physical mode and the negative sign (A2) to the com-

putational mode. For the special case a 5 1, (12) re-

duces to the amplification factor derived by Asselin

(1972) for the standard Robert–Asselin-filtered leap-

frog scheme, as expected. The exact solution to (6) is

F(t) 5 F(0) exp(ivt), from which the exact amplification

factor is found to be

A
exact

(vDt) 5 exp(ivDt), (13)

for comparison with (12).

Figure 3 compares the amplification factor for the

numerical solution, in the three cases a 5 0, a 5 ½, and

a 5 1, with the amplification factor for the exact solu-

tion. The exact amplification factor (Fig. 3a) lies on the

unit circle in the first quadrant and rotates anticlockwise

as vDt increases from 0 to 1. The numerical amplifica-

tion factors for the physical mode (Figs. 3b–d) also ro-

tate anticlockwise in the first quadrant, but depart

slightly from the unit circle as vDt increases from 0. The

growing radii for a 5 0 (Fig. 3b) and a 5 ½ (Fig. 3c), and

the shrinking radius for a 5 1 (Fig. 3d), correspond

respectively to an artificial amplification and suppres-

sion of the physical mode. The numerical amplification

factors for the computational mode (Figs. 3b–d) rotate

clockwise in the second quadrant as vDt increases from

0 to 1. They each remain inside the unit circle, corre-

sponding to a suppression of the computational mode,

as desired.

As suggested by Fig. 3, the standard Robert–Asselin

filter (a 5 1) behaves qualitatively differently from all

other filters in the modified family (a 6¼ 1). Only the

standard filter (Fig. 3d), exhibits a point in the complex

plane at which the amplification factors for the physical

and computational modes meet. The singularity occurs

because a 5 1 is the only case for which the imaginary

term within the square root of (12) vanishes, allowing

A1 5 A2 at vDt 5 1 2 n/2. For all other values of a, the

presence of the imaginary term ensures that there is no

value of vDt for which A1 5 A2, and the singular be-

havior of the standard Robert–Asselin filter is avoided.

Figure 4 shows in more detail how the magnitudes

of the amplification factors depend upon vDt. The qual-

itatively different behavior between the cases a 6¼ 1

and a 5 1 is clearly visible. The singularity for the case

A
6

(a, n, vDt) 5
n

2
1 1� n(1� a)

2

� �
ivDt

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n

2

� �2

� 1� n(1� a)

2

� �2

(vDt)2
1 n 1� n

2

� �
(1� a)ivDt

s
.

(12)
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a 5 1 (Fig. 4c), which renders the curves non-

differentiable at vDt 5 1 2 n/2, is replaced for the cases

a 5 0 (Fig. 4a) and a 5 ½ (Fig. 4b) with a smooth tran-

sition from the small vDt regime to the large vDt regime.

The consequence for the physical mode (A1) is that, for

the case a 5 1 only, jA1j 2 1 changes sign as vDt in-

creases from 0 to 1, corresponding to a transition from

artificial suppression to artificial amplification. The con-

sequence for the computational mode (A2) is that, for the

case a 5 1 compared to the cases a 6¼ 1, the suppression is

much less uniform as vDt increases from 0 to 1.

Figure 5 shows an enlarged view of how, as vDt / 0,

the magnitudes of the numerical amplification factors

for the physical mode approach the magnitude of the

exact amplification factor. The limiting value, unity,

appears to be approached much more rapidly for the

case a 5 ½ than for the cases a 5 0 and a 5 1, sug-

gesting a higher numerical accuracy. To confirm this

FIG. 3. Trajectories through the complex plane traced out by various amplification factors for the

oscillation equation, (6), as vDt increases from 0 to 1. The plots compare (a) the exact amplification

factor, given by (13), with (b)–(d) the numerical amplification factors for the modified filtered leapfrog

scheme, given by (12). The filter parameters are (b) a 5 0 and n 5 0.2, (c) a 5 1/2 and n 5 0.2, and (d) a 5 1 and

n 5 0.2. The case a 5 1, shown in (d), corresponds to the standard Robert–Asselin filter. In (b)–(d), solid

lines denote the physical mode (A1) and dashed lines denote the computational mode (A2). The unit

circle, centered at the origin, is drawn in gray for reference.

FIG. 4. Magnitudes of various amplification factors for the oscillation equation, (6), plotted as functions of vDt. The plots compare the

magnitude of the exact amplification factor, given by (13) to be unity, with the magnitudes of the numerical amplification factors for the

modified filtered leapfrog scheme, given by (12). The filter parameters are (a) a 5 0, (b) a 5 ½, and (c) a 5 1, with various values of n in

each case. The case a 5 1, shown in (c), corresponds to the standard Robert–Asselin filter. Solid lines denote the physical mode (A1) and

dashed lines denote the computational mode (A2).
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suggestion, we Taylor expand the square root in (12) to

obtain, for the physical mode,

A
1
(a, n, vDt) 5 �

‘

n50
c

n
(a, n)(ivDt)n. (14)

The coefficients, cn(a, n), of the terms in the series ex-

pansion are real. The first few are given by

c
0

5 1, (15)

c
1

5 1, (16)

c
2

5
1� n(1� a)

2(1� n/2)
, (17)

c
3

5� n(1� a)[1� n(1� a)]

4(1� n/2)2
, and (18)

c
4

5� 1� 2n(1� a) 1 n3(1� a)3

8(1� n/2)3
. (19)

It follows from (13) and (14) that

A
1

		 		� A
exact

		 		5 A
1

		 		� 1 5
1

2
(1� 2c

2
)(vDt)2

1
1

8
(�1 1 4c

2
� 8c

3
1 8c

4
)(vDt)4

1 � � �:

(20)

For the special case a 5 1, which corresponds to the

standard Robert–Asselin filter, the coefficient of the

quadratic term in (20) is negative, yielding jA1j 2 1

; 2(vDt)2 as vDt / 0, in agreement with the

leading-order behavior shown in Fig. 5. Hence, the am-

plitude error per time step varies as (Dt)2 and the am-

plitude error per unit time varies as Dt. Therefore, the

numerical scheme with a 5 1 is first-order accurate for

amplitude errors and unconditionally stable. Alterna-

tively, for the special case a 5 0, the coefficient of

the quadratic term in (20) is positive, yielding jA1j 2 1

; 1(vDt)2 as vDt / 0, also in agreement with the

leading-order behavior shown in Fig. 5. Therefore, the

numerical scheme with a 5 0 is first-order accurate for

amplitude errors and unconditionally unstable.

In contrast, for the special case a 5 ½, the coefficient

of the quadratic term in (20) vanishes and the coeffi-

cient of the quartic term is positive, yielding jA1j 2 1

; 1(vDt)4 as vDt / 0, in agreement with the

leading-order behavior shown in Fig. 5. Hence, the am-

plitude error per time step varies as (Dt)4 and the am-

plitude error per unit time varies as (Dt)3. Therefore, the

numerical scheme with a 5 ½ is third-order accurate for

amplitude errors and unconditionally unstable. In sum-

mary, the filter that conserves the three-time-level mean

gives a numerical scheme that is two orders more accurate

for amplitude errors than the standard Robert–Asselin

filter. The increased accuracy may be exploited, by using it

either to decrease the error for a given time step, or to

increase the time step without increasing the error.

The unconditional instability of the case a 5 ½ may

be avoided by instead choosing a U ½, which almost

conserves the three-time-level mean. The resulting filter

is effectively a weighted blend of the third-order filter

with a 5 ½ and the first-order filter with a 5 1, the

weighting of the latter being comparatively tiny. For this

case, the coefficient of the quadratic term in (20) is

negative, but very small, and the coefficient of the

quartic term is positive. The negative quadratic term

dominates for small vDt and the positive quartic term

dominates for larger vDt, in agreement with the be-

havior shown in Fig. 5 for the case a 5 0.53. Therefore,

the numerical scheme with a U ½ is conditionally stable.

The finite stable range, for which jA1j # 1, may be es-

timated from (20) by approximating the quartic term (but

not the quadratic term) by its value when a 5 ½, to give

0 # vDt #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 a� 1

2


 �
1� n

2


 �s
, (21)

or, for n � 1,

0 # vDt #

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 a� 1

2


 �s
. (22)

FIG. 5. Magnitudes of various amplification factors for the os-

cillation equation, (6), plotted as functions of vDt. The curves show

how, as vDt / 0, the magnitudes of the numerical amplification

factors for the physical mode of the modified filtered leapfrog

scheme, given by (12), approach the magnitude of the exact

amplification factor, given by (13) to be unity. The filter parame-

ters are a 5 0, a 5 ½, a 5 0.53, and a 5 1, with n 5 0.2 in each case.

The case a 5 1 corresponds to the standard Robert–Asselin filter.
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These approximate formulas for the finite stable range

work well. For example, for the case a 5 0.53 and n 5 0.2,

(21) gives 0 # vDt # 0.46, which is in good agreement

with Fig. 5.

The numerical scheme with a U ½ is strictly only

first-order accurate for amplitude errors. However, it is

clear from Fig. 5 that the error for the case a 5 0.53 is

much smaller than the error of the first-order scheme

with a 5 1. Indeed, the error for the case a 2 ½� 1 is

comparable in magnitude to the error of the third-order

scheme with a 5 ½ across much of the finite stable

range. Therefore, for practical purposes, the numerical

scheme with a U ½ is as good as third-order accurate for

amplitude errors.

Turning finally to consider phase errors, it follows

from (13) and (14) that

arg(A
1

)� arg(A
exact

) 5 arg(A
1

)� vDt

5 c
2
� c

3
� 1

3


 �
(vDt)3

1 � � �:

(23)

For all cases of a and n in the practical range, the co-

efficient of the cubic term in (23) is positive, yielding

arg(A1) 2 vDt ; 1(vDt)3 as vDt / 0. Hence, the phase

error per time step varies as (Dt)3 and the phase error

per unit time varies as (Dt)2. Therefore, all numerical

schemes in the modified family are second-order accu-

rate for phase errors.

Table 1 summarizes the conservation, stability, and

accuracy properties of the modified filter, when used in

conjunction with the leapfrog scheme, for various values

of a.

4. Summary and discussion

In the decades that have elapsed since the first general

circulation models were developed, there have been

major advances in the Earth observation systems from

which initial conditions are derived, and in techniques

for parameterizing unresolved physical processes. These

advances have helped to improve the fidelity of weather

and climate simulations. However, many general circu-

lation models still use the same Robert–Asselin-filtered

leapfrog time-stepping scheme as when they were first

developed, despite evidence that time stepping appears to

be an important contributor to model error.

This paper proposes a simple modification to the

Robert–Asselin filter. The modified filter displaces the

state at the future time slice as well as the current time

slice. The modification yields a generalized family of

filters, with a parameter controlling the relative sizes of

the two displacements. The standard Robert–Asselin

filter is a special case.

The behavior of the family of modified filters, when

used in conjunction with the leapfrog scheme, is ana-

lyzed. The standard Robert–Asselin filter is shown to

behave qualitatively differently from all other filters in

the family. Each filter reduces the magnitude of the

curvature at the three time slices operated upon, sup-

pressing the computational mode. For the physical

mode, each filter yields second-order accuracy for phase

errors. But only the filter that conserves the three-time-

level mean yields third-order accuracy for amplitude

errors, whereas all other filters in the family (including

the standard Robert–Asselin filter) yield only first-order

accuracy. The filter that conserves the three-time-level

mean yields an unconditionally unstable scheme, but

conditional stability is recovered by adding a tiny amount

of the standard Robert–Asselin filter, to yield a scheme

that is as good as third-order accurate.

The modified filter proposed in this paper could im-

prove weather and climate models. For example, it may

permit the use of longer time steps with no loss of ac-

curacy, reducing the computational expense of a given

simulation. Alternatively, if the time step cannot be

lengthened because it is constrained more strongly by

other conditions (e.g., the CFL criterion) than by ac-

curacy requirements, then the modified filter may per-

mit an increase in accuracy at almost no additional

computational expense. The modified filter would be

extremely easy to implement in an existing computer

model: the Robert–Asselin-filtered leapfrog routine

could be upgraded by changing only a few lines of code.

There may be a slight increase in the computational

expense—the standard scheme is a two-stage method

and the modified scheme is a three-stage method—but

no extra function evaluations are required.

There are alternative methods for controlling the

computational mode of the leapfrog scheme, which do

not involve the application of a time filter. Kurihara

(1965) proposed the leapfrog–trapezoidal method, which

consists of obtaining a provisional value by applying a

TABLE 1. Summary of the conservation, stability, and accuracy

properties of the modified filter proposed in this paper, when used

in conjunction with the leapfrog scheme. The case a 5 1 corre-

sponds to the standard Robert–Asselin filter.

a

Conserves

three-time-level

mean? Stability

Order of accuracy

Amplitude Phase

0 No Unconditionally

unstable

1 2

½ Yes Unconditionally

unstable

3 2

U½ Almost Conditionally stable ’3 2

1 No Unconditionally

stable

1 2
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leapfrog predictor and then improving it by recursively

applying a corrector. Being a predictor–corrector

method, however, this scheme is iterative and poten-

tially computationally demanding. Magazenkov (1980)

proposed the alternate application, from one time step

to the next, of a leapfrog step and a second-order

Adams–Bashforth step. The need to execute a different

algorithm at even- and odd-numbered time steps is

cumbersome, however. In contrast, the modified filtered

leapfrog scheme proposed in this paper is noniterative

and nonalternating, yet still suppresses the computa-

tional mode and achieves third-order numerical accur-

acy for amplitude errors.

Déqué and Cariolle (1986) have shown that, despite

the demonstrated ability of the standard Robert–Asselin

filter to stabilize numerical solutions to atmospheric

motion equations for certain combinations of temporal

differencing and physical processes, in some other cases

even a very weak filter may lead to an instability that

can only be suppressed by a severe reduction of the time

step. It remains to be seen whether the modified filter

proposed in this paper also exhibits this unexpected

behavior. Finally, it is possible that the modified filter

could also improve the Robert–Asselin-filtered Adams–

Bashforth schemes (e.g., Tandon 1987), but the explo-

ration of this possibility is left for future work.
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