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Abstract

Turbulence is one of the major weather hazards to aviation. Studies have

shown that clear-air turbulence may well occur more frequently with future

climate change. Currently the two World Area Forecast Centres use determin-

istic models to generate forecasts of turbulence. It has been shown that the use

of multi-model ensembles can lead to more skilful turbulence forecasts. It has

also been shown that the combination of turbulence diagnostics can also pro-

duce more skilful forecasts using deterministic models. This study puts the two

approaches together to expand the range of diagnostics to include predictors of

both convective and mountain wave turbulence, in addition to clear-air turbu-

lence, using two ensemble model systems. Results from a 12 month global trial

from September 2016 to August 2017 show the increased skill and economic

value of including a wider range of diagnostics in a multi-diagnostic multi-

model ensemble.
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1 | INTRODUCTION

Turbulence is a major hazard for the aviation industry,
causing damage to aircraft and injury to passengers and
flight crew. This can cost millions of dollars each year in
compensation claims, lost working days for flight crew as
well as aircraft maintenance time (Sharman and Lane,
2016; Gultepe et al., 2019). The main type of turbulence
that causes these injuries is clear-air turbulence (CAT).
This is defined as high-altitude aircraft bumpiness in
regions devoid of significant cloudiness and away from
thunderstorm activity (Chambers, 1955). Because there is
a lack of clouds, pilots are unable to foresee the

turbulence, and without warning or preventative action
taking place (such as putting the seatbelt sign on) objects
including passengers can be tossed around the cabin.
Recent research has also suggested that the frequency of
CAT will increase in the future with climate change
(Williams and Joshi, 2013; Storer et al., 2017; Williams,
2017; Lee et al., 2019), making the need for improved avia-
tion turbulence forecasting even more important. There
are three main sources of turbulence that impact aviation.
The first is shear turbulence (Endlich, 1964; Atlas et al.,
1970) which is predominantly found around the fast
flowing winds of the jet stream. The second is mountain
wave turbulence (MWT) (Lilly, 1978) where gravity waves
are produced which can ultimately lead to CAT (Storer
et al., 2019). The third is convectively induced turbulence
(CIT) (Uccellini and Koch, 1987; Koch and Dorian, 1988)
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where deep convection can initiate gravity waves, much
like MWT, which can ultimately lead to CAT as well as in-
cloud turbulence within the convective cloud. Pilots can
visually see areas that may be at risk of turbulence within
convective cloud from the use of on-board radar where the
radar echoes give a measure of the intensity of precipita-
tion. Although the radar reflectivity may be low for some
convective cloud systems, the echo intensity does provide
some indication of possible turbulence.

Currently the two World Area Forecast Centres
(WAFCs) provide global gridded forecasts for aviation haz-
ards including turbulence. These forecasts are derived from
the output of deterministic models at a resolution of 1.25�

with seven vertical levels (ICAO, 2016). However, previous
studies have shown the improved performance in turbu-
lence forecasting of probabilistic forecasts derived from
ensemble models (Gill and Buchanan, 2014; Storer et al.,
2018a).

In Storer et al. (2018a) the idea of using a multi-model
ensemble for aviation turbulence forecasting was intro-
duced using only the Ellrod and Knapp (1992) Turbu-
lence Index 1 (Ellrod TI1). Ellrod TI1 can only forecast
shear turbulence and not MWT or CIT and therefore not
all the turbulence events are forecasted. To address this
issue, here multiple turbulence diagnostics and multiple
ensemble forecasts are combined to create a multi-
diagnostic multi-model ensemble. Storer et al. (2018a)
showed that a single-diagnostic multi-model ensemble
was able to increase forecast skill and relative economic
value, although not at a statistically significant level.
However, they also concluded that, by combining the two
ensembles, a single authoritative forecast is created with
an increased operational resilience.

Combining multiple turbulence diagnostics for an avia-
tion turbulence forecast is not a new idea, because the
Graphical Turbulence Guidance (GTG) system has been
shown to improve forecast skill (Sharman et al., 2006). In
this study the newest generation Graphical Turbulence
Guidance system 3 (GTG3) is used (Sharman and Pearson,
2017), not only forecasting shear turbulence but also includ-
ing MWT (Sharman and Pearson, 2017). Studies combining
two deterministic models (the National Oceanic and Atmo-
spheric Administration Global Forecast System and the Met
Office Unified Model) producing GTG diagnostics have
been carried out to produce non-convective turbulence fore-
casts (Kim et al., 2018). They created probabilistic forecasts
by using probability density functions for each diagnostic
rather than using the probabilities from an ensemble
numerical weather prediction model.

This study, however, aims to bring together two dif-
ferent methods of turbulence forecasting (multi-
diagnostic and multi-model ensemble) to see if there is
any more skill that can be achieved that could be applied

in the future to upgrade the current WAFC forecasts. To
do this the Met Office Global and Regional Ensemble
Prediction System (MOGREPS-G) and the European Cen-
tre for Medium-Range Weather Forecasts (ECMWF)
Ensemble Prediction System (EPS) are combined. Three
shear turbulence diagnostics are included which are the
Ellrod TI1, the Brown Index (Brown, 1973) and the Rich-
ardson number (Ri). A MWT diagnostic is also included,
which is the MWT12 from Sharman and Pearson (2017).
A convectively induced turbulence predictor, which is
the convective precipitation accumulation that was used
by Gill and Buchanan (2014), is also included.

The method used in this study is the same as that of
Storer et al. (2018a) which will be introduced in Section 2.
In Section 3 the results including a single-diagnostic multi-
model ensemble (Section 3.1), a multi-diagnostic multi-
model ensemble (Section 3.2) and a reduced size multi-
diagnostic multi-model ensemble (Section 3.3) are intro-
duced. Section 4 presents conclusions and further work.

2 | METHODOLOGY

The method used for this multi-diagnostic multi-model
ensemble is the same as that of Storer et al. (2018a). This
trial uses a full year of ensemble forecast data between
September 2016 and August 2017 from MOGREPS-G
and EPS.

2.1 | Observations

The severity of turbulence experienced on board an air-
craft is dependent on the type of aircraft. Therefore, it is
important to use an aircraft-independent measure of tur-
bulence as a smaller aircraft will experience more severe
turbulence than a larger aircraft in the same volume of
turbulent air. High-resolution automated aircraft data
from the flight recorders on a fleet of Boeing 747 and
777 aircraft are used as the verification truth in the same
way as for earlier verification studies (Gill, 2014; Storer
et al., 2018a). These observations are available at 4 s
intervals and include, among others, the normal accelera-
tion, airspeed and total aircraft mass at the time of obser-
vation. These data are used to calculate an aircraft-
independent turbulence measure known as the derived
equivalent vertical gust (DEVG), defined as:

DEVG=
Am jΔn j

V
ð1Þ

where Δn is the peak modulus value of deviation of air-
craft acceleration from 1g in units of g, m is the total
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mass of the aircraft (metric tonnes), V is the calibrated
airspeed at the time of the observation (knots) and A is
an aircraft-specific parameter which varies with flight
conditions and is defined as:

A= �A+ c4 �A−c5ð Þ m
�m−1

� �
ð2Þ

�A= c1 +
c2

c3 +H
ð3Þ

where H is the altitude (thousands of feet), �m is the refer-
ence mass of the aircraft (metric tonnes) and the aircraft-
dependent parameters c1 to c5 depend on the aircraft's
flight profile as outlined in Truscott (2000). The value of
4.5 m�s−1 for DEVG is taken as the threshold for moder-
ate or greater turbulence. The distribution of aircraft data
is weighted towards the Northern Hemisphere and in
particular the North Atlantic, Europe and North Amer-
ica; however, there is regular coverage for parts of Africa,
South America, Asia and Australia as illustrated in
Figure 1, showing a sample plot of aircraft data for
May 2017.

2.2 | Turbulence predictors

The non-convective turbulence diagnostics used in this
trial are taken from GTG3: the Ellrod TI1, the Brown index
(Brown, 1973), a MWT predictor (MWT12 from Sharman
and Pearson, 2017) and the Richardson number (Ri) are
used. The convective precipitation accumulation, used as a
CIT predictor, is formed from combining the convective
snow and convective rain accumulations which are taken
directly from numerical weather prediction models.

The Ellrod TI1 turbulence diagnostic is defined as the
product of the deformation (DEF) and vertical wind
shear (VWS):

TI1=DEF×VWS=
∂u
∂x

−
∂v
∂y

2

+
∂v
∂x

+
∂u
∂y

2� �1
2

×
∂u
∂z

2

+
∂v
∂z

2� �1
2

ð4Þ

where u is the horizontal wind velocity in the east–west
direction, v is the horizontal wind velocity in the north–

FIGURE 1 Map showing an example of the distribution of verifying aircraft observations for May 2017
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south direction, x is distance in the east–west direction, y
is distance in the north–south direction and z is distance
in the vertical.

The Brown index was used as one of the turbulence
predictors in Gill (2014) and is useful because it includes
absolute vorticity, shearing and stretching deformation; it
is defined as:

Brown= 0:3
∂v
∂x

−
∂u
∂y

+ f

� �2

+
∂v
∂x

+
∂u
∂y

� �2

+
∂u
∂x

−
∂v
∂y

� �2
( )1

2

ð5Þ

where u, v, x and y are as defined in Equation (4) and f is
the coriolis frequency.

The MWT predictor used in this project is MWT12
from Sharman and Pearson (2017) and is the one that
performed best in their trial over the United States; it is
defined as:

MWT= ds × TEMPGj j ð6Þ

where ds is a near surface diagnostic (low-level wind
speed perpendicular to the ridgeline) and TEMPG is the
horizontal temperature gradient.

The Richardson number is defined as:

Ri =
N2

∂U=∂zð Þ2 =
g=θð Þ ∂θ=∂zð Þ
∂U=∂zð Þ2 ð7Þ

where N2is the Brunt–Väisälä frequency squared, U is
horizontal wind speed, z is altitude, g is gravitational
acceleration and θ is potential temperature.

Convective precipitation is used as a proxy for
convectively induced turbulence following on from ear-
lier studies (Gill and Stirling, 2013). The convective diag-
nostic from the model is on a higher resolution grid, so
an interpolation routine from the Met Office Iris library
(Iris, 2015) is used to regrid the diagnostic linearly so that

it has the same horizontal resolution as the other turbu-
lence diagnostics.

2.3 | Probabilistic forecasts

At the time of this trial, MOGREPS-G had 12 members
and 70 levels with a horizontal resolution of 33 km and
EPS had 51 members (referred to in this paper as
EPS51) and 91 levels with a horizontal resolution of
20 km. The forecasts used in this project are output to a
horizontal resolution of 1� and 26 vertical levels
(although only six are useful for aviation at cruise
levels), rather than their native grid (which was used in
Storer et al., 2018a). Forecasts output from 0000 UTC
for T + 24, T + 27, T + 30, T + 33 hr are used. It is
important to keep this in mind when analysing the
results as the focus will only be on half the day from
2230 UTC to 1030 UTC, and this may not give a com-
plete picture of performance.

To create a probabilistic turbulence forecast,
thresholds are set for each of the turbulence diagnos-
tics and any time an ensemble member exceeds that
threshold it is classed as a turbulence forecast. The
proportion of ensemble members gives an estimate of
the probability of exceeding each turbulence threshold.
The thresholds are chosen to divide the distribution of
forecast values approximately equally. The thresholds
used for each diagnostic and ensemble are shown in
Table 1 and they are the same for MOGREPS-G and
EPS. The convective precipitation accumulation thresh-
old is numerically different, but this is because the
thresholds needed are much higher for MOGREPS-G
than for EPS because the units are different.
MOGREPS-G has units of kg�m−2 whereas EPS has
units of metres. The two units are related, however,
because 1 kg�m−2 is equivalent to 1 mm of precipita-
tion (which is the same as 0.001 m). This therefore
means that the thresholds are actually the same but
the units are different.

TABLE 1 The five turbulence thresholds used for each of the turbulence diagnostics in this study

Diagnostic Units Ensemble Thr1 Thr2 Thr3 Thr4 Thr5

Ellrod T1 × 10−7 s−2 MOGREPS-G and EPS 3 5 8 11 20

Brown × 10−5 s−1 MOGREPS-G and EPS 12 15 20 25 30

MWT × 10−1 k�s−1 MOGREPS-G and EPS 1 5 10 15 20

Richardson × 10−2 MOGREPS-G and EPS 5 10 20 50 100

Convection × 10−2 ×103 kg�m−2 MOGREPS-G 1 5 10 15 20

m EPS

Ellrod T1, Ellrod and Knapp (1992) Turbulence Index 1; EPS, European Centre for Medium-Range Weather Forecasts Ensemble Prediction System;

MOGREPS-G, Met Office Global and Regional Ensemble Prediction System; MWT, mountain wave turbulence; Thr, threshold.

4 of 15 STORER ET AL.



2.4 | Verification

The verification method is also the same as Storer et al.
(2018a). For each flight, the maximum observation within
each 10 min flight segment is calculated. This is compared
to the corresponding forecast by using bilinear interpola-
tion on the forecast grid to the location of the aircraft at
the point of the maximum observed value within the flight
segment. The model with closest validity time to the obser-
vation was used. This method gives a time window of
±1.5 hr around each model validity time, allowing all
observations to be used. For each probability threshold a
contingency table is created by applying the threshold on
the observation for moderate or greater turbulence.

From these results a relative operating characteristic
(ROC) curve can be plotted which shows forecast skill by
plotting the hit rate against the probability of false detec-
tion (Jolliffe and Stephenson, 2012; Gill, 2016), which are
defined as:

hit rate Hð Þ= A
A+C

ð8Þ

probability of false detection POFDð Þ= B
B+D

ð9Þ

where A is a hit, B is a false alarm, C is a miss and D is a
correct rejection. The more skilful the forecast, the higher
the area under the curve (AUC) will be (over a baseline
value of 0.5 representing zero skill), and this shows a
forecast that has found a good balance between forecast-
ing as many hits as possible while minimizing the num-
ber of false alarms.

The forecast skill shown by a ROC plot is not the only
way to show how useful a forecast is. The relative eco-
nomic value (Richardson, 2000; Jolliffe and Stephenson,
2012) shows how valuable the forecast is for a given cost/
loss ratio which will be user specific. If the forecast is
more valuable for all cost/loss ratios, known as suffi-
ciency (Ehrendorfer and Murphy, 1988), any user will
benefit from this model.

Forecast reliability is also a way of understanding how
well a forecast model performs (Jolliffe and Stephenson,
2012; Gill, 2016). By plotting the forecasted probability and
the actual observed frequency, it can indicate if the turbu-
lence events are being over- or under-forecasted.

2.5 | Combining diagnostics

The probabilistic forecast for each of the turbulence diag-
nostics is created first, before combining them. To do this
the same method as shown in Storer et al. (2018a) is

followed by creating a single-diagnostic single-model predic-
tor but this time for each of the five turbulence diagnostics.

The multi-diagnostic multi-model ensemble predictor
can be created in two ways, first by combining the proba-
bilistic forecasts from all diagnostics at each threshold
and from both ensemble models equally to create a sim-
ple super ensemble.

The second method is to combine the probabilistic
forecasts by optimizing the weighting for each diagnostic
and threshold and from each model used. The optimiza-
tion works by first prescribing a set of initial weightings
for each diagnostic and each threshold, and then running
an iterative scheme to change the weightings in 0.1 incre-
ments to optimize the weightings by maximizing the
AUC. If the greatest AUC from this process exceeds
the current AUC then the predictor becomes part of the
weighted sum and the process moves on to the next pre-
dictor. The process repeats until the AUC can no longer
be increased, and in some cases this may result in some
diagnostics having zero weight for some thresholds but
not others. The resulting set of weights is then used to
create an optimized predictor. This optimization method
was also used by Gill and Buchanan (2014). It is impor-
tant to note that this is a trial and error method (for the
initial weightings) and therefore the AUC obtained will
not be the best the models can achieve.

FIGURE 2 Receiver operating characteristic plot of global

turbulence forecasts for threshold 1 (3 × 10−7 s−2) of the Ellrod and

Knapp (1992) Turbulence Index 1 diagnostic for the Met Office

Global and Regional Ensemble Prediction System (MOGREPS-G)

and the European Centre for Medium-Range Weather Forecasts

Ensemble Prediction System (EPS51). The data used have a forecast

lead time between T + 24 and T + 33 hr between September 2016

and August 2017
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3 | RESULTS

3.1 | Single-diagnostic ensembles

Figure 2 is an example ROC plot of the Ellrod TI1 turbu-
lence diagnostic for EPS51 and MOGREPS-G using the
first and therefore lowest turbulence threshold. The
MOGREPS-G curve is slightly below the EPS51 curve,
particularly at the higher values of the POFD. This will

lead to a slightly higher AUC for EPS51 than MOGREPS-
G for the single-diagnostic single-model predictor.

The MOGREPS-G, EPS51 and combined equal
weighted single-diagnostic multi-model ensemble AUC is
shown in Table 2 for each of the turbulence diagnostics
and all five thresholds. EPS51 has a higher AUC for most
of the diagnostics and thresholds. It is interesting that the
two highest thresholds for MWT have no skill, as the
threshold is too high to capture any turbulence events.

TABLE 2 The area under the curve for five thresholds for each of the five turbulence diagnostics for EPS51, MOGREPS-G, the

combined multi-model ensemble 95% lower confidence interval, the combined multi-model ensemble and the combined multi-model

ensemble 95% upper confidence interval

Thr1 Thr2 Thr3 Thr4 Thr5

Ellrod TI1

EPS51 0.7197 0.7032 0.6486 0.5978 0.5162

MOGREPS-G 0.7111 0.6905 0.6272 0.5854 0.5162

Multi-model 95% lower CI 0.7013 0.6973 0.6378 0.5923 0.5126

Multi-model 0.7244 0.7197 0.6601 0.6104 0.5210

Multi-model 95% upper CI 0.7477 0.7425 0.6837 0.6298 0.5306

Brown index

EPS51 0.6189 0.5781 0.5311 0.5170 0.5035

MOGREPS-G 0.5912 0.5595 0.5276 0.5125 0.5056

Multi-model 95% lower CI 0.6026 0.5643 0.5199 0.5103 0.5013

Multi-model 0.6244 0.5858 0.5328 0.5186 0.5054

Multi-model 95% upper CI 0.6476 0.6065 0.5454 0.5280 0.5105

MWT

EPS51 0.5293 0.5038 0.5000 0.5000 0.5000

MOGREPS-G 0.5298 0.5055 0.5020 0.5000 0.5000

Multi-model 95% lower CI 0.5182 0.5015 0.4999 0.5000 0.5000

Multi-model 0.5302 0.5064 0.5019 0.5000 0.5000

Multi-model 95% upper CI 0.5438 0.5121 0.5051 0.5000 0.5000

Richardson number

EPS51 0.7694 0.7703 0.6833 0.5210 0.5040

MOGREPS-G 0.7694 0.7703 0.6730 0.5231 0.5040

Multi-model 95% lower CI 0.7596 0.7650 0.6813 0.5219 0.5009

Multi-model 0.7773 0.7864 0.7036 0.5326 0.5040

Multi-model 95% upper CI 0.7951 0.8060 0.7255 0.5445 0.5086

Convective precipitation accumulation

EPS51 0.7142 0.7216 0.6994 0.6812 0.6480

MOGREPS-G 0.7126 0.7059 0.6855 0.6720 0.6611

Multi-model 95% lower CI 0.6968 0.6987 0.6833 0.6686 0.6534

Multi-model 0.7195 0.7222 0.7076 0.6924 0.6767

Multi-model 95% upper CI 0.7439 0.7461 0.7303 0.7154 0.6997

CI, confidence interval; Ellrod T1, Ellrod and Knapp (1992) Turbulence Index 1; EPS, European Centre for Medium-Range Weather Forecasts Ensemble
Prediction System; MOGREPS-G, Met Office Global and Regional Ensemble Prediction System; MWT, mountain wave turbulence; Thr, threshold.
The data used have a forecast lead time between T + 24 and T + 33 hr between September 2016 and August 2017.
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This is not a surprise because the MWT predictor will
only be forecasting events over and around mountains.
The number of observations in these areas and therefore
the number of events that could be forecasted are much
lower than the other turbulence diagnostics that forecast,
for example, around the jet stream. The multi-model
ensemble is slightly more skilful than either EPS51 or
MOGREPS-G for each predictor. This follows on from
Storer et al. (2018a) and shows that having a multi-model
ensemble is more skilful than a single-model ensemble.
However, as in Storer et al. (2018a), statistical signifi-
cance with the 95% confidence interval cannot be shown.
Both the upper and lower confidence interval bounds for
the multi-model ensemble are shown in Table 2 and
there are only six occasions where the multi-model
ensemble is significantly more skilful than MOGREPS-G,
only one occasion for EPS51 and there are no occasions
when it is significantly higher than both.

To illustrate this, the two thresholds with the highest
AUC for each of the diagnostics (which is thresholds
1 and 2 for all diagnostics) are plotted in Figure 3, com-
paring MOGREPS-G, EPS51 and the combined multi-
model ensemble. The 95% confidence intervals for the
multi-model ensemble are also included. It is seen that
for the most part EPS51 is more skilful than MOGREPS-
G and there are only three occasions where the multi-
model ensemble is significantly more skilful than either
of the single-model ensembles. Figure 3 also shows how
well each of the different diagnostics performs, with the
Richardson number producing the highest AUC and
Ellrod TI1 and convective precipitation accumulation just
behind. The Brown index and MWT perform worse with
much lower AUC; however, including them may still
have some benefit in a multi-diagnostic ensemble as they
may be forecasting more extreme events that the other

predictors could be missing. This is especially true of the
MWT predictor as none of the other predictors is
targeting MWT and therefore, without it, these events
will be missed.

3.2 | Multi-diagnostic ensembles

In this study both the equally weighted and optimized
multi-diagnostic predictor for MOGREPS-G, EPS51 and
a multi-diagnostic multi-model ensemble are created
(Figure 4). The weightings used in the multi-diagnostic
multi-model ensemble are shown in Table 3. Some of
the diagnostics have more weight (e.g. Richardson
number and convective precipitation accumulation)
and for some diagnostics one model has no weight
(e.g. EPS51 for the Brown index). The ROC plot for the
optimized multi-diagnostic predictors is shown in
Figure 5 and the areas under the ROC curves, together
with confidence intervals, are given in Table 4 and
Figure 6. The first thing to note from the ROC plot in
Figure 5 is that it has a much higher AUC than the
single-diagnostic predictors shown in Figure 2. This
shows that using multiple thresholds and diagnostics
can increase the forecast skill. It is also interesting that
MOGREPS-G performs better than EPS51 and at very
low values of the POFD MOGREPS-G is slightly more
skilful than the multi-model ensemble. This is a very
interesting result and one that was not expected. In
Section 3.1 it was found that EPS51 has a consistently
higher AUC for almost every diagnostic, yet when com-
bining diagnostics it is seen that the MOGREPS-G is
more skilful than EPS51.

For a single-diagnostic ensemble to be skilful, the
forecast spread needs to be large enough to capture as

FIGURE 3 Plot showing the area under

the curve for thresholds 1 and 2 for five

turbulence diagnostics from the Met Office

Global and Regional Ensemble Prediction

System (MOGREPS-G) (triangles), the European

Centre for Medium-Range Weather Forecasts

Ensemble Prediction System (EPS51)

(diamonds) and the combined multi-model

ensemble (circles). The combined single-

diagnostic multi-model ensemble has error bars

showing the 95% confidence interval. The data

used have a forecast lead time between T + 24

and T + 33 hr between September 2016 and

August 2017
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many turbulence events as possible (hits) but also to
avoid too many false alarms. EPS51 achieves this more
successfully than MOGREPS-G, which is why it has a
higher AUC for almost all the diagnostics (Figure 3).
However, if each of the diagnostics forecasts a turbulence
event slightly differently, when combining ensembles the
area of forecasted turbulence will be increased. This can
lead to more hits but there could also be more false
alarms. The larger the ensemble spread of the individual
diagnostics, the greater the ensemble spread of the multi-
diagnostic ensemble. It appears in this case that,
although the spread for EPS51 works well for the

individual diagnostics, when combining them the num-
ber of false alarms starts to outweigh the number of hits
and the resultant forecast skill is reduced. MOGREPS-G,
however, has less forecast spread for the individual diag-
nostics but then, when combining them, the forecast
spread increases just the right amount and the forecast
skill is then higher than EPS51.

Table 4 shows the AUC for the combined equal and
combined optimized single-model and multi-model
ensembles. The multi-model ensemble also has the 95%
upper and lower confidence intervals and again it is not
significantly better than either of the two single-model

FIGURE 4 Example of calibrated probabilistic multi-model ensemble multi-predictor T + 24 forecast for the probability of moderate or

greater turbulence for December 22, 2016 at 00Z

TABLE 3 The weightings used

with MOGREPS-G and EPS51 to create

the optimized multi-diagnostic multi-

model ensemble

Diagnostic Ensemble Thr1 Thr2 Thr3 Thr4 Thr5

Ellrod T1 MOGREPS-G 0.1 0.1 0.1 0.4 0.1

EPS51 0.0 0.1 0.1 1.3 0.1

Brown MOGREPS-G 0.0 0.1 0.1 0.0 0.9

EPS51 0.0 0.0 0.0 0.0 0.0

MWT MOGREPS-G 0.1 0.0 0.0 0.0 0.0

EPS51 0.3 0.0 0.0 0.0 0.0

Richardson MOGREPS-G 0.1 0.2 0.2 0.9 0.1

EPS51 0.1 0.1 0.1 0.3 0.1

Convection MOGREPS-G 0.2 0.1 0.1 0.1 0.2

EPS51 0.0 0.1 0.2 0.1 0.1

Ellrod T1, Ellrod and Knapp (1992) Turbulence Index 1; EPS, European Centre for Medium-Range Weather
Forecasts Ensemble Prediction System; MOGREPS-G, Met Office Global and Regional Ensemble Prediction
System; MWT, mountain wave turbulence; Thr, threshold.
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ensembles. Figure 6 shows the results in Table 4 as a bar
chart and it can clearly be seen that, for both the com-
bined equal and combined optimized ensemble,
MOGREPS-G is more skilful. The combined optimized
ensemble is also more skilful than the combined equal
ensemble and shows the benefit of taking time to opti-
mize the thresholds and diagnostics used.

Figure 7 is a value plot of the optimized multi-
diagnostic ensemble for MOGREPS-G, EPS51 and the
multi-model ensemble. It is seen that it is MOGREPS-G
that has more value for all cost/loss ratios than EPS51
which is the opposite of what was found by Storer et al.
(2018a) using a single diagnostic. This follows on from the
ROC plots where MOGREPS-G outperformed EPS51 and
again suggests that, when combining the diagnostics, the
spread from EPS51 is too large and therefore the balance
between hits and false alarms is not quite optimized.
What is also seen is that the combined multi-model
ensemble is not more valuable for all cost/loss ratios. This
suggests that, for some consumers, it might be more bene-
ficial to just have MOGREPS-G and not include EPS51 at
all. The differences in value are small and may not be sig-
nificantly different; however, the multi-model ensemble
would add operational resilience and the multi-model

ensemble is almost as valuable as MOGREPS-G and
would therefore be the better option.

Forecast reliability is shown in Figure 8 and a calibra-
tion constant has been applied to the forecast probability
to improve the reliability by reducing the over-forecasting
without calibration. This constant is 1/50 for MOGREPS-
G, 1/40 for EPS51 and 1/130 for the multi-model ensem-
ble. What is found is that there is a reasonable match
between the forecast probability and observed frequency;
however, the probabilities are limited to low values fol-
lowing calibration. Although the probabilities following
calibration are low, compared to the background fre-
quency of moderate or greater turbulence (0.096%), the
forecasts can still be a useful warning of higher than
average turbulence probabilities. The background fre-
quency of turbulence can be obtained from the verifica-
tion by looking at the number of turbulence events (hits
and misses) as a proportion of the total sample. It could
be possible to apply a more sophisticated nonlinear cali-
bration; however, for this study it has been kept simple
with the linear constant.

3.3 | Reduced size multi-diagnostic
ensemble

As in Storer et al. (2018a), it is important to understand
how the two ensembles compare to each other with the
same ensemble size. The ECMWF ensemble has 51 mem-
bers, consisting of one control member and 50 equally
likely perturbed members. Each consecutive member has
a pairwise anti-symmetric perturbation (Owens and
Hewson, 2018). This can therefore be reduced by

FIGURE 5 Receiver operating characteristic (ROC) plot of

global turbulence forecasts for the multi-diagnostic Met Office

Global and Regional Ensemble Prediction System (MOGREPS-G)

(dashed), the multi-diagnostic European Centre for Medium-Range

Weather Forecasts Ensemble Prediction System (EPS51) (dotted)

and the combined multi-diagnostic multi-model ensemble (solid

line). Five turbulence thresholds for each turbulence diagnostic are

optimally combined to maximize the area under the ROC curve

and use a forecast lead time between T + 24 and T + 33 hr between

September 2016 and August 2017

TABLE 4 Area under the curve for the combined equal

weighting multi-diagnostic ensemble and combined optimized

multi-diagnostic ensemble for EPS51, MOGREPSG, combined multi-

model ensemble 95% lower confidence interval, combined multi-

model ensemble and combined multi-model ensemble 95% upper

confidence interval

Combined
equal

Combined
optimized

EPS51 0.8498 0.8555

MOGREPS-G 0.8564 0.8630

Multi-model 95% lower CI 0.8442 0.8530

Multi-model 0.8590 0.8679

Multi-model 95% upper CI 0.8745 0.8829

CI, confidence interval; EPS, European Centre for Medium-Range Weather
Forecasts Ensemble Prediction System; MOGREPS-G, Met Office Global and

Regional Ensemble Prediction System.
The data used have a forecast lead time between T + 24 and T + 33 hr
between September 2016 and August 2017.
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FIGURE 6 Bar chart showing the area under the curve (AUC) for the multi-diagnostic European Centre for Medium-Range Weather

Forecasts Ensemble Prediction System (EPS51) (light grey), the multi-diagnostic Met Office Global and Regional Ensemble Prediction

System (MOGREPS-G) (mid grey), the multi-diagnostic multi-model ensemble 95% lower confidence interval (dark grey), the combined

multi-diagnostic multi-model ensemble (black) and the combined multi-diagnostic multi-model ensemble 95% upper confidence interval

(diagonal stripes). For the bar chart on the left the five turbulence thresholds for each turbulence diagnostic are combined equally and on

the right the five turbulence thresholds for each turbulence diagnostic are optimally combined to maximize the AUC. The data used have a

forecast lead time between T + 24 and T + 33 hr between September 2016 and August 2017

FIGURE 7 Value plot with a log scale x-axis of the global

turbulence forecasts showing the forecast skill for the multi-

diagnostic Met Office Global and Regional Ensemble Prediction

System (MOGREPS-G), the multi-diagnostic European Centre for

Medium-Range Weather Forecasts Ensemble Prediction System

(EPS51) and the combined multi-diagnostic multi-model ensemble.

Five turbulence thresholds for each turbulence diagnostic are

optimally combined to maximize the area under the receiver

operating characteristic curve and use a forecast lead time between

T + 24 and T + 33 hr between September 2016 and August 2017

FIGURE 8 Reliability diagram for the multi-diagnostic Met

Office Global and Regional Ensemble Prediction System

(MOGREPS-G), the multi-diagnostic European Centre for Medium-

Range Weather Forecasts Ensemble Prediction System (EPS51) and

the combined multi-diagnostic multi-model ensemble. Five

turbulence thresholds for each turbulence diagnostic are optimally

combined to maximize the area under the receiver operating

characteristic curve and use a forecast lead time between T + 24

and T + 33 hr between September 2016 and August 2017
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selecting the first 12 members and producing a bias-free
subsample, referred to from now on as EPS12, to com-
pare directly with the 12-member MOGREPS-G. A simi-
lar approach to investigate ensemble size and ensemble
skill was taken by Buizza and Palmer (1998). The AUC
for the first two thresholds for each turbulence diagnostic

is shown in Figure 9. The circles are the multi-model
ensemble with the 95% confidence intervals displayed;
MOGREPS-G (triangles) and EPS12 (diamonds) are also
shown. As in Figure 3 the multi-model ensemble is more
skilful than both of the single-model ensembles and for
the most part EPS12 is slightly more skilful than

FIGURE 9 Plot showing the area under

the curve (AUC) for thresholds 1 and 2 for five

turbulence diagnostics from the Met Office

Global and Regional Ensemble Prediction

System (MOGREPS-G) (triangles), the European

Centre for Medium-Range Weather Forecasts

Ensemble Prediction System (EPS12)

(diamonds) and the combined multi-model

ensemble (circles). The combined multi-model

ensemble has error bars showing the 95%

confidence interval. The data used have a

forecast lead time between T + 24 and T + 33 hr

between September 2016 and August 2017

FIGURE 10 Bar chart showing the area under the curve (AUC) for the multi-diagnostic European Centre for Medium-Range Weather

Forecasts Ensemble Prediction System (EPS12) (light grey), the multi-diagnostic Met Office Global and Regional Ensemble Prediction

System (MOGREPS-G) (mid grey), the combined multi-diagnostic multi-model ensemble 95% lower confidence interval (dark grey), the

combined multi-diagnostic multi-model ensemble (black) and the combined multi-diagnostic multi-model ensemble 95% upper confidence

interval (diagonal stripes). For the bar chart on the left the five turbulence thresholds for each turbulence diagnostic are combined equally

and on the right the five turbulence thresholds for each turbulence diagnostic are optimally combined to maximize the AUC. The data used

have a forecast lead time between T + 24 and T + 33 hr between September 2016 and August 2017
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MOGREPS-G. It is interesting to note that EPS12 seems
to be slightly less skilful than EPS51, which is what was
found by Storer et al. (2018a) but here it is consistent
across all turbulence diagnostics.

Figure 10 is a bar chart showing the combined multi-
diagnostic predictor for EPS12, MOGREPS-G and the
combined multi-model ensemble with its upper and
lower 95% confidence intervals. The weightings used in
the optimized multi-diagnostic multi-model ensemble are
shown in Table 5. It is found that the multi-model
ensemble with EPS12 is more skilful than the multi-
model ensemble that uses EPS51 (from Figure 6). This
agrees with Section 3.2 that a smaller ensemble spread
for each individual diagnostic will give an overall better
performance when combined in a multi-diagnostic

ensemble. This helps to explain why MOGREPS-G is
more skilful than EPS51.

To investigate this further, Figure 11 is a plot showing
the AUC for EPS12 with its 95% confidence interval dis-
played, EPS51 and MOGREPS-G for the individual diag-
nostics. As expected, EPS51 is more skilful than EPS12
and in some cases is significantly better. MOGREPS-G
has a similar forecast skill to EPS12 and therefore the
reduced number of members results in a lower AUC for
the individual diagnostics. However, Figure 12 shows
that the equal combined multi-diagnostic EPS51 is frac-
tionally more skilful than EPS12, but when optimized the
EPS12 is slightly more skilful. It is also interesting that
MOGREPS-G is more skilful than either the EPS12 or
EPS51 multi-diagnostic ensembles.

TABLE 5 The weightings used

with MOGREPS-G and EPS12 to create

the optimized multi-diagnostic multi-

model ensemble

Diagnostic Ensemble Thr1 Thr2 Thr3 Thr4 Thr5

Ellrod T1 MOGREPS-G 0.1 0.1 0.1 0.8 0.2

EPS12 0.0 0.1 0.1 0.5 0.1

Brown MOGREPS-G 0.0 0.0 0.2 0.0 0.0

EPS12 0.0 0.0 0.0 0.0 0.0

MWT MOGREPS-G 0.1 0.0 0.0 0.0 0.0

EPS12 0.4 0.0 0.0 0.0 0.0

Richardson MOGREPS-G 0.1 0.1 0.1 1.5 0.1

EPS12 0.0 0.1 0.2 0.1 0.1

Convection MOGREPS-G 0.1 0.1 0.1 0.1 0.1

EPS12 0.0 0.1 0.2 0.1 0.1

Ellrod T1, Ellrod and Knapp (1992) Turbulence Index 1; EPS, European Centre for Medium-Range Weather
Forecasts Ensemble Prediction System; MOGREPS-G, Met Office Global and Regional Ensemble Prediction
System; MWT, mountain wave turbulence; Thr, threshold.

FIGURE 11 Plot showing the area under

the curve (AUC) for thresholds 1 and 2 for five

turbulence diagnostics from the Met Office

Global and Regional Ensemble Prediction

System (MOGREPS-G) (triangles), the European

Centre for Medium-Range Weather Forecasts

Ensemble Prediction System (EPS51)

(diamonds) and the EPS12 (circles). EPS12 has

error bars showing the 95% confidence interval.

The data used have a forecast lead time between

T + 24 and T + 33 hr between September 2016

and August 2017
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4 | CONCLUSIONS

This study has expanded on the work by Storer et al.
(2018a) by investigating the forecast skill of a multi-
diagnostic multi-model ensemble for aviation turbu-
lence. As in Storer et al. (2018a), probabilistic forecasts
were created, but this time for five turbulence diagnos-
tics (Ellrod and Knapp (1992) Turbulence Index
1, Brown Index, mountain wave turbulence, Richardson
number and convective precipitation accumulation) and
two ensembles: Met Office Global and Regional Ensem-
ble Prediction System (MOGREPS-G) and European
Centre for Medium-Range Weather Forecasts (ECMWF)
Ensemble Prediction System (EPS). By combining the
predictors, a multi-diagnostic predictor was created.
Then, combining the predictors from the two ensem-
bles, a multi-diagnostic multi-model ensemble was cre-
ated. The trial ran from September 2016 to August 2017
and used the 0000 UTC forecast run and forecasts at
T + 24, T + 27, T + 30 and T + 33 hr. The forecast was
verified against the derived equivalent vertical gust
derived from data from a fleet of Boeing 747 and
777 aircraft.

The results in this study agree with Storer et al.
(2018a) that EPS51 is more skilful than the MOGREPS-G
for the individual diagnostics. The multi-model ensemble
was also more skilful than either of the single-model

ensembles (but not significantly for most examples).
When combining the predictors, the multi-diagnostic pre-
dictor was shown to be more skilful for MOGREPS-G
than EPS51 for both the equal combined and optimized
ensembles. Again, the multi-diagnostic multi-model
ensemble is more skilful than the two single-model
ensembles. The relative economic value plot of the multi-
diagnostic shows that MOGREPS-G has greater value
than EPS51, and in some cases also has greater value
than the multi-model ensemble. All ensembles were
shown to have similar reasonable reliability; however,
above 1.25% forecast probability the ensembles start
under-forecasting the events. To overcome this it could
be possible to apply a nonlinear calibration; however, a
linear calibration was kept in this study as it is suitable
for most of the forecast probabilities.

The results from using a 12-member ECMWF
ensemble (EPS12) show that EPS12 for the individual
diagnostics is less skilful than EPS51 (as in Storer et al.,
2018a). When combined into the optimized multi-
diagnostic ensemble, EPS12 was slightly more skilful.
This therefore indicates that a smaller ensemble spread
for the individual diagnostics within a multi-diagnostic
ensemble is important for optimizing operationally in
the future. Further studies with a larger sample would
be useful to investigate this further. If EPS12 really does
provide a more skilful forecast than EPS51 when used

FIGURE 12 Bar chart showing the area under the curve (AUC) for the multi-diagnostic European Centre for Medium-Range Weather

Forecasts Ensemble Prediction System (EPS51), the multi-diagnostic Met Office Global and Regional Ensemble Prediction System

(MOGREPS-G), the multi-diagnostic EPS12 95% lower confidence interval, the multi-diagnostic EPS12 and the multi-diagnostic EPS12 95%

upper confidence interval. For the bar chart on the left the five turbulence thresholds for each turbulence diagnostic are combined equally

and on the right the five turbulence thresholds for each turbulence diagnostic are optimally combined to maximize the AUC. The data used

have a forecast lead time between T + 24 and T + 33 hr between September 2016 and August 2017
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in this way, it could reduce computation costs for tur-
bulence forecasting. Only 12 members would need to
be calculated, saving memory space and computational
time. It is also worth exploring the impact of ensemble
size on a multi-diagnostic multi-model ensemble further
to see if there is an optimum number of ensemble
members to maximize forecast skill.

MOGREPS-G is now running with 18 members and is
designed to be time lagged to create a larger ensemble;
therefore, investigating how well a 36-member MOGREPS-
G performs against the 12-member MOGREPS-G would
also be worth further study. Not only increasing the
ensemble size but adding a third ensemble would also
be worth investigating. The current operational World
Area Forecast Centre forecasts are produced from a
blend of both UK and US deterministic models and
therefore the natural progression would be to add in the
Global Ensemble Forecast System from the National
Center for Environmental Prediction. This could provide
more skill by adding its own strengths and weaknesses,
but would need verifying before being made
operational.
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