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Abstract. We report on a numerical study of the impact of 1 Introduction
short, fast inertia-gravity waves on the large-scale, slowly-
evolving flow with which they co-exist. A nonlinear quasi- Inertia-gravity waves (IGWSs) are ubiquitous throughout the
geostrophic numerical model of a stratified shear flow is usedstratified parts of the Earth’s atmosphere and ocean. They
to simulate, at reasonably high resolution, the evolution of aare generated by the large-scale flow via three independent
large-scale mode which grows due to baroclinic instability dynamical mechanisms: interactions with topography (e.g.
and equilibrates at finite amplitude. Ageostrophic inertia- Hines, 1988); spontaneous-adjustment radiation emitted as
gravity modes are filtered out of the model by construction,the large-scale flow adjusts (e.g. Ford et al., 2000); and as
but their effects on the balanced flow are incorporated using<elvin-Helmholtz modes which develop due to local shear
a simple stochastic parameterization of the potential vorticityinstabilities (e.g. Roach, 1970). Direct forcing of the atmo-
anomalies which they induce. The model simulates a rotatsphere on the ocean mixed layer, and scattering of large-scale
ing, two-layer annulus laboratory experiment, in which we waves (e.g. the barotropic ocean tide) are two further gen-
recently observed systematic inertia-gravity wave generatioreration mechanisms, which could be considered within the
by an evolving, large-scale flow. aforementioned categories but which are sufficiently impor-
) ) ] _ tant to merit an explicit mention. The characteristic length

We find that the impact of the small-amplitude stochastic 54 time scales of IGWs are typically at least an order of
contribution to t.he potential vorticity tendency, on the m_ode] magnitude smaller than those of the modes of main meteoro-
balanced flow, is generally small, as expected. In certain Ciryqgical and climatological interest. This fact is frequently in-
cumstances, however, the parameterized fast waves can &sked to justify filtering IGWSs from numerical weather pre-
ert a dominant influence. In a flow which is baroclinically- gjction and climate models, under the assumption that inter-
unstable to arange of zonal wavenumbers, and in which therg isns petween motions on widely different scales are negli-
is a close match between the growth rates of the multiplegipe. |tis usual to attempt to account for the missing modes
mode;, the stpchastlc waves can strongly affect wavenumbgf, the filtered model by including a parameterization of their
selection. This is illustrated by a flow in which the param- expected effects. The full governing equations remain non-
eterized fast modes dramatically re-partition the probability-"near, however. This means that a parameterized treatment
density function for equilibrated Iarge—scalt_a zonal Wavenum-of the fast modes cannot be rigorously justified, and leaves
ber. In a second case study, the stochastic perturbations aggen the possibility of a significant nonlinear interaction be-
shown to force spontaneous wavenumber transitions in thg,een the IGW modes and the large-scale flow.
large-scale flow, which do not occur in their absence. These
phenomena are due to a stochastic resonance effect. Th%i
add to th(_e ewd_ence that determ|n|s_t|c parameterizations i esses by a reproducible prescription which depends upon
general circulation models, of subgrid-scale processes suc

. cal resolved scale variables and a number of adjustable pa-
as gravity wave drag, cannot always adequately capture thFameters (Palmer, 2001). For example, a well-known deter-
full details of the nonlinear interaction. ' '

ministic parameterization is that for momentum deposition
due a continuous spectrum of stratospheric gravity waves,
developed by Hines (1997). Recently, it has been shown that
the deterministic Hines parameterization significantly un-
Correspondence td?. D. Williams derestimates the variability of the quasi-biennial oscillation,
(williams@met.rdg.ac.uk) in simulations using the UK Meteorological Office Unified

Most conventional parameterization schemes are deter-
nistic, i.e. they describe the effects of sub-gridscale pro-
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Model (C. Piani and W. Norton, private communication). A reluctance to undergo transitions between flows of differ-
stochastic parameterization, in which an adjustable parameent zonal wavenumber. In contrast, the flow undergoes such
ter is allowed to vary randomly according to some chosentransitions much more readily when IGWs are present, even
probability distribution, gives an increased variability and though typical IGW amplitudes are smaller than the bal-
better agreement with observations. anced mode amplitude by a factor of around ten. The present
It is perhaps not surprising that stochastic representationstudy attempts to obtain independent corroborative evidence
of neglected processes can perform better than deterministito support these laboratory findings, using a filtered numer-
parameterizations, for the following reason. Filtering IGW ical model. In particular, we are interested in determining
motions from a numerical model leads to a correspondingwhether a simple stochastic IGW parameterization is capable
reduction in the number of degrees of freedom of the sys-of reproducing the salient aspects of the laboratory results.
tem. This so-called balance assumption constrains the phase This paper is laid out as follows. In Sect. 2, we give brief
space trajectories to a reduced-dimensional subsurface of thgetails of the numerical model. IGWs are filtered from the
full phase space, known as the slow manifold. Incorporatingmodel equations, and so we employ the model to simulate
a deterministic parameterization of the neglected processethe large-scale modes only. We describe model runs both
does not increase the number of degrees of freedom, bewith and without stochastic forcing. In Sect. 3, we present
cause such parameterizations are closed, i.e. written in termsvo case study integrations which illustrate the impact of
of model variables which already exist. The dynamics of the stochastic forcing on wavenumber selection, and which
the filtered system with and without the parameterization isdemonstrate that the forcing can cause spontaneous transi-
therefore qualitatively similar. However, the random noisetions between different flow states. Finally, in Sect. 4, we
terms associated with a stochastic parameterization introduceiscuss the results, and make a comparison with the corre-
new (non-deterministic) degrees of freedom, since each ransponding laboratory findings. We consider the implications
dom number drawn from any probability-density function for flows in the atmosphere and ocean, as simulated by gen-
can be associated with a new and independent phase spaeeal circulation models, and finish with our conclusions.
co-ordinate, which is no less dynamically active than the co-
ordinates associated with the deterministic degrees of free-
dom. Increasing the number of degrees of freedom this way2z The QUAGMIRE numerical model
suggests that stochastic parameterizations could give a bet-
ter correspondence with the real system, because there isfor the numerical simulations in the present study, we em-
closer match between the dimensionality of the phase spacgyoy a two-layer quasi-geostrophic annulus model known as
which they explore. In other words, the additional degrees of QUAGMIRE (QUAsi-Geostrophic Model for Investigating
freedom introduced by stochastic terms in the filtered equaRotating fluids Experiments). A summary of the main model
tions may be able to compensate, at least partially, for thedetails is given here, and the reader is referred to Williams
degrees of freedom lost by the filtering. (2003) for a full technical description. Corresponding to the
This was essentially the finding of Palmer (2001), who laboratory experiment (Williams et al., 2003), the model an-
filtered the least significant empirical orthogonal function nulus has an inner vertical sidewall of radits=6.25cm,
(EOF) from the Lorenz (1963) equations, and consideredan outer vertical sidewall of radiug =12.5cm, and a total
both deterministic and stochastic parameterizations of thedepth of 24 =25.0cm. The base and lid are both horizontal
dynamical impacts of this neglected EOF. He found that theand flat. The base and sidewalls rotate with angular veloc-
stochastic representation gave the best agreement, in ternity Q about the axis of symmetry, and the lid (in contact with
of the mean state and internal variability, with the attractorthe upper fluid layer) rotates relative to the base and sidewalls
of the original, unfiltered equations. with angular velocityA 2. This differential rotation provides
Until recently, research into the strength of the scale-a velocity shear which generates a large-scale mode due to
separated wave-wave interaction focused on greatly simplibaroclinic instability.
fied numerical and theoretical models (e.g. Lorenz, 1986). The model integrates the quasi-geostrophic poten-
Lovegrove et al. (2000) discovered that IGWs could be gen-ial vorticity equations in cylindrical co-ordinates in
erated by an evolving large-scale flow in a rotating, two-layertwo stably-stratified incompressible layers, which have
annulus laboratory experiment, however. For the first time,equal resting depths o =125cm. As in the lab-
the interaction could be studied in a real fluid, without the oratory experiment, the upper and lower layer densi-
ad hoc approximations of highly-truncated and approximatedies and kinematic viscosities argypper=997 kg m3,
models. plower=1003kgnT3,  vypper=127x10°m?s™?  and
Most recently, we have explored these rotating annulusvigwer=1.08 x 10-®m2s~1. The mutual interfacial tension
laboratory experiments exhibiting the co-existence of large-is 7 =2.85x 10-2Nm~1. The fluids are forced by Ekman
scale and IGW modes. The spatio-temporal locations ofpumping and suction velocities at the lid, base and interface,
IGWs are consistent with generation by the large-scale modand the effects of weak interfacial tension are included. We
according to the spontaneous-adjustment radiation mechdse a regular model grid of 96 points in azimuth and 16
anism (Williams et al., 2003). We find that, when the points in radius. We timestep the potential vorticity tendency
system is devoid of IGWs, the large-scale flow exhibits aequations in physical space, but transform to vertical and
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azimuthal normal mode space once per timestep to obtaimvavenumber 3) is not necessarily that with the largest initial
the streamfunction by inverting the potential vorticity. The growth rate (here of zonal wavenumber 5), in concordance
timestep, chosen to give a Courant number of 0.01, iswith the analytical investigation of Appleby (1988).
typically 0.01s. As in the laboratory experiments, the zonal wavenum-
We use the Arakawa (1966) second order Jacobian fober, phase speed and amplitude of the equilibrated wave
the advection terms; a leap-frog scheme with a Roberidepend upon2 and AQ. Examples of typical equili-
(1966) three-level time filter to suppress computationalbrated wavenumber 1 and 2 flows are shown in Fig. 2.
mode-splitting; Ekman layer diffusion terms time-lagged by Hundreds of model runs have been performed, each
one step for stability; and a second order horizontal potentialvith slightly different combinations of2 and AQ rang-
vorticity hyperdiffusion to suppress gridscale energy build-ing from Q@=1.0rads! to Q=35rads?, and from
up. At the lateral boundaries, we apply impermeability to AQ=0.01rads1to AQ=1.6rads L. Ineach run, the per-
the eddy components, and impose no-slip boundary conditurbations in the initial state are found to either decay (baro-
tions on the axisymmetric component which develops as &linic stability), or to grow to a mode with zonal wavenum-
correction to the mean flow. Multiple test integrations were ber 1, 2 or 3 (baroclinic instability) as illustrated in Figs. 2(a),
performed to demonstrate insensitivity of the model output2(b) and 1(f), respectively. When model experiments with
to the numerical hyperdiffusivity, Robert filter parameter, the same[2, AQ] are repeated many times with differ-
gridspacing and timestep. ent noise fields in the initial states, the same equilibrated
We next describe, in turn, sample model runs both with-wavenumber is usually found. This implies that the equili-
out, and then with, a stochastic forcing term added to thebrated flow is insensitive to the precise details of the initial

governing potential vorticity equations. state. The exception to this insensitivity is at very large rota-
tion rates £ > 3rads! andAQ > 1rads1), where repro-

2.1 Model runs without stochastic forcing ducibility of the post-transient state is not always observed.
This high-rotation regime is not examined in the present

There is an equilibrium solution to the deterministic model
equations, corresponding to solid-body rotation in both lay-
ers, at different rates (e.g. Hart, 1973). We assess the stabilitx1

of this state by using spun-up initial conditions, given by the dimensional space defined g2, AQ] (Williams, 2003).

equilibrium fiow seeded with superimposed small-amplitude.l.his fact indicates that the impact of the IGWSs on the large-
random noise. The noise provides a small perturbation, con-

taini t all eabl b f hi hscale flow is generally small, because the laboratory flow
amning energy at afl resolveable wavenumbers, from Which, ;o ubiquitous IGWs but the model contains none. So,

any unstable quasi-geostrophic mode can grow. .The d.e,veli'n the present case, a filtered model seems capable of ade-
Opme”t of a large-scale wave due o baroclinic I?St"ib'"ty’quately simulating flows in which unresolved motions occur.
during a typical {n(_)del run Wh'c_h hagl =3.50rad s and This is a signal of a negligible interaction. Nevertheless, we
AQ2=0.08rads", is shown in Fig. 1. Values of the Rossby will present examples in Sect. 3 of special cases in which the

number, Ro, 'T“ema' Froude number, Fr, and dissipation pa'parameterized IGWs exert a strong influence on the global
rameter, defined by

udy.
There is reasonable agreement between the laboratory and
odel azimuthal wavenumber regime diagrams in the two-

flow.
AQ
Ro=-o - (D) 2.2 Model runs with stochastic forcing
2 2
Fr= 452(r%—r1) (2) We now include a simple stochastic parameterization of
8'H IGWs in QUAGMIRE, to mimic the effects of the IGWs in
and the laboratory experiments. We do this by adding a random
— noise term to the right side of the prognostic model equations
= Vo2 , ©) for each layer. An implicit assumption is that the precise de-
HAQ tails and structure of the laboratory small-scale waves are ir-
are given in the figure caption. In these equations,relevant, and that they have the same impact on the balanced
8" = 2g (prower — Pupped/ (Plower + pupped =6 cm s 2 is the flow as would random fluctuations.
reduced gravity and V= (vypper+ Viower)/2=1.18 The quasi-geostrophic model QUAGMIRE cannot cap-

x10°8m?s! is the mean kinematic viscosity. There ture the evolution of the IGWSs, which are inherently
is an initial transient period during which short-lived radial ageostrophic. However, we can reasonably expect it to cap-
and zonal modes emerge from the noise. Then, a particulaiure the response of the quasi-geostrophic modes to poten-
single mode grows to dominate the flow and equilibrates tial vorticity anomalies induced by the small-scale modes.
drifting slowly around the annulus at a constant, finite IGWs have zero potential vorticity anomaly only in the lin-
amplitude. Though the model can simulate flows in which ear limit, but we assert that finite amplitude IGWs may carry
the equilibrated amplitude vacillates, i.e. periodically grows a non-zero perturbation potential vorticity (PPV). It is this
and decays with time, such flows are not studied in thequantity which we parameterize in the model equations, as
present work. The final equilibrated mode (here of zonala stochastic perturbation to the PPV tendency fields. Note
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Fig. 1. Plots of perturbations to the equilibrium lower layer depth field, for the €ase3.50rads! and AQ =0.08rad s'1, at which
Ro=0.011, Fr=26 andd = 0.20. The plots are ordered in time (right label), and show the evolution of the model state from random small-
amplitude initial conditions irfa), to an equilibrated large-scale mode with azimuthal wavenumbexf}.ifNote that the colourbar scales

vary between the plots.
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Fig. 3. Zonal profiles of lower layer depth, long after equilibra-

tion in the presence of stochastic forcing of amplitade 1.0 s™2.

The rotation rates ar@ =2.25rads 1 andAQ =0.23rads 1, at
which Ro=0.051, Fr=11 andd =0.057. Profiles are shown at
each of the 16 radii at which there are model gridpoints, ranging
from 62.5 mm (top, blue curve) to 125.0 mm (bottom, green curve).
At the inner and outer sidewall boundaries the lower layer depth
displays no variation with azimuth, because impermeable bound-
ary conditions are imposed there. These are profiles of total lower
layer depth, as opposed to the plots in Figs. 1 and 2, which show
perturbations to the equilibrium solution discussed in Sect. 2.1.
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Eig. 2. Plots of perFL_erat_ions to the equilibrium lower Iayler depth \which we use take the simplest conceivable form, namely
field, long afterggunhbratu_on, forthe casg 2 =2.25rads “and 4 qgitive contributions drawn from a uniform distribution of
aAn% =(8).309rffzs 75 ra; dVZ_"'l'ChaE;: A()gi?é gzral dls_alnddatz (\)N?j(?h constant Width,_with no spatial or temporal _auto-correlations.
Ro=0.022, Fr:' 16 andd — 0.12. ' ' The parameterization could clearly be refined, for example
by allowing the width of the probability density function to
vary with the underlying potential vorticity gradient, or by
) . . including spatio-temporal auto-correlations which satisfy the
that the system state is completely specified by the PPV fieldio ) inertia-gravity wave dispersion relation. It seems
By perturbing the PPV tendency field with noise, therefore, piony ynjikely that such refinements would alter the qualita-
we are effectively perturbing all of the dynamical fields, in- e conclusions which we are able to reach with the simple
cluding the hqrizontal divergence field which the laboratory scheme, however. In support of this assertion, the qualitative
IGWs affect directly. _ _aspects of the quasi-biennial oscillation and annual cycle in a
We choose the simplest possible form for the stochastiGy e with stochastic inertia-gravity wave drag, are insensi-
terms. At each gridpoint and at each timestep, a randoMyy e 14 whether the Hines parameter is drawn from a normal

number is drawn from the uniform distribution on the inter- . oy onential distribution (C. Piani and W. Norton, private
val[—a, a] and added to the PPV tendency. The consiast communication).

a given amplitude with units$. The noise fields are chosen
to be purely baroclinic, i.e. equal and opposite in both layers,
as any increase in the depth of one layer due to an interfaci
small-scale wave is matched by a corresponding reduction i
the depth of the other layer. The discretized noise fields s
defined contain no correlations in either time or horizontal
position.

Apart from some important exceptions, to be discussed

Sect. 3, the impact of the stochastic terms on the equili-
rated large-scale flow is generally small. Across most of
he [©2, AQ] regime diagram, the post-transient wavenum-
er and wave speed are not detectably modified by the new
terms. There is a slight increase in large-scale wave ampli-
tude, as energy from the stochastic small-scale waves filters
up-scale. Typical zonal profiles of lower layer depth in the
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difference between the thirty members was the particular ran-
dom numbers in the stochastic forcing fields. As in Sect. 2,

the initial conditions for the integrations were given by the
equilibrium flow with superimposed small-amplitude noise,
though it seems that the noise seeding is not necessary in this
case as perturbations from which instabilities can grow are
provided by the stochastic forcing. In each case, the equili-
* | brated azimuthal wavenumberwas noted, and found to be
H either 1 or 2.
] For each ensemble of constant noise amplitude, the prob-
ability of equilibration to wavenumber 2 was calculated and
*ox i is plotted in Fig. 4. There is a clear and strong dependence
of probability partition on noise amplitude. The results are
consistent with a linear drop-off in the probability af=2
as the noise increases to aroung 1.0s2, followed by a
saturation at a probability of around 10% up to a noise of
a=2.0s"2. At each noise amplitude, zonal profiles of lower

Fig. 4. Probability of equilibration to azimuthal wavenumber two layer depth (such as thqse in Fig. _3) still showeq SmOOt.h'

as a function of stochastic noise amplitude, The rotation rates large-scale modes superimposed with small-amplitude, grid-

areAQ=0.23rads ! andQ=2.25rads 1, at which Ro=0.051,  Scale noise.

Fr=11 andd =0.057. For each probabilityy, the error bars are The addition of small-amplitude noise has had a very sig-

obtained from the standard deviatigiVp(1 — p) of the binomial  nificant impact upon the predictability of the system’s phase

distribution BN, p), with N = 30. space attractor, at this point in parameter space. Ten-member
ensembles at the centres of the=1, 2, 3 regions of the
regime diagram always showed equilibration to the given

presence of the stochastic forcing are shown in Fig. 3, inwavenumber, irrespective of noise amplitudes up to 220s
which the zonal wavenumber of the large-scale mode is 2.This suggests that the regiong of, AQ] parameter space in
The effects of the stochastic parameterization on the flowwhich IGWs can exert a strong influence on large-scale mode
are clear, as a small-amplitude gridscale perturbation to thavavenumber selection, are confined to finite width strips ad-
main wavenumber 2 signal, which is much smoother wheniacent to transition curves, where the system is highly intran-
the parameterization is not activated. The interface ampli-SItve.

tude of the balanced mode reaches a maximum of around .

3mm near mid-radius, whilst the characteristic anomaly as-3-2 Spontaneous transitions

sociated with the stochastic terms is seen to be around a fac- . . . I

tor of 10 smaller. These typical model amplitudes are similarln Sect. 3.1, we investigated the stability of an equilibrium

to those of the large- and small-scale waves as measured axisymmetric shear flow continuously seeded with stochas-
the laboratory experiment (Williams, 2003) tic noise, which is a simple model of an axisymmetric atmo-

spheric jetstream in the presence of IGWs. A more likely sce-
nario in the atmosphere is for a large-scale azimuthal mode to
have already grown due to baroclinic instability, and reached
a quasi-equilibrium at finite amplitude, giving a perturba-

In this section, we use case studies of two particular modefion to the jetstream. There are therefore good geophysi-
runs to illustrate the large impact that the stochasticauy-cal reasons to be more interested in the stability of a finite-
parameterized fast waves can have on wavenumber selectiginplitude large-scale wave in the presence of IGWs, rather

and spontaneous transitions, at certain points in parametdpan the stability of an axisymmetric flow.
space. In order to investigate this, we now take a wavenumber 2

model flow with AQ=0.23rads? and Q=225rads?,
which has equilibrated at finite amplitude in the absence of
stochastic forcing. As in Sect. 3.1 (with these parameters),
We use a stochastically-forced numerical experiment withthe system is quite close to the wavenumbes 2 transition
AQ=0.23rads! andQ=225rads!. Thisis quite close curve. In the present investigation, we continue the model
to the azimuthal wavenumber<% 2 transition curve in integrations using the finite amplitude wavenumber 2 mode
the [©2, AQ] regime diagram, which means that the linear as an initial condition, but increase the stochastic noise am-
growth rates of the wavenumber 1 and 2 modes are approxplitude froma =0toa =2.0s72, by 10%s72 each timestep
imately equal. An ensemble of thirty members was carriedso that the increase is quasi-continuous.

out for each of various stochastic forcing amplitudes, rang- Results show that the wavenumber 2 mode persists until
ing froma =0 toa = 2 s~2. Within each ensemble, the only the noise reaches a certain threshold level, at which point a
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Fig. 5. Hovmiller diagram, showing an azimuth-time contour plot of model perturbation potential vorticity, at mid-ragi@gl cm in
the upper layer, at the time of a spontaneous wavenumber transition. The run parametex2wede23rad s 1 andQ =2.25rads’1, at
which Ro=0.051, Fr=11 andd = 0.057.

spontaneous transition is observed to a wavenumber 1 modd. Conclusions
A Hovmiller diagram showing the transition, which takes
place over around 100 s, which is the time taken for the largeWe have investigated the effects of including a simple
scale wave to travel around the annulus twice, is shown instochastic inertia-gravity wave parameterization, in a quasi-
Fig. 5. This kind of transition is never observed without the geostrophic model of a rotating, stratified shear flow. In
stochastic IGW parameterization activated, and so we congeneral, the effect of the parameterized short waves on the
clude that the transition was caused by the parameterizatiorarge-scale, main modes is too small to be detected. The
At the time of the transition, the stochastic noise parameteishort waves therefore behave as linear superimposed features
had reached a value of= 1.1 s72. By examining zonal pro-  which do not seem to interact in an observable way with the
files of lower layer depth, such as those in Fig. 3, at the trandarge-scale flow. Sufficiently close to a wavenumber transi-
sition time, we find that this corresponds to a gridscale inter-tion curve, however, a nonlinear effect allows the short waves
face anomaly of root-mean-square amplitude 0.3 mm, whichto exert a strong influence over long wavelength mode selec-
is much smaller than the amplitude of the large-scale mode.tion. In particular, case studies have been given in Sect. 3
of model integrations in which the probability-density func-
Fig. 5 may seem unrealistically noisy, but this is simply be- tion for equilibrated Wavenumbe_r_is substantially modified,
cause the Laplacian operator, which is required to obtain thénd I Which spontaneous transitions are observed between
different azimuthal modes. Both of these effects are directly

perturbation potential vorticity from the interface height, am- ="~ i
plifies small scales relative to large scales. For this reason"f‘tt”bUtable to the presence of the stochastic short waves, and

the profiles of lower layer depth in Fig. 3 appear much lessOCCUr even though the characteristic high wavenumber am-
noisy. plitudes are at least an order of magnitude smaller than the

- long wave amplitude. It seems highly unlikely that these phe-
After the transition to the wavenumber 1 mode, the nomena could be reproduced using a deterministic parame-
stochastic noise amplitudewas decreased back to zero by terization of the inertia-gravity waves, such as that developed
10~°s72 each timestep, but the reverse transition back topy Hines (1988). Such a parameterization would merely lead
wavenumber 2 did not occur. At the end of the integration, 14 an additional small drag force on the fluids, adding slightly

when the noise had reached zero, the wavenumber 1 modg the drag force due to the viscous boundary layers at the
was still dominant, indicating the presence of hysteresis iNsidewalls, lid, base and interface.

the system.

At first sight, the perturbation potential vorticity plot in

We have seen that the addition of small-amplitude noise
As in Sect. 3.1, when the above experiment was repeatetias had a very significant impact on the system dynam-
with rotation rates corresponding to the centre of awavenumics. This phenomenon is a form of stochastic resonance
ber regime in parameter space, spontaneous transitions we(Pikovsky et al., 2001), since a small (stochastic) forcing
not observed. produces a large (resonant) response. This is a nonlinear
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at which the noise began to dominate the signal and, corre-
spondingly, the probability might be expected to tend to 0.5.
We have not investigated this regime, as its geophysical rele-
vance is extremely limited.

The present findings are bourne out by laboratory obser-
vations. We have found in the numerical study that the pres-
ence of stochastically-parameterized inertia-gravity waves
increases the likelihood of a model state transition. Corre-
spondingly, we have found in the laboratory annulus exper-
iments that the flow without inertia-gravity waves exhibits a
reluctance to undergo transitions which take place readily in
their presence. The appearance of inertia-gravity waves in
the laboratory is related to intrinsic fluid properties, whose
effects are scale-selective and so suppress or permit inertia-
gravity wave activity without modifying the large-scale mode
(Williams, 2003). For example, we have been able to mod-
Fig. 6. Schematic double-well potential for a bistable system, whichify the interfacial tension using a chemical surfactant, and
can e.x.plain the qbserved model regime transitions close to<t2 1 thereby completely suppress inertia-gravity waves.
transition curve Irf<2, A$] parameter space. Since laboratory inertia-gravity wave amplitudes cannot

be continuously increased in a controlled way, in contrast
resonance which is not dependent upon any matching ofvith the numerical experiments, we instead choose to con-
timescales, unlike the familiar criterion required for linear tinuously increase the background rotation rate. As an ex-
resonance. If stochastic resonance is exhibited by a nonample, laboratory experiments were run in whighwas
linear system, then the introduction of very small amplitude gradually increased at a rate o&40 “4rads?, starting
noise can dramatically affect the system state. For examplerom 2.3 rad s1 at which the equilibrated flow had azimuthal
De Swart and Grasman (1987) have studied the effects ofvavenumber 2A was held constant at@2 rad s'1. With-
adding a stochastic forcing term to a low-order atmosphericout inertia-gravity waves, the flow made a transition to a
spectral model based on the barotropic potential vorticitywavenumber 3 state wheR? had reached .@rad s, but
equation, and found that the noise forces the system to visiivith inertia-gravity waves, the transition occurred earlier,
alternately different quasi-stable regimes. when Q reached Zrads®. The values of the nondimen-

The results of Sect. 3.2 suggest a simple schematic modeadional parameters for the transition were=Rn09, Fr=25
for explaining the observed spontaneous transitions. We repand ¢=0.026 in the absence of inertia-gravity waves, and
resent the stable equilibrium states-1 andn=2 by minima  Ro=0.11, Fe=16 andd=0.023 in their presence. Inertia-
of the potential well shown in Fig. 6. With the system in the gravity waves therefore seem to have a strong influence on
m=2 state, a short burst of sufficiently strong stochastic forc-transitions, both in the laboratory and the model. There
ing permits the system to overcome the transition barrier andare laboratory regimes in which the wavenumber 1 and 2
thereby undergo an irreversible transition to the1 state, states vacillate irregularly, rather than a single state remain-
in which the system remains after the burst. Presumably, théng steady. This has a closer correspondence with the at-
barrier height increases with distance from a transition curvemospheric regime, and so an investigation of inertia-gravity
in the[©2, AQ] regime diagram, increasing the noise ampli- wave impacts on these states should form an important com-
tude which is required to force a transition. This is consistentponent of any future work.
with the observation of Sect. 3.2 that, far away from regime The Rossby, Froude and dissipation numbers for the lab-
diagram transition curves, even very large stochastic forcingratory experiment, atmosphere and ocean are not dissim-
is unable to induce a spontaneous transition. ilar (Williams, 2003), though the non-dimensionalized vis-

If the stochastic forcing were sufficiently large, it could cosity and interfacial tension are much larger in the labora-
begin to dominate the model output and give flows with tory. It therefore seems likely that the qualitative findings
wavenumbers which were essentially random. In that caseof this study apply to the atmosphere and ocean. The impli-
both of the wavenumber regimes in the experiments ofcation is that a short, intense burst of inertia-gravity waves
Sect. 3.1 might be expected to have an equal probability otould force a large-scale regime change which persists long
occurrence. The stochastic forcing which we have used isafter the inertia-gravity waves have dissipated. Such an event
much smaller than this, however. It can be large enough tas unlikely to be captured by a deterministic inertia-gravity
push the system state over the transition barrier in Fig. 6, inrvave parameterization, as currently used by most operational
the direction fromm=2 to m=1, but is never large enough meteorological centres. There is a clear need for further re-
to effect the reverse transition. This is consistent with thesearch to investigate the likely forecast error that this phe-
change in wavenumber two probability from 0.8 to 0.1 asnomenon could inflict. Moreover, stochastic inertia-gravity
the noise is increased, as shown in Fig. 4. Presumably if thevave parameterizations would seem to offer a promising and
noise were increased further still, a point would be reachedconvenient way of capturing it.
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