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Time discretization in weather and climate models introduces truncation errors that limit the
accuracy of the simulations. Recent work has yielded a method for reducing the amplitude
errors in leap-frog integrations from first-order to fifth-order. This improvement is achieved
by replacing the Robert–Asselin filter with the Robert–Asselin–Williams (RAW) filter and
using a linear combination of unfiltered and filtered states to compute the tendency term.
The purpose of the present article is to apply the composite-tendency RAW-filtered leap-
frog scheme to semi-implicit integrations. A theoretical analysis shows that the stability
and accuracy are unaffected by the introduction of the implicitly treated mode. The scheme
is tested in semi-implicit numerical integrations in both a simple nonlinear stiff system
and a medium-complexity atmospheric general circulation model and yields substantial
improvements in both cases. We conclude that the composite-tendency RAW-filtered
leap-frog scheme is suitable for use in semi-implicit integrations.
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1. Introduction

The performance of time-stepping schemes in atmosphere and
ocean models has received increasing attention in recent years
(Durran and Blossey, 2012; Clancy and Pudykiewicz, 2013).
Arguably, the renewed interest has stemmed from the accumula-
tion of evidence that the errors arising from time discretizations
may be a non-negligible component of total model error in
weather and climate simulations (Pfeffer et al., 1992; Williamson
and Olson, 2003; Mishra et al., 2008; Zhao and Zhong, 2009).
The artefacts of time discretization are not limited to the formal
accuracy restrictions inflicted by truncation errors (Teixeira et al.,
2007) but may also include unexpected effects such as aliasing of
Rossby waves (Huang and Pedlosky, 2003) and a loss of stability
as the time step is shortened (Heimsund and Berntsen, 2004).

The leap-frog time-differencing scheme is used extensively in
current models, in concert with the stabilizing Robert–Asselin
filter (Asselin, 1972), to suppress the computational mode
(Griffies et al., 2001; Bartello, 2002; Fraedrich et al., 2005;
Hartogh et al., 2005; Williams et al., 2009). To increase
the amplitude accuracy of this filtered leap-frog scheme,
Williams (2009) introduced what has become known as the
Robert–Asselin–Williams (RAW) filter. The RAW filter attempts
to reduce the filter’s impacts on the physical mode by conserving
the filter perturbations in an average sense during each application
of the filter. Williams (2011) studied the impact of the RAW filter
in semi-implicit integrations. Amezcua et al. (2011) have found
that the RAW filter improves the skill of medium-range weather
forecasts compared with the Robert–Asselin filter. Many current

models have subsequently adopted the RAW filter in place of the
Robert–Asselin filter (see Williams, 2013 for a list).

Williams (2013) identified two strategies for increasing the
amplitude accuracy of the filtered leap-frog scheme further. We
recall that the RAW filter eliminates the first-order amplitude
errors associated with the Robert–Asselin filter and yields third-
order amplitude accuracy. The two improvements proposed by
Williams (2013) are as follows. Firstly, leap-frogging over a
suitably weighted blend of the filtered and unfiltered tendencies
was shown to eliminate the third-order amplitude errors and
yield fifth-order amplitude accuracy. Secondly, the use of a more
discriminating (1, −4, 6, −4, 1) filter instead of a (1, −2, 1) filter
was shown to eliminate the fifth-order amplitude errors and yield
seventh-order amplitude accuracy; see Moustaoui et al. (2014)
for a variant of this approach.

The purpose of the present article is to apply the composite-
tendency RAW-filtered leap-frog scheme to semi-implicit
integrations. The layout is as follows. Firstly, in the theoretical
analysis section, the amplification factor associated with the
scheme is derived. Series expansions allow us to derive the
asymptotic behaviour of the phase and amplitude errors in the
limit of small time steps. Numerical solutions allow us to study
the phase and amplitude errors for finite time steps. The stability
of the physical and computational modes is studied. Secondly, we
test the scheme in semi-implicit integrations of a simple nonlinear
stiff system. Finally, we test the scheme in a medium-complexity
atmospheric general circulation model, which is closer to the
models used for operational numerical weather prediction. The
article concludes with a summary and conclusions.
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2. Theoretical analysis

2.1. The numerical amplification equation

Consider the two-frequency oscillation equation for the complex
variable x(t),

dx

dt
= iωlowx + iωhighx, (1)

where ωlow and ωhigh are slow and fast angular frequencies

and i = √−1 (see e.g. Durran, 1991, 1999). Following Williams
(2011), we apply the explicit leap-frog scheme to discretize the
ωlow term and the implicit Crank–Nicholson scheme to discretize
the ωhigh term. Letting �t denote the size of the time step and
using the RAW filter as a stabilizer, we obtain the following
numerical scheme:

x(t + �t) − ¯̄x(t − �t)

2�t
= iωlowx̄(t)

+ iωhigh

[
x(t + �t) + ¯̄x(t − �t)

2

]
, (2)

with the RAW filter given by

¯̄x(t) = x̄(t) + να

2

[ ¯̄x(t − �t) − 2x̄(t) + x(t + �t)
]

, (3)

x̄(t + �t) = x(t + �t)

+ ν(α − 1)

2

[ ¯̄x(t − �t) − 2x̄(t) + x(t + �t)
]
. (4)

There are two dimensionless parameters in the RAW filter.
The first is the usual Robert–Asselin parameter, which satisfies
0 < ν � 1 and is usually of the order of 10−2 –10−1 (see e.g.
Asselin, 1972; Déqué and Cariolle, 1986; Durran, 1991). The
second is the extra parameter of the RAW filter, which satisfies
0 ≤ α ≤ 1 and specifies the relative sizes of the filter perturbations
at times t and t + �t. In particular, α = 1 recovers the classical
Robert–Asselin filter.

Following Williams (2013), let us now assume that in a
computational code both x(t) and x̄(t) are kept in memory.
Then we can use a linear combination of them to calculate
the tendency associated with the slow term, which we write as
γ x̄(t) + (1 − γ )x(t). In Williams (2013), the value of γ was
restricted to 0 ≤ γ ≤ 1. This inequality had the purpose of
providing an intuitive interpretation to the weights, e.g. 70% of
the filtered tendency added to 30% of the unfiltered tendency.
This is not necessary, however, for consistency of the scheme.
One can write the composite tendency as x(t) + γ (x̄(t) − x(t)).
Then it is evident that there is no restriction on the value of γ
and the scheme is consistent, since x̄(t) → x(t) as �t → 0.

Using the composite tendency, one solves for x(t + �t) and
Eq. (2) becomes

x(t + �t) =
(

1 + i�tωhigh

1 − i�tωhigh

)
¯̄x(t − �t)

+
(

2i�tωlow

1 − i�tωhigh

)
(γ x̄(t) + (1 − γ )x(t)) . (5)

We define the complex numerical amplification factor as

A = x(t + �t)

x(t)
= x̄(t + �t)

x̄(t)
=

¯̄x(t + �t)

¯̄x(t)
. (6)

To find an expression for A, we rewrite Eqs (3)–(5) with x
evaluated solely at time t, using Eq. (6). Furthermore, we let

ωhigh = rωlow. In particular, we are interested in the case |r| ≥ 1.
A negative r means the slow and fast waves propagate in opposite
directions, while a positive r means the direction of both waves
is the same. The region |r| < 1 is of no practical interest, since
it would imply using an explicit scheme for fast oscillations and
an implicit scheme for slow oscillations. Nonetheless, r = 0 is of
interest, since it recovers the single-oscillation case of Williams
(2013).

After manipulation, we obtain a homogeneous matrix equation

for the vector
[ ¯̄x(t) x̄(t) x(t)

]T
. For non-trivial solutions, the

determinant of the matrix of coefficients must vanish, yielding a
cubic equation in A:

c3A3 + c2A2 + c1A + c0 = 0, (7)

with coefficients given by

c3 = −1 + r iωlow�t, (8)

c2 = ν + [2 + (α − 1)γ ν] iωlow�t

+ (α − 1)νr iωlow�t, (9)

c1 = 1 − ν + [(α − 1)(1 − 2γ ) − 1] ν iωlow�t

+ (1 − αν)r iωlow�t, (10)

c0 = (α − 1)(γ − 1)ν iωlow�t. (11)

These coefficients reduce to those indicated in Williams
(2013) when r = 0. Equation (7) yields three solutions for
A(iωlow�t; ν, α, γ , r), which we label AP, AC1 and AC2. The
first solution is the physical mode, P, and the other two solutions
are computational modes, C1 and C2. One of the computational
modes vanishes when c0 = 0, because the cubic equation then
reduces to a quadratic equation. This happens if γ = 1, because
then x(t) disappears from Eq. (5), or if α = 1 or ν = 0, because
then x̄(t) = x(t). These conditions are the same as obtained
by Williams (2013) for explicit integrations. Therefore, the
introduction of the implicitly treated term does not affect the
existence of computational modes. For comparison, the exact
amplification factor is

Aexact(ωlow, r) = exp [i(1 + r)ωlow�t] . (12)

For the exact solution, oscillations neither amplify nor dissipate,
i.e. |Aexact| = 1, and the phase advancement per time step is given
by arg(Aexact) = (1 + r)ωlow�t.

2.2. Asymptotic behaviour

In this section, we will analyze the asymptotic amplitude and
phase behaviour of the three modes as ωlow�t → 0. Let us start
with the amplitudes and perform a Maclaurin series expansion
for |AP|. The amplitude error for the physical mode is found to
be

|AP| − 1 = ν(1 − 2α)(1 + r)2

2(2 − ν)
(ωlow�t)2

+ O
[
(ωlow�t)4

]
. (13)

As in Williams (2013), the leading-order amplitude error over one
time step is proportional to (�t)2 and is independent of γ . The
presence of the fast mode, however, introduces an extra factor of
(1 + r)2. Equation (13) is the same as eq. (11) in Williams (2011),
in which ν � 1 was deliberately ignored in the denominator. If
we choose

α = 1

2
, (14)

then the coefficient of the quadratic term vanishes. This choice
implies using equal and opposite filter perturbations at present
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and future times. With this choice, Eq. (13) becomes∣∣∣AP, α= 1
2

∣∣∣ − 1

= (1 + r)3ν[(4 − ν)γ − (3 + r − ν)]

4(2 − ν)2
(ωlow�t)4

+ O
[
(ωlow�t)6

]
. (15)

Let us now examine the coefficient of the quartic term. The factor
ν/[4(2 − ν)2] is always positive, since 0 < ν < 1, so the sign of
this term is determined by the factor (1 + r)3[(4 − ν)γ − (3 +
r − ν)] and this sign indicates the asymptotic stability of the P
mode. In particular, if

γ = 3 + r − ν

4 − ν
, (16)

then this coefficient vanishes and the first non-zero term in the
series is proportional to (ωlow�t)6. For smaller values of γ , the
quartic coefficient is negative, indicating asymptotic stability, and
for larger values it is positive, indicating asymptotic instability.
Comparing Eq. (16) with eq. (18) in Williams (2013), we notice
an extra r term in the numerator.

Let us now examine the asymptotic stability of the
computational modes. For the sake of brevity, we consider
α = 1/2 from the beginning. Maclaurin expansions for the
magnitudes of C1 and C2 yield

∣∣∣AC1, α= 1
2

∣∣∣ = 1 − ν + K(γ , ν, r)

8(1 − ν)3
(ωlow�t)2

+ O
[
(ωlow�t)4

]
(17)

and

|AC2, α= 1
2
| =

∣∣∣∣ν(γ − 1)

2(1 − ν)

∣∣∣∣ (ωlow�t) + O
[
(ωlow�t)3

]
, (18)

where the exact expression for K(γ , ν, r) is spared for brevity. The
amplitude of C1 is approximately 1 − ν, indicating unconditional
asymptotic stability. The amplitude of C2 is approximately zero,
indicating unconditional asymptotic stability. Therefore, both
computational modes are stable for small values of ωlow�t.

To complement the preceding amplitude analysis, let us now
examine the phase properties of the three modes. We start with a
Maclaurin series expansion for arg(AP). The first term of the series
is (1 + r)ωlow�t, which is the phase of the exact amplification
factor. After substituting α = 1/2, the phase error is found to be

arg(AP,α= 1
2

) − (1 + r)ωlow�t

= (r + 1)2(6νγ − r(8 − ν) + 1 − 5ν)

12(2 − ν)
(ωlow�t)3

+ O
[
(ωlow�t)5

]
. (19)

The leading-order phase error is proportional to (ωlow�t)3,
agreeing with Williams (2013). It shows cubic variation with r,
agreeing with equation (13) in Williams (2011).

Let us finally analyse the phase properties of the two
computational modes. Starting with an expansion for arg(AC1),
we obtain

arg(AC1,α= 1
2

) = (2 − ν)(γ ν + r(1 − ν) + 1)

2(1 − ν)2
(ωlow�t)

+ O
[
(ωlow�t)3

]
. (20)

The phase advancement of C1 per time step is approximately
zero. For arg(AC2), we have

arg(AC2,α= 1
2

) = S(γ , ν, r, ωlow�t)π

+ −(2 − ν)(γ ν + r(1 − ν)) + (3 − 2ν)ν

2(1 − ν)2
(ωlow�t)

+ O
[
(ωlow�t)3

]
, (21)

where S = ±1 is a complicated sign function that depends on the
parameters of the filter. Hence, the phase advancement of C2 per
time step is approximately ±π.

2.3. Behaviour for finite ωlow�t

It is of practical interest to study the amplitude and phase
behaviour for finite values of ωlow�t. For that reason, we now
obtain numerical solutions of Eq. (7). We begin with |AP|, which
is a function of ωlow�t that also depends on the parameters
{ν, α, γ , r}. We fix ν = 0.1 for this analysis. In Figure 1, we plot
the solutions for different values of α, γ , and r (both positive and
negative). Figure 1(b) corresponds to figure 5 of Williams (2009)
and Figure 1(k) roughly corresponds to the right panel of figure
6 in Williams (2011).

For all cases, the most dissipative solution corresponds to
α = 1, the classical Robert–Asselin filter. Note that panels
(a) and (c) are the same, since r = 0. In the absence of fast
oscillations (first row), the solutions for all values of α are very
similar for the three values of γ . This is true for the interval
studied, 0 ≤ ωlow�t ≤ 0.4, and agrees with figure 4 of Williams
(2013). For r �= 0, more apparent differences appear; note that
the ordinate range in panels (d)–(l) is one order of magnitude
larger than for panels (a)–(c). Let us start with the case r = ±5
(second row). We see that the amplification for small values
of α grows as γ grows. Moreover, the parameter combination
α = 1/2 and γ = (3 + r − ν)/(4 − ν) causes |AP| to remain
close to unity for the range of ωlow�t shown. We notice that
the overall behaviour of cases r = −5 and r = 5 is the same,
but for r = −5 all the lines remain closer to the ideal |AP| = 1.
The difference between positive and negative r becomes less
noticeable as we increase |r|. The third row of the figure shows the
case r = ±10. The features are very similar to the case r = ±5,
although the growth in amplification/dissipation is slower with
respect to ωlow�t. For r = ±100, the interaction between α and
γ is similar and the difference between positive and negative
values of r is negligible. In this case, moreover, we infer the
existence of a value 0.25 < α < 0.5 for which |AP| remains close
to unity when γ = (3 + r − ν)/(4 − ν). Finally, note that the
amplification/dissipation of the physical mode saturates for large
values of r, as the curves become almost horizontal after some
value of ωlow�t.

In Figure 2, we plot the numerical solutions for |AC1| (top
row) and |AC2| (bottom row) as functions of ωlow�t. We choose
the cases r = −10 (dashed lines) and r = 10 (solid lines) and
fix ν = 0.1. We use γ = (3 − ν)/(4 − ν) (left column) and
γ = (3 + r − ν)/(4 − ν) (right column). Different values of α
are plotted with different colours. Both modes are stable over
the range of ωlow�t shown, except that mode C1 has a zone
of instability when α = 0 and γ = (3 + r − ν)/(4 − ν). Note
that |AC2| = 0 for α = 1, which is expected because this case
corresponds to the classical Robert–Asselin filter. For C1, the
amplification factor is larger for positive values of r than for
negative values of r, regardless of the value of γ . For r = ±10
this difference is still appreciable, but at larger magnitudes of
r this difference tends to disappear (not shown). For C2, the
amplification for negative r is smaller than for positive r when
γ < 1, but the opposite happens when γ > 1. Again, these
differences are less noticeable as |r| increases (not shown).

Finally, in Figure 3 we explore the r-dependence of the
magnitudes of the three modes; for this purpose we study values
in the interval −1000 ≤ r ≤ 1000. We fix ν = 0.1 and α = 0.5
and compare two cases: γ = (3 − ν)/(4 − ν) (top row) and
γ = 1 (centre row). The latter case corresponds to the classical
RAW filter, i.e. with a non-composite tendency, and this case
does not have a second computational mode. The bottom row
displays the difference of the first minus the second row. As
in Williams (2011), we observe that inclusion of the implicitly
treated mode stabilizes the numerical scheme and widens the
range of frequencies that yield stability. We notice that, under our
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1. Behaviour of |AP| as a function of ωlow�t for different values of α (coloured lines), γ (columns) and r (rows). The top row corresponds to r = 0, i.e. no
fast oscillations and hence no semi-implicit integration. The second row corresponds to r = −5 (dashed lines) and r = 5 (solid lines), i.e. the fast variable being five
times faster than the slow one. The sign of r indicates whether the waves travel in an opposite (−) or the same (+) direction. The third row corresponds to r = ±10
and the bottom row corresponds to r = ±100. The left column corresponds to γ = (3 − ν)/(4 − ν), i.e. the optimal value found in Williams (2013) for r = 0; the
middle column corresponds to γ = 1, i.e. the regular RAW filter; and the right column corresponds to γ = (3 + r − ν)/(4 − ν), i.e. the value we found to minimize
the amplitude error. All panels use ν = 0.1. Note that panels (a) and (c) are identical (since r = 0).

choice of α, |AP| is dissipative. For both values of γ , the damping
of this mode increases as both ωlow�t and |r| increase.

The difference plotted in Figure 3(f) shows different
behaviour for positive and negative values of r. For r > 0
(r < 0), the difference is negative (positive), which implies that∣∣AP,γ=(3−ν)/(4−ν)

∣∣ is more (less) dissipative than
∣∣AP,γ=1

∣∣. The
contours corresponding to negative and positive values of the
same |r| are not symmetric. The magnitudes of the differences
are of the order of 10−4 and are concentrated in the region
where |r| is small and ωlow�t is large. Figure 3(g) shows a similar
behaviour. A vast region of the plane shows negative differences,
implying that the computational mode C1 is more damped with
γ = (3 − ν)/(4 − ν) than it is for the regular RAW filter without
composite tendency. This is true for the whole region r > 0 and
for some values of r < 0. In contrast, there is a region for small
negative values of r and large ωlow�t in which the difference is
positive, indicating that

∣∣AC1,γ=(3−ν)/(4−ν)

∣∣ is more dissipative

than
∣∣AC1,γ=1

∣∣ . Finally, the computational mode C2 exists only
when γ �= 1 and therefore we only have one plot for this mode,
i.e. Figure 3(c). The region where r is small and ωlow�t is large

is particularly important, since the growth of this mode is largest
there.

To finish this section, we emphasize that the values of γ

obtained in this section are based on the linear equation (1), first
in the asymptotic limit �t → 0 and then under finite time steps.
In the next sections, we will be using nonlinear models. One
cannot expect these values of γ to be optimal in the nonlinear
setting, but they can still be useful as general guidance.

3. Experiments with a simple model

We now test the proposed semi-implicit integration method in
a simple yet realistic nonlinear system, the elastic pendulum,
following Williams (2011). This stiff system exhibits two modes:
a slow rotational mode about the point of suspension and a fast
vibrational mode (see e.g. Lynch, 2002). In the present setting,
a massless spring of unstretched length l0 = 0.63 m and force
constant k = 100 N m−1 is loaded with a point mass m = 0.1 kg
subject to a gravitational field g = 10 m s−2. The equilibrium
length of the loaded spring is l = l0 + mg/k = 0.64 m. The two

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 764–773 (2015)
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(a) (b)

(c) (d)

Figure 2. Behaviour of (a, b) |AC1| and (c, d) |AC2| as functions of ωlow�t for different values of α (coloured curves) and for (a, c) γ = (3 − ν)/(4 − ν) and (b, d)
γ = (3 + r − ν)/(4 − ν). For these plots we have fixed ν = 0.1 and we show the cases r = −10 (dashed lines) and r = 10 (solid lines).

(a) (b)

(d) (e)

(f) (g)

(c)

Figure 3. Behaviour of (a, d, f) |AP|, (b, e, g) |AC1| and (c) |AC2| as a function of ωlow�t (horizontal axes) and r (vertical axes). For all panels, ν = 0.1 and α = 1/2.
Two cases are compared: γ = (3 − ν)/(4 − ν) (top row) and γ = 1 (centre row). The differences for |AP| and |AC1| between the two cases are plotted in the bottom
row.

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 764–773 (2015)
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resulting angular frequencies are ωlow = √
g/l ≈ 3.95 rad s−1

and ωhigh = √
k/m ≈ 31.62 rad s−1, hence r = 8 exactly.

The system is described in polar coordinates by two variables:
the polar angle of oscillation with respect to the downward vertical
is θ(t) and the radial coordinate of the point mass is l(1 + η(t)).
The first derivatives of these variables (the velocities) are denoted
as vθ (t) and vη. The nonlinear equations of motion are

θ̇ = vθ , (22)

v̇η = −ω2
low(1 − cos θ) − ω2

highη + (1 + η)v2
θ , (23)

η̇ = vη, (24)

v̇θ = −ω2
low sin θ − 2vθ vη

1 + η
. (25)

The underlined terms in these equations are the ones responsible
for the fast oscillations and hence they are treated implicitly in
the numerical integration. Unusually for a semi-implicit scheme,
this system yields explicit analytical expressions for the future
state and does not require any iteration. The equilibrium position
of this system is θ = 0 rad and η = 0. The time-continuous
equations conserve the total energy

E = 1

2
ml2[v2

η + (1 + η)2v2
θ ] − mgl(1 + η) cos θ

+ 1

2
kl2(η + mg/kl)2 + mgl − 1

2
k(l − l0)2. (26)

For our chosen initial conditions (θ = 1 and η = 0.01), this
corresponds to E(t = 0) ≈ 0.29 J.

The results of our numerical experiments are depicted in
Figure 4. The evolution of the slow variable θ is shown in panel
(a), that of the fast variable η in panel (b) and that of the energy E
in panel (c). We start by computing a reference solution using a
fourth-order Runge–Kutta integration scheme with �t = 10−3 s.
This can be considered a very good approximation to the exact
solution of the system and corresponds to the black lines in
Figure 4. This solution conserves energy to within 10−10 J at all
times during the integration. The integration runs from t = 0 s
to t = 10 s, although in the figure we show only 0 < t < 5 s for
clarity.

For the semi-implicit integrations we use �t = 0.1 s, which
is too large to resolve the fast oscillations, but the implicit
treatment of the fast mode keeps the integration stable. Setting

ν = 0.2, we compute six solutions. The first uses α = 1 and the
other five use α = 1/2 and γ = {−3.5, 0, 0.73, 1, 2.79}. The case
α = 1 corresponds to the traditional Robert–Asselin filter and is
denoted using grey lines in the figure. This is the most dissipative
solution; for both θ and η, the amplitude of the oscillations is
reduced with time and therefore the energy decreases with time.
The experiments were repeated for ν = 0.1 (figures not shown)
with the same qualitative behaviour; the difference is that the
effects take longer to be noticeable.

Before describing the results for the different values of γ , it is
useful to assess the change in computer time resulting from using
a composite tendency in the integration. This model is run in
Matlab R2007a and the time for an integration from t = 0 s to
t = 10 s is measured using the tic/toc command. This is repeated
100 times to account for any internal variability in the processing.
The average integration time for the standard (pure tendency)
RAW-filtered semi-implicit leap-frog scheme is 0.073 s, while the
time for the integration using the composite tendency is 0.086 s.
This means an increase of 18% in computing time.

Going back to the results of the integration, for α = 1/2, the
first value we choose is γ = −3.5 (red line). With this large
negative value, |AC2| becomes larger than 1 and therefore the
scheme loses stability. As a result, we find that the magnitude of
the slow variable grows with time. Consequently, the energy grows
with time. Next we choose γ = (3 + r − ν)/(4 − ν) ≈ 2.79
(purple line), which is the optimal value for suppressing errors
in the P mode (at least according to the linear analysis). The
amplitude of the solution decreases with time (although not as
fast as in the Robert–Asselin case) and there is a progressive
dephasing of the solution. This combination also results in the
largest amplitudes for η. Consequently, the energy decreases
slowly with time, but not in a smooth manner.

Next, we choose the values γ = 1 (the traditional RAW filter
using the pure filtered tendency, blue line), γ = 0 (using the
pure unfiltered tendency for the RAW filter, yellow line) and
γ = (3 − ν)(4 − ν) ≈ 0.73 (the optimal value found in Williams
(2013) for r = 0, green line). The three cases show very similar
performance and are much more accurate that the other options.
In the three cases, it appears that the amplitude is conserved
reasonably well. There is a slight progressive dephasing, which is
smallest for the case γ = 0.

Finally, we take a closer look at the accuracy of the solution for
more values of γ . We keep α = 1/2 fixed and compute solutions
with γ = {−3.6, −3.55, . . . , 0, . . . , 2.95, 3}. For each solution,
we compute the root-mean-square error (RMSE) of the energy
E(t) with respect to E(t = 0) ≈ 0.299 J over the whole integration

(a)

(b)

(c)

Figure 4. Numerical integration of the nonlinear elastic pendulum equations with initial conditions θ = 1 rad, η = 0.01 and E0 ≈ 0.299 J. The top row (a)
corresponds to the slow variable θ , the middle row (b) to the fast variable η and the bottom row (c) to the energy E. A reference solution using the RK4 scheme with
�t = 0.001 is shown in black. The other solutions are computed using �t = 0.1, ν = 0.2 and different combinations of α and γ .

c© 2014 Royal Meteorological Society Q. J. R. Meteorol. Soc. 141: 764–773 (2015)



770 J. Amezcua and P. D. Williams

window. This is done in the following manner:

RMSEE =
√√√√ 1

N

N∑
n=1

(E(t = n�t) − E0)2, (27)

where N corresponds to the total number of time steps up to
t = 10. The result of this computation is shown in Figure 5. For
reference, the RMSE of the solution using the Robert–Asselin
filter is 0.181 J. In this figure, it is clear that the RMSE generally
grows as |γ | grows. There are two local minima in RMSE: the
first occurs around γ = −3.2 and the other around γ = 0.7.
The latter is also the global minimum. It seems that the region
−0.5 < γ < 1.5 is a good choice for this parameter.

We repeat the same experiment for different final values of
integration: tmax = 5, 6, ..., 30 s. The result, shown in Figure 6,
reveals that the overall shape of Figure 5 appears at about tmax ≈ 7.
As tmax increases, the valley around the negative local minimum of
γ becomes narrower. The valley around the positive (and global)
minimum of γ is more robust to changes in tmax.

4. Experiments with an AGCM

To finalize this work, we test our numerical integration scheme
with a more complicated model, which is closer to the models
used for operational numerical weather prediction. As in Amezcua
et al. (2011), we use the Simplified Parameterizations, primitivE-
Equation Dynamics (SPEEDY) model (Molteni, 2003). SPEEDY

Figure 5. Root-mean-square error in the energy of the solution from t = 0 to
t = 10 s. For the integration, ν = 0.2, α = 1/2 and γ is varied (horizontal axis).

Figure 6. Root-mean-square error in the energy of the solution from t = 0 to
t = T s. For the integration, ν = 0.2, α = 1/2 and γ is varied (horizontal axis).
Different values of T are used, represented with different colours.

is a medium-complexity atmospheric general circulation model
(AGCM) that has a spectral primitive-equation dynamic core and
a set of simplified physical parametrization schemes.

Miyoshi (2005) adapted SPEEDY for use in data assimilation,
with output every 6 h. The model time step is 40 min. We
use this model implementation in our experiments. It has a
resolution of T30L7, i.e. with horizontal spectral truncation
at total wavenumber 30 and with seven vertical levels. Data
are output on a horizontal grid of 96 longitudinal and 48
latitudinal points. The model is based on a spectral dynamical
core developed at the Geophysical Fluid Dynamics Laboratory.
The model is hydrostatic and is formulated in σ coordinates
in the vorticity–divergence form described by Bourke (1974).
Five field variables are calculated: zonal wind u, meridional wind
v, temperature T, relative humidity q and surface pressure ps.
The geopotential height z for different pressure levels may be
obtained by interpolation (since the model is hydrostatic). The
description of the basic physical parametrizations can be found
in the appendix of Molteni (2003).

For time stepping, SPEEDY uses a Robert–Asselin-filtered
leap-frog scheme. The gravity waves are treated implicitly, making
this model an ideal setting to test the methods analyzed in this
article. Some other schemes (e.g. third-order Adams–Bashforth:
Durran, 1991) become unstable under the semi-implicit method
and hence are not suited for this model. The Robert–Asselin
parameter is selected as ν = 0.1, which has been found to be
optimal with this model (Miyoshi, 2005). Moreover, this value
lies within the range commonly used in atmospheric models
(Williamson, 1983; Déqué and Cariolle, 1986; Durran, 1991).

We will compare three numerical integration settings. The
first uses the classical Robert–Asselin filter, the second uses the
original RAW filter (α = 0.53) and the third uses the composite-
tendency RAW filter (α = 0.53, γ = 0.73). This value of α is
the one suggested in Williams (2009) and used in Amezcua et al.
(2011). For γ , in the absence of a well-defined value of r, we use
γ = (3 − ν)/(4 − ν).

Introducing the composite-tendency computation required
only a slight modification to the code; only one line needed to
be changed in the integration routine. It is necessary, however,
to write to disc an extra gridded file (of size 666 kB) with the
unfiltered value xn. This has to be read again in the next integration
and is then overwritten.

Again, it is useful to assess the change in computer time when
integrating the model with the new method. SPEEDY is coded
in Fortran 95 and, in our system, the average time for a 6 h
integration of the SPEEDY model using the RAW filter is 0.28 s.
When using the composite tendency, this time changes to 0.46 s.
This is an increase of 65% and includes writing and reading an
extra gridded file every time step and computing the tendency
twice.

To assess any possible accuracy improvement in the integration,
we use the Anomaly Correlation Coefficient (ACC) for h hour
forecasts. The ACC measures agreement between the spatial
variations in the forecast and the analysis, each with respect to
the climatology. It is calculated as

ACC

=
∑N

n=1

[
(fn − csn)(an − crn) cos φn

]
√∑N

n=1[{(fn − csn)cos φn}2]
∑N

n=1[{(an − crn)cos φn}2]
,

(28)

where fn is the forecast, an is the analysis, crn is the climatology
of the reanalysis, csn is the climatology of the SPEEDY model, φn

is the latitude and N is the total number of grid points for the
variable. The subscript labels the points on the grid. The forecasts
are initialized from the corresponding reanalysis values.

The ACC is computed for the month of January 1982 every 6 h
and then a time average is taken, denoted as ACC. For the analysis
data, we use the National Centers for Environmental Prediction
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Figure 7. Anomaly correlation coefficient difference with respect to the Robert–Asselin filter for the original RAW filter (blue line) and the composite-tendency
RAW filter (red line) for all variables. ACCs are computed at six different forecast times (hours), globally, at three different pressure levels (rows). The bars indicate
one standard deviation.

Figure 8. Anomaly correlation coefficient difference with respect to the Robert–Asselin filter for the original RAW filter (blue line) and the composite-tendency RAW
filter (red line) for geopotential height z. ACCs are computed at six different forecast times (hours) at three pressure levels (rows). Four different latitudinal bands are
considered (columns). The bars indicate one standard deviation.

(NCEP) Reanalysis dataset interpolated on to the SPEEDY grid.
The climatology of SPEEDY is computed from the 8 year runs
for the RAW filter. This follows from the fact that Amezcua et al.
(2011) concluded there was no significant difference between
the climatologies of the two filters. We select three of the seven
vertical levels of the model, representing roughly the upper
atmosphere (200 hPa), the middle atmosphere (510 hPa) and the
lower atmosphere (835 hPa). The ACC analysis is performed for
the model variables (u, v, T, q, z) in each of the aforementioned
levels and is also computed for the surface variable ps.

First, the ACC analysis is performed globally. The results for
the five variables (excluding ps) are presented in Figure 7. The
ACC of the Robert–Asselin-filtered run is used as a benchmark
for comparison. Therefore, this figure displays the differences
ACCRAW − ACCRA (blue lines) and ACCCRAW − ACCRA (red
lines). Amezcua et al. (2011) concluded that the use of the
RAW filter showed a significant improvement in medium-term
forecasts (72–144 h) for all variables (except q) and particularly
for T and v. The conclusions for the composite RAW-filtered
solutions are a little different. First of all, we notice that there is
considerably more variability for the medium-term lead times.

This can be noticed from the length of the error bars for 96–144 h
forecasts. Nonetheless, for short lead times (24–72 h forecasts) we
observe improvement with respect to the Robert–Asselin-filtered
solution for u, T and z. This last variable benefits particularly at
all vertical levels. Moreover, the improvements with respect to the
Robert–Asselin filter are rather more substantial than the largest
improvements obtained using the RAW filter.

Now we examine regional differences. For this purpose, we
perform the ACC analysis for three latitudinal bands: the Tropics
(25◦S to 25◦N), the Northern Hemisphere midlatitudes (25◦N
to 75◦N) and the Southern Hemisphere midlatitudes (75◦S to
25◦S). We have selected two variables: geopotential height z
(Figure 8) and zonal wind u (Figure 9). For z, we notice significant
improvements globally for all lead times from 24 to 96 h. The
largest improvement comes from the Tropics at all vertical levels,
although the difference with respect to RAW is particularly
noticeable at 200 hPa. Also, notice that the vertical scale for this
region is different from the others.

For the extratropics (both Northern and Southern Hemi-
sphere), significant improvements are obtained at 24, 48 and
72 h. In the Northern Hemisphere this is particularly noticeable
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Figure 9. Anomaly correlation coefficient difference with respect to the Robert–Asselin filter for the original RAW filter (blue line) and the composite-tendency
RAW filter (red line) for zonal wind u. ACCs are computed for six different forecast times (hours) at three pressure levels (rows). Four different latitudinal bands are
considered (columns). The bars indicate one standard deviation.

at 200 hPa and in the Southern Hemisphere at 850 hPa. For
longer lead times, the performance of RAW is better than that of
composite RAW, although the long error bars of composite RAW
suggest large variability in the performance of the scheme. In the
case of u, the largest improvements come from the extratropics.
The Northern Hemisphere seems to benefit at 24 and 48 h, while
the Southern Hemisphere shows improvement in 24, 48 and 72 h
forecasts at all vertical levels. There is a slight improvement in
the 24 and 48 h forecasts in the Tropics in the two lower vertical
levels.

5. Summary and conclusions

This article has applied the composite-tendency RAW-filtered
leap-frog scheme to semi-implicit integrations. First, a theoretical
analysis showed that stability and accuracy are unaffected by the
introduction of the implicitly treated mode. Then the scheme
was tested in semi-implicit numerical integrations in a simple
nonlinear stiff system and a medium-complexity atmospheric
general circulation model and was found to yield substantial
improvements in both cases. We conclude that the composite-
tendency RAW-filtered leap-frog scheme is suitable for use in
semi-implicit integrations.

There is a time burden associated with modifying any
time integration scheme. The burden is twofold, consisting of
the human effort required to edit the source code as well as the
possible increase in the computational expense of running the
model. Based on our experience in this article, upgrading an
existing semi-implicit code to include the use of a composite
tendency for the explicit term is not difficult. In our experiments
with SPEEDY, the update required a minor modification in one
line of code in the numerical integration file. It is worth noting
that our implementation of SPEEDY had already been upgraded
from RA to RAW filter in the past (Amezcua et al., 2011) and that
this modification was also short and straightforward.

Regarding the computational expense, the method discussed
in this article requires the storage of an extra field. For simple
models like the elastic pendulum, in-core memory can be used
for this purpose. For larger models, however, holding the extra
field in memory is not feasible and the field has to be written
to out-of-core memory (disc) and read in again during the next
time step. There is therefore an additional input/output expense.
Moreover, the method requires computing the tendency term
twice and this implies an increase in the computer time employed

in the integration routine. In the case of the elastic pendulum, the
computational expense increased by 18%, but it translated into a
less dissipative scheme (Figure 4) and a more accurate solution
(Figures 5 and 6).

In the case of SPEEDY, there was an increase in computational
expense of 65%, associated with computing the tendency twice as
well as writing and reading from disc. Nonetheless, considerable
improvements were found in the 24–72 h forecasts. For some
variables, particularly geopotential height, we found that these
improvements were larger than any of the improvements brought
by the use of the RAW filter alone. An interesting option would be
to implement the even more accurate (1, −4, 6, −4, 1) (Williams,
2013) in SPEEDY; we leave this possibility for future work.
Although SPEEDY is of course only a medium-complexity general
circulation model, the authors believe there are no fundamental
barriers to applying the same scheme considered herein to more
complicated models, for both operational numerical weather
prediction and climate simulation.
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